1
|
Hurraß J, Heinzow B, Walser-Reichenbach S, Aurbach U, Becker S, Bellmann R, Bergmann KC, Cornely OA, Engelhart S, Fischer G, Gabrio T, Herr CEW, Joest M, Karagiannidis C, Klimek L, Köberle M, Kolk A, Lichtnecker H, Lob-Corzilius T, Mülleneisen N, Nowak D, Rabe U, Raulf M, Steinmann J, Steiß JO, Stemler J, Umpfenbach U, Valtanen K, Werchan B, Willinger B, Wiesmüller GA. [Medical clinical diagnostics for indoor mould exposure - Update 2023 (AWMF Register No. 161/001)]. Pneumologie 2024; 78:693-784. [PMID: 39424320 DOI: 10.1055/a-2194-6914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
This article is an abridged version of the updated AWMF mould guideline "Medical clinical diagnostics in case of indoor mould exposure - Update 2023", presented in July 2023 by the German Society of Hygiene, Environmental Medicine and Preventive Medicine (Gesellschaft für Hygiene, Umweltmedizin und Präventivmedizin, GHUP), in collaboration with German and Austrian scientific medical societies, and experts. Indoor mould growth is a potential health risk, even if a quantitative and/or causal relationship between the occurrence of individual mould species and health problems has yet to be established. There is no evidence for a causal relationship between moisture/mould damage and human diseases, mainly because of the ubiquitous presence of fungi and hitherto inadequate diagnostic methods. Sufficient evidence for an association between moisture/mould damage and the following health effects has been established for: allergic respiratory diseases, allergic rhinitis, allergic rhino-conjunctivitis, allergic bronchopulmonary aspergillosis (ABPA), other allergic bronchopulmonary mycosis (ABPM), aspergilloma, Aspergillus bronchitis, asthma (manifestation, progression, exacerbation), bronchitis (acute, chronic), community-acquired Aspergillus pneumonia, hypersensitivity pneumonitis (HP; extrinsic allergic alveolitis (EEA)), invasive Aspergillosis, mycoses, organic dust toxic syndrome (ODTS) [workplace exposure], promotion of respiratory infections, pulmonary aspergillosis (subacute, chronic), and rhinosinusitis (acute, chronically invasive, or granulomatous, allergic). In this context the sensitizing potential of moulds is obviously low compared to other environmental allergens. Recent studies show a comparatively low sensitization prevalence of 3-22,5 % in the general population across Europe. Limited or suspected evidence for an association exist with respect to atopic eczema (atopic dermatitis, neurodermatitis; manifestation), chronic obstructive pulmonary disease (COPD), mood disorders, mucous membrane irritation (MMI), odor effects, and sarcoidosis. (iv) Inadequate or insufficient evidence for an association exist for acute idiopathic pulmonary hemorrhage in infants, airborne transmitted mycotoxicosis, arthritis, autoimmune diseases, cancer, chronic fatigue syndrome (CFS), endocrinopathies, gastrointestinal effects, multiple chemical sensitivity (MCS), multiple sclerosis, neuropsychological effects, neurotoxic effects, renal effects, reproductive disorders, rheumatism, sick building syndrome (SBS), sudden infant death syndrome, teratogenicity, thyroid diseases, and urticaria.The risk of infection posed by moulds regularly occurring indoors is low for healthy persons; most species are in risk group 1 and a few in risk group 2 (Aspergillus fumigatus, A. flavus) of the German Biological Agents Act (Biostoffverordnung). Only moulds that are potentially able to form toxins can be triggers of toxic reactions. Whether or not toxin formation occurs in individual cases is determined by environmental and growth conditions, water activity, temperature and above all the growth substrates.In case of indoor moisture/mould damage, everyone can be affected by odor effects and/or mood disorders.However, this is not an acute health hazard. Predisposing factors for odor effects can include genetic and hormonal influences, imprinting, context and adaptation effects. Predisposing factors for mood disorders may include environmental concerns, anxiety, condition, and attribution, as well as various diseases. Risk groups to be protected particularly regarding infection risk are immunocompromised persons according to the classification of the German Commission for Hospital Hygiene and Infection Prevention (Kommission für Krankenhaushygiene und Infektionsprävention, KRINKO) at the Robert Koch-Institute (RKI), persons suffering from severe influenza, persons suffering from severe COVID-19, and persons with cystic fibrosis (mucoviscidosis); with regard to allergic risk, persons with cystic fibrosis (mucoviscidosis) and patients with bronchial asthma must be protected. The rational diagnostics include the medical history, physical examination, and conventional allergy diagnostics including provocation tests if necessary; sometimes cellular test systems are indicated. In the case of mould infections, the reader is referred to the specific guidelines. Regarding mycotoxins, there are currently no useful and validated test procedures for clinical diagnostics. From a preventive medical point of view, it is important that indoor mould infestation in relevant magnitudes cannot be tolerated for precautionary reasons.For evaluation of mould damage in the indoor environment and appropriate remedial procedures, the reader is referred to the mould guideline issued by the German Federal Environment Agency (Umweltbundesamt, UBA).
Collapse
Affiliation(s)
- Julia Hurraß
- Sachgebiet Hygiene in Gesundheitseinrichtungen, Abteilung Infektions- und Umwelthygiene, Gesundheitsamt der Stadt Köln
| | - Birger Heinzow
- Ehemals: Landesamt für soziale Dienste (LAsD) Schleswig-Holstein, Kiel
| | | | - Ute Aurbach
- Labor Dr. Wisplinghoff
- ZfMK - Zentrum für Umwelt, Hygiene und Mykologie, Köln
| | - Sven Becker
- Universitätsklinik für Hals-, Nasen- und Ohrenheilkunde, Universitätsklinikum Tübingen
| | - Romuald Bellmann
- Universitätsklinik für Innere Medizin I, Medizinische Universität Innsbruck
| | | | - Oliver A Cornely
- Translational Research, CECAD Cluster of Excellence, Universität zu Köln
| | | | - Guido Fischer
- Landesgesundheitsamt Baden-Württemberg im Regierungspräsidium Stuttgart
| | - Thomas Gabrio
- Ehemals: Landesgesundheitsamt Baden-Württemberg im Regierungspräsidium Stuttgart
| | - Caroline E W Herr
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit München
- Ludwig-Maximilians-Universität München, apl. Prof. "Hygiene und Umweltmedizin"
| | - Marcus Joest
- Allergologisch-immunologisches Labor, Helios Lungen- und Allergiezentrum Bonn
| | - Christian Karagiannidis
- Fakultät für Gesundheit, Professur für Extrakorporale Lungenersatzverfahren, Universität Witten/Herdecke
- Lungenklinik Köln Merheim, Kliniken der Stadt Köln
| | | | - Martin Köberle
- Klinik und Poliklinik für Dermatologie und Allergologie am Biederstein, Technische Universität München
| | - Annette Kolk
- Institut für Arbeitsschutz der DGUV (IFA), Bereich Biostoffe, Sankt Augustin
| | | | | | | | - Dennis Nowak
- Institut und Poliklinik für Arbeits-, Sozial- und Umweltmedizin, Mitglied Deutsches Zentrum für Lungenforschung, Klinikum der Universität München
| | - Uta Rabe
- Zentrum für Allergologie und Asthma, Johanniter-Krankenhaus Treuenbrietzen
| | - Monika Raulf
- Institut für Prävention und Arbeitsmedizin der Deutschen Gesetzlichen Unfallversicherung, Institut der Ruhr-Universität Bochum (IPA)
| | - Jörg Steinmann
- Institut für Klinikhygiene, Medizinische Mikrobiologie und Klinische Infektiologie, Paracelsus Medizinische Privatuniversität Klinikum Nürnberg
| | - Jens-Oliver Steiß
- Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Gießen und Marburg GmbH, Gießen
- Schwerpunktpraxis Allergologie und Kinder-Pneumologie Fulda
| | - Jannik Stemler
- Translational Research, CECAD Cluster of Excellence, Universität zu Köln
| | - Ulli Umpfenbach
- Arzt für Kinderheilkunde und Jugendmedizin, Kinderpneumologie, Umweltmedizin, klassische Homöopathie, Asthmatrainer, Neurodermitistrainer, Viersen
| | | | | | - Birgit Willinger
- Klinisches Institut für Labormedizin, Klinische Abteilung für Klinische Mikrobiologie - MedUni Wien
| | - Gerhard A Wiesmüller
- Labor Dr. Wisplinghoff
- ZfMK - Zentrum für Umwelt, Hygiene und Mykologie, Köln
- Institut für Arbeits-, Sozial- und Umweltmedizin, Uniklinik RWTH Aachen
| |
Collapse
|
2
|
Karhuvaara O, Vilén L, Nuutila J, Putus T, Atosuo J. Indoor microbial exposure increases complement component C3a and C-reactive protein concentrations in serum. Heliyon 2024; 10:e24104. [PMID: 38293363 PMCID: PMC10827445 DOI: 10.1016/j.heliyon.2024.e24104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
Indoor exposure to microbial growth, caused by moisture damage, has been an established health risk for several decades. It is likely that a damp indoor environment contains biological pollutants that trigger both the innate and adaptive branches of the immune system. In this study, we investigated the association between moisture damage related microbial exposure and serum C3a, C5a and CRP concentrations in Finnish adults. Serum C3a and CRP concentrations were elevated in individuals exposed to moisture damage and microbial growth in an indoor air environment. The elevated concentrations may be due to environmental factors present in moisture-damaged buildings. Complement activation and the resulting proinflammatory cleavage products may be a driving factor in inflammatory responses following exposure to indoor moisture damage and related microbial growth.
Collapse
Affiliation(s)
- Outi Karhuvaara
- The Laboratory of Immunochemistry, Department of Biotechnology, Faculty of Science and Engineering, University of Turku, Turku, Finland
- Environmental Medicine and Occupational Health, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Liisa Vilén
- Environmental Medicine and Occupational Health, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Jari Nuutila
- The Laboratory of Immunochemistry, Department of Biotechnology, Faculty of Science and Engineering, University of Turku, Turku, Finland
| | - Tuula Putus
- Environmental Medicine and Occupational Health, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Janne Atosuo
- The Laboratory of Immunochemistry, Department of Biotechnology, Faculty of Science and Engineering, University of Turku, Turku, Finland
- Environmental Medicine and Occupational Health, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland
| |
Collapse
|
3
|
Tan YP, Tsang CC, Chan KF, Fung SL, Kok KH, Lau SKP, Woo PCY. Differential innate immune responses of human macrophages and bronchial epithelial cells against Talaromyces marneffei. mSphere 2023; 8:e0025822. [PMID: 37695039 PMCID: PMC10597461 DOI: 10.1128/msphere.00258-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/11/2023] [Indexed: 09/12/2023] Open
Abstract
Talaromyces marneffei is a thermally dimorphic fungal pathogen endemic in Southeast Asia. As inhalation of airborne conidia is believed as the major infection route, airway epithelial cells followed by pulmonary macrophages are the first cell types which the fungus encounters inside the host. In this study, we established an in vitro infection model based on human peripheral blood-derived macrophages (hPBDMs) cultured with the supplementation of autologous plasma. Using this model, we determined the transcriptomic changes of hPBDMs in response to T. marneffei infection by quantitative real-time reverse-transcription polymerase chain reaction as well as high-throughput RNA sequencing. Results showed that T. marneffei infection could activate hPBDMs to the M1-like phenotype and trigger a potent induction of chemokine and pro-inflammatory cytokine production as well as the expression of other immunoregulatory genes. In contrast to hPBDMs, there was no detectable innate cytokine response against T. marneffei in human bronchial epithelial cells (hBECs). Using a green fluorescent protein-tagged T. marneffei strain and confocal microscopy, internalization of the fungus by hBECs was confirmed. Live cell imaging further demonstrated that the infected cells exhibited normal cellular physiology, especially that the process of cell division could be observed. Moreover, T. marneffei also survived better inside hBECs than hPBDMs. Our results illustrated a potential role of hBECs to serve as reservoir cells for T. marneffei to evade immunosurveillance by phagocytes, from which the fungus reactivates when the host immunity is weakened and causes infection. Such immunoevasion and reactivation may also help explain the long incubation period observed for talaromycosis, in particular the travel-related cases. IMPORTANCE Talaromyces marneffei is an important fungal pathogen especially in Southeast Asia. To understand the innate immune response to talaromycosis, a suitable infection model is needed. Here, we established an in vitro T. marneffei infection model using human peripheral blood-derived macrophages (hPBDMs). We then examined the transcriptomic changes of hPBDMs in response to T. marneffei infection with this model. We found that contact with T. marneffei could activate hPBDMs to the M1-like phenotype and induced mRNA expressions of five cytokines and eight immunoregulatory genes. Contrary to hPBDMs, such immunoresponse was not elicited in human bronchial epithelial cells (hBECs), despite normal physiology observed in infected cells. We also found that infected hBECs did not eliminate T. marneffei as efficiently as hPBDMs. Our observation suggested that hBECs may potentially serve as reservoir cells for T. marneffei to evade immunosurveillance. When the host immunity deteriorates later, then the fungus reactivates and causes infection.
Collapse
Affiliation(s)
- Yen-Pei Tan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Chi-Ching Tsang
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- School of Medical and Health Sciences, Tung Wah College, Homantin, Hong Kong, China
| | - Ka-Fai Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Siu-Leung Fung
- Tuberculosis and Chest Medicine Unit, Grantham Hospital, Aberdeen, Hong Kong, China
| | - Kin-Hang Kok
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Susanna K. P. Lau
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Patrick C. Y. Woo
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- Doctoral Program in Translational Medicine and Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
4
|
Gordon Holzheimer R. Moisture damage and fungal contamination in buildings are a massive health threat - a surgeon's perspective. Cent Eur J Public Health 2023; 31:63-68. [PMID: 37086423 DOI: 10.21101/cejph.a7504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 02/20/2023] [Indexed: 04/23/2023]
Abstract
OBJECTIVES Indoor air toxicity is of major public health concern due to the increase in humidity-induced indoor mould exposure and associated health changes. The objective is to present evidence for the causality of health threats and indoor mould exposure. METHODS PubMed search on the following keywords: dampness, mould, indoor air quality, public health, dampness, and mould hypersensitivity syndrome, sick building syndrome, and building-related illness as well as information from the health authorities of Bavaria and North Rhine-Westphalia, the Center of Disease Control (CDC), World Health Organisation (WHO), and guidelines of professional societies. RESULTS The guidelines of professional societies published in 2017 are decisive for the assessment of the impact of mould pollution caused by moisture damage on human health and for official regulations in Germany. Until 2017, a causal connection between moisture damage and mould exposure could usually only be established for pulmonary diseases. The health risk of fungal components is apparent as documented in the fungal priority pathogens list (FPPL) of the WHO. Since 2017, studies, especially in Scandinavia, have proved causality between moisture and mould exposure not only for pulmonary diseases but also for extrapulmonary diseases and symptoms. This was made possible by new test methods for determining the toxicity of fungal components in indoor air. Environmental medical syndromes, e.g., dampness and mould hypersensitivity syndrome (DMHS), sick building syndrome (SBS), building-related symptoms (BRS), and building-related illness (BRI), and fungal pathogens, e.g., Aspergillus fumigatus, pose a major threat to public health. CONCLUSION There is evidence for the causality of moisture-induced indoor moulds and severe health threats in these buildings. According to these findings, it is no longer justifiable to ignore or trivialize the mould contamination induced by moisture damage and its effects on pulmonary and extrapulmonary diseases. The health and economic implications of these attitudes are clear.
Collapse
|
5
|
Wu S, Guo W, Li B, Zhou H, Meng H, Sun J, Li R, Guo D, Zhang X, Li R, Qu W. Progress of polymer-based strategies in fungal disease management: Designed for different roles. Front Cell Infect Microbiol 2023; 13:1142029. [PMID: 37033476 PMCID: PMC10073610 DOI: 10.3389/fcimb.2023.1142029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
Fungal diseases have posed a great challenge to global health, but have fewer solutions compared to bacterial and viral infections. Development and application of new treatment modalities for fungi are limited by their inherent essential properties as eukaryotes. The microorganism identification and drug sensitivity analyze are limited by their proliferation rates. Moreover, there are currently no vaccines for prevention. Polymer science and related interdisciplinary technologies have revolutionized the field of fungal disease management. To date, numerous advanced polymer-based systems have been developed for management of fungal diseases, including prevention, diagnosis, treatment and monitoring. In this review, we provide an overview of current needs and advances in polymer-based strategies against fungal diseases. We high light various treatment modalities. Delivery systems of antifungal drugs, systems based on polymers' innate antifungal activities, and photodynamic therapies each follow their own mechanisms and unique design clues. We also discuss various prevention strategies including immunization and antifungal medical devices, and further describe point-of-care testing platforms as futuristic diagnostic and monitoring tools. The broad application of polymer-based strategies for both public and personal health management is prospected and integrated systems have become a promising direction. However, there is a gap between experimental studies and clinical translation. In future, well-designed in vivo trials should be conducted to reveal the underlying mechanisms and explore the efficacy as well as biosafety of polymer-based products.
Collapse
Affiliation(s)
- Siyu Wu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Bo Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Huidong Zhou
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hongqi Meng
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Junyi Sun
- Changchun American International School, Changchun, China
| | - Ruiyan Li
- Orthpoeadic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, China
| | - Deming Guo
- Orthpoeadic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, China
| | - Xi Zhang
- Department of Burn Surgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Xi Zhang, ; Rui Li, ; Wenrui Qu,
| | - Rui Li
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Xi Zhang, ; Rui Li, ; Wenrui Qu,
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Xi Zhang, ; Rui Li, ; Wenrui Qu,
| |
Collapse
|
6
|
Innate and Adaptive Immune Responses Induced by Aspergillus fumigatus Conidia and Hyphae. Curr Microbiol 2023; 80:28. [PMID: 36474044 PMCID: PMC9734344 DOI: 10.1007/s00284-022-03102-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/22/2022] [Indexed: 12/12/2022]
Abstract
Previous research indicated that hyphae of Aspergillus fumigatus (A. fumigatus) rather than conidia could successfully build a pulmonary aspergillosis model in immunocompetent mice. In this study, we compared the immune responses induced by hyphae and conidia to explore the possible mechanism of this striking phenomenon. Herein, a novel method was designed and adopted to quantify hyphal fragments. Murine macrophages RAW264.7 and human peripheral blood mononuclear cells were stimulated by A. fumigatus hyphae and conidia in vitro, respectively, and then immunological reactions were measured. Male C57BL/6 mice were challenged with conidia and hyphae through intratracheal inoculation. Dynamic conditions of mice were recorded, and RNA-seq measured corresponding immune responses. The results of the study confirmed that hyphae could induce more intensive inflammation than conidia in vitro and in vivo. However, macrophages revealed a higher production of ROS and M1 polarisation in response to conidia stimuli. Additionally, conidia could promote Th1 cell differentiation, while hyphae could increase the CD4/CD8 ratio. RNA-seq validated the fact that those multiple immunologically relevant pathways were more strongly activated by hyphae than conidia, which also promoted Th2 cell differentiation and suppressed Th1 signalling. Both hyphae and conidia could activate Th17 signalling. In general, conidia and hyphae induced distinctly different host immune responses, and the immune responses induced by conidia played a better protective effect. Therefore, the unique function of hyphae in the spread and infection of Aspergillus should be emphasised, and more research is required to clarify the underlying mechanisms for better understanding and management of aspergillosis.
Collapse
|
7
|
Ren W, Li H, Guo C, Shang Y, Wang W, Zhang X, Li S, Pang Y. Serum Cytokine Biomarkers for Use in Diagnosing Pulmonary Tuberculosis versus Chronic Pulmonary Aspergillosis. Infect Drug Resist 2023; 16:2217-2226. [PMID: 37081946 PMCID: PMC10112472 DOI: 10.2147/idr.s403401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
Background Aspergillus fumigatus-induced chronic pulmonary aspergillosis (CPA), the most common pulmonary tuberculosis (TB) sequela, tends to occur after pulmonary infection with the intracellular pathogen Mycobacterium tuberculosis (Mtb). Timely and accurate detection of A. fumigatus infection of pulmonary TB patients would undoubtedly greatly improve patient prognosis. Currently, the galactomannan (GM) antigen test is commonly used to detect A. fumigatus infection but has poor sensitivity that renders this assay inadequate for use in clinical practice. Design or Methods Given the fact CPA and TB induce different host immune responses, we evaluated serum cytokine level profiles of CPA, TB patients and patients with both diseases (CPA-TB) for multiple cytokines and cytokine combinations. Results The results revealed significantly higher serum levels of numerous proinflammatory cytokines, including IL-1β, IL-6, IL-8, IL-12p70, IFN-α, IFN-γ and TNF-α, in peripheral blood of CPA-TB patients versus that of TB patients. IL-8 levels alone provided the best discriminatory performance for distinguishing between TB and either CPA-TB patients (AUC = 0.949) or CPA patients (AUC = 0.964). Moreover, both IL-8 and TNF-α (AUC = 0.996) levels could be used to distinguish between TB and CPA-TB patients. Likewise, IL-8, TNF-α and IL-6 levels together could be used to distinguish between CPA-TB and TB patients. Conclusion In this study, multiple cytokines were identified that may serve as potential biomarkers for use in detecting TB patients with CPA. Furthermore, our results should enhance understanding of how immune system dysfunctions influence susceptibility to Mtb and/or A. fumigatus infections.
Collapse
Affiliation(s)
- Weicong Ren
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People’s Republic of China
| | - Haoran Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People’s Republic of China
| | - Can Guo
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People’s Republic of China
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People’s Republic of China
| | - Yuanyuan Shang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People’s Republic of China
| | - Wei Wang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People’s Republic of China
| | - Xuxia Zhang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People’s Republic of China
| | - Shanshan Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People’s Republic of China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People’s Republic of China
- Correspondence: Yu Pang; Shanshan Li, Email ;
| |
Collapse
|
8
|
Holme JA, Øya E, Afanou AKJ, Øvrevik J, Eduard W. Characterization and pro-inflammatory potential of indoor mold particles. INDOOR AIR 2020; 30:662-681. [PMID: 32078193 DOI: 10.1111/ina.12656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/29/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
A number of epidemiological studies find an association between indoor air dampness and respiratory health effects. This is often suggested to be linked to enhanced mold growth. However, the role of mold is obviously difficult to disentangle from other dampness-related exposure including microbes as well as non-biological particles and chemical pollutants. The association may partly be due to visible mycelial growth and a characteristic musty smell of mold. Thus, the potential role of mold exposure should be further explored by evaluating information from experimental studies elucidating possible mechanistic links. Such studies show that exposure to spores and hyphal fragments may act as allergens and pro-inflammatory mediators and that they may damage airways by the production of toxins, enzymes, and volatile organic compounds. In the present review, we hypothesize that continuous exposure to mold particles may result in chronic low-grade pro-inflammatory responses contributing to respiratory diseases. We summarize some of the main methods for detection and characterization of fungal aerosols and highlight in vitro research elucidating how molds may induce toxicity and pro-inflammatory reactions in human cell models relevant for airway exposure. Data suggest that the fraction of fungal hyphal fragments in indoor air is much higher than that of airborne spores, and the hyphal fragments often have a higher pro-inflammatory potential. Thus, hyphal fragments of prevalent mold species with strong pro-inflammatory potential may be particularly relevant candidates for respiratory diseases associated with damp/mold-contaminated indoor air. Future studies linking of indoor air dampness with health effects should assess the toxicity and pro-inflammatory potential of indoor air particulate matter and combined this information with a better characterization of biological components including hyphal fragments from both pathogenic and non-pathogenic mold species. Such studies may increase our understanding of the potential role of mold exposure.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Elisabeth Øya
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Medicines Access, Norwegian Medicines Agency, Oslo, Norway
| | - Anani K J Afanou
- Group of Occupational Toxicology, STAMI National Institute of Occupational Health, Oslo, Norway
| | - Johan Øvrevik
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Wijnand Eduard
- Group of Occupational Toxicology, STAMI National Institute of Occupational Health, Oslo, Norway
| |
Collapse
|