1
|
Huang J, Chen C, Liang H, Dong W, Li L, Ma H. Development of a fluorescence immunochromatography method for quantitative measurement of matrix metalloproteinase-9. Pract Lab Med 2024; 38:e00356. [PMID: 38292924 PMCID: PMC10825512 DOI: 10.1016/j.plabm.2024.e00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/01/2024] Open
Abstract
Objective Abnormal serum matrix metalloproteinase-9 (MMP-9) levels are closely related to the occurrence and development of many diseases. This study aimed to establish a fluorescence immunochromatography (FIC) method using the lanthanide fluorescent element europium(III) (Eu3+) for the quantitative measurement of MMP-9 in serum. Design & Methods The FIC method for quantifying MMP-9 was optimized and established, and the FIC test strips (FICTS) were assembled and subsequently evaluated for sensitivity, specificity and precision. Furthermore, the reference interval and clinical sensitivity/specificity were estimated using clinical healthy/positive serum samples, and a commercial ELISA was used for comparison. Results We successfully established an FIC method and prepared FICTS. The analytical sensitivity of the FICTS was 0.92 ng/mL, with a linearity range of 0-1000 ng/mL. The cross-reactivity of the 7 common serum interferents was less than 1.56%. All recoveries of the intra-array and inter-array samples ranged from 102.50% to 110.99%, and all CVs were less than 5%. The reference interval of the FICTS was >161.15 ng/mL. The clinical sensitivity was 96.00%, and the specificity was 97.5%. The results of 270 clinical serum samples were highly coincident with the clinical diagnostic results. Pearson correlation analysis and Bland‒Altman plots indicated that the FICTS and commercial ELISA results were consistent with the quantitative MMP-9 concentration. Conclusions The designed FIC method and test strips may be suitable for point-of-care quantitative measurement of MMP-9, which provides a new method for screening for atherosclerosis, xerophthalmia, etc.
Collapse
Affiliation(s)
- Jingyan Huang
- Department of Ophthalmology and Optometry, Affiliated Hospital of Beihua University, Jilin, 132011, China
| | - Cuicui Chen
- Guangzhou Youdi Bio-technology Co., Ltd., Guangzhou, 510663, China
- Jinan Laide Bio-technology Co., Ltd., Jinan, 271100, China
| | - Huankun Liang
- Guangzhou Youdi Bio-technology Co., Ltd., Guangzhou, 510663, China
| | - Wenqi Dong
- Guangzhou Zhenda Biopharmaceutical Technology Co., Ltd., Guangzhou, 510663, China
| | - Laiqing Li
- Guangzhou Youdi Bio-technology Co., Ltd., Guangzhou, 510663, China
- Jinan Laide Bio-technology Co., Ltd., Jinan, 271100, China
| | - Hongyan Ma
- Department of Cardiology, Affiliated Hospital of Beihua University, Jilin, 132011, China
| |
Collapse
|
2
|
Chen Y, Huang S, Zhou L, Wang X, Yang H, Li W. Coronavirus Disease 2019 (COVID-19): Emerging detection technologies and auxiliary analysis. J Clin Lab Anal 2022; 36:e24152. [PMID: 34894011 PMCID: PMC8761422 DOI: 10.1002/jcla.24152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
The ongoing COVID-19 pandemic constitutes a new challenge for public health. Prevention and control of infection have become urgent and serious issues. To meet the clinical demand for higher accuracy of COVID-19 detection, the development of fast and efficient methods represents an important step. The most common methods of COVID-19 diagnosis, relying on real-time fluorescent quantitative PCR(RT-qPCR), computed tomography, and new-generation sequencing technologies, have a series of advantages, especially for early diagnosis and screening. In addition, joint efforts of researchers all over the world have led to the development of other rapid detection methods with high sensitivity, ease of use, cost-effectiveness, or allowing multiplex analysis based on technologies such as dPCR, ELISA, fluorescence immunochromatography assay, and the microfluidic detection chip method. The main goal of this review was to provide a critical discussion on the development and application of these different analytical methods, which based on etiology, serology, and molecular biology, as well as to compare their respective advantages and disadvantages. In addition to these methods, hematology and biochemistry, as well as auxiliary analysis based on pathological anatomy, ultrasonography, and cytokine detection, will help understand COVID-19 pathogenesis. Together, these technologies may promote and open new windows to unravel issues surrounding symptomatic and asymptomatic COVID-19 infections and improve clinical strategies toward reducing mortality.
Collapse
Affiliation(s)
- Ying Chen
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Shengxiong Huang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Liuyan Zhou
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Xin Wang
- Centralized and Point of Care Solutions & Molecular Diagnostics, Roche Diagnostics (Shanghai) Limited, Shanghai, China
| | - Huan Yang
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Wenqing Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Qasem A, Shaw AM, Elkamel E, Naser SA. Coronavirus Disease 2019 (COVID-19) Diagnostic Tools: A Focus on Detection Technologies and Limitations. Curr Issues Mol Biol 2021; 43:728-748. [PMID: 34287238 PMCID: PMC8929116 DOI: 10.3390/cimb43020053] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/24/2022] Open
Abstract
The ongoing coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a severe threat to human health and the global economy and has resulted in overwhelming stress on health care systems worldwide. Despite the global health catastrophe, especially in the number of infections and fatalities, the COVID-19 pandemic has also revolutionized research and discovery with remarkable success in diagnostics, treatments, and vaccine development. The use of many diagnostic methods has helped establish public health guidelines to mitigate the spread of COVID-19. However, limited information has been shared about these methods, and there is a need for the scientific community to learn about these technologies, in addition to their sensitivity, specificity, and limitations. This review article is focused on providing insights into the major methods used for SARS-CoV-2 detection. We describe in detail the core principle of each method, including molecular and serological approaches, along with reported claims about the rates of false negatives and false positives, the types of specimens needed, and the level of technology and the time required to perform each test. Although this study will not rank or prioritize these methods, the information will help in the development of guidelines and diagnostic protocols in clinical settings and reference laboratories.
Collapse
Affiliation(s)
| | | | | | - Saleh A. Naser
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA; (A.Q.); (A.M.S.); (E.E.)
| |
Collapse
|
4
|
Du Y, Liu D, Wang M, Guo F, Lin JS. Preparation of DNA aptamer and development of lateral flow aptasensor combining recombinase polymerase amplification for detection of erythromycin. Biosens Bioelectron 2021; 181:113157. [PMID: 33756378 DOI: 10.1016/j.bios.2021.113157] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
Erythromycin has polluted our aquatic environment for decades, leading to the risk of bacterial resistance and harmful effects on human beings, wildlife and ecosystem. There is an urgent demand of developing a portable tool capable of detecting erythromycin on site. In this study, ten aptamer candidates against erythromycin were prepared through Capture-SELEX (systematic evolution of ligands by exponential enrichment) process in 20 rounds. Aptamer candidate Ery_06 with the highest enrichment was chosen for further study, whose affinity was characterized by gold nanoparticles colorimetric assay, quartz crystal microbalance with dissipation and agarose chasing diffusion assay. It was determined by SYBR Green I fluorimetric assay that the characterized aptamer binds to erythromycin with high affinity (Kd: 20 ± 9 nM). Its specificity was also characterized by distinguishing erythromycin from different antibiotics tested. A novel lateral flow aptasensor was constructed by using the newly identified aptamer combined with recombinase polymerase amplification (RPA) and lateral flow strip (LFS). Aptamer acted as a sensing element anchoring on the surface of solid phase could be eluted by erythromycin. RPA functioned to amplify and convert the signal to be visible on LFS. The lateral flow was completed in 15 min, achieving a detection limit of 3 pM. The application feasibility of the aptasensor was proved by the detection of tap water samples spiked with erythromycin.
Collapse
Affiliation(s)
- Yepeng Du
- School of Clinical Medicine, Huaqiao University, Quanzhou Campus, 363021, Fujian, China
| | - Dan Liu
- School of Clinical Medicine, Huaqiao University, Xiamen Campus, 361021, Fujian, China
| | - Min Wang
- University Hospital, Huaqiao University, Quanzhou Campus, 363021, Fujian, China
| | - Fangke Guo
- School of Clinical Medicine, Huaqiao University, Quanzhou Campus, 363021, Fujian, China
| | - Jun Sheng Lin
- School of Clinical Medicine, Huaqiao University, Quanzhou Campus, 363021, Fujian, China.
| |
Collapse
|
5
|
Semi-quantitative analysis of drugs of abuse in human urine by end-point dilution flow immunochromatographic assay. JPC-J PLANAR CHROMAT 2020. [DOI: 10.1007/s00764-020-00041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Liu J, Qin Q, Zhang X, Li C, Yu Y, Huang X, Mukama O, Zeng L, Wang S. Development of a Novel Lateral Flow Biosensor Combined With Aptamer-Based Isolation: Application for Rapid Detection of Grouper Nervous Necrosis Virus. Front Microbiol 2020; 11:886. [PMID: 32508768 PMCID: PMC7249735 DOI: 10.3389/fmicb.2020.00886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/16/2020] [Indexed: 01/07/2023] Open
Abstract
Nervous necrosis virus (NNV) has infected more than 50 fish species worldwide, and has caused serious economic losses in the aquaculture industries. However, there is no effective antiviral therapy. The development of a rapid and accurate point-of-care diagnostic method for the prevention and control of NNV infection is urgently required. Commonly used methods for NNV detection include the cell culture-based assay, antibody-based assay and polymerase chain reaction (PCR)-based assay. However, these methods have disadvantages as they are time-consuming and complex. In the present study, we developed a simple and sensitive aptamer-based lateral flow biosensor (LFB) method for the rapid detection of red-spotted grouper nervous necrosis virus (RGNNV). An aptamer is a single-stranded nucleotide, which can specifically bind to the target and has many advantages. Based on a previously selected aptamer, which specifically bound to the coat protein of RGNNV (RGNNV-CP), two modified aptamers were used in this study. One aptamer was used for magnetic bead enrichment and the other was used for isothermal strand displacement amplification (SDA). After amplification, the product was further tested by the LFB, and the detection results were observed by the naked eye within 5 min with high specificity and sensitivity. The LFB method could detect RGNNV-CP protein as low as 5 ng/mL or 5 × 103 RGNNV-infected GB (grouper brain) cells. Overall, it is the first application of a LFB combined with aptamer in the rapid diagnosis of virus from aquatic animals, which provides a new option for virus detection in aquaculture.
Collapse
Affiliation(s)
- Jiaxin Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xinyue Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Chen Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yepin Yu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaohong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Omar Mukama
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lingwen Zeng
- School of Food Science and Engineering, Foshan University, Foshan, China
| | - Shaowen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Shao L, Zhang L, Li S, Zhang P. Design and Quantitative Analysis of Cancer Detection System Based on Fluorescence Immune Analysis. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:1672940. [PMID: 31934322 PMCID: PMC6942821 DOI: 10.1155/2019/1672940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/04/2019] [Accepted: 11/20/2019] [Indexed: 11/18/2022]
Abstract
Human blood is an important medical detection index. With the development in clinical medical detection instruments and detection technology, the requirements for detection accuracy and efficiency have been gradually improved. Fluorescent immunochromatography is a new detection technique. It has the characteristics of high efficiency, convenience, no pollution, and wide detection range. Human blood can be detected quickly using fluorescent immunochromatography. At present, it has received great attention from the field of clinical testing. In this paper, a set of fluorescent immunochromatographic analyzer has been designed. It is mainly based on the principle of fluorescence immunochromatography. A new method of signal analysis and system design for fluorescent immunochromatography analyzer is proposed. By using the improved threshold function denoising algorithm, the quantitative detection of fluorescent immunochromatographic strip is realized. The concentration of pathogenic factors (cancer cells) in human serum can be measured conveniently and accurately. The system integrates many peripheral modules, including fluorescence signal acquisition, fluorescence signal processing, quantitative curve fitting, and test results. In this paper, the quantitative detection experiments of the system are carried out in three aspects: linearity, repeatability, and sensitivity. The experimental results show that the linear correlation coefficient is up to 0.9976, and the limit of detection is up to 0.05 ng/ml. The requirements of the system are satisfied. The system performance is good, and the quantitative result is accurate. Therefore, the establishment of a fluorescence analysis system is of great significance.
Collapse
Affiliation(s)
- Lei Shao
- Tianjin Key Laboratory for Control Theory & Applications in Complicated Systems, Tianjin University of Technology, Tianjin 300384, China
| | - Longyu Zhang
- Tianjin Key Laboratory for Control Theory & Applications in Complicated Systems, Tianjin University of Technology, Tianjin 300384, China
| | - Shilin Li
- Tianjin Xinuo Biomedicine Co., Ltd., Tianjin, China
| | | |
Collapse
|
8
|
Urusov AE, Zherdev AV, Dzantiev BB. Towards Lateral Flow Quantitative Assays: Detection Approaches. BIOSENSORS 2019; 9:E89. [PMID: 31319629 PMCID: PMC6784366 DOI: 10.3390/bios9030089] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
Abstract
Point-of-care (POC) or bedside analysis is a global trend in modern diagnostics. Progress in POC testing has largely been provided by advanced manufacturing technology for lateral flow (immunochromatographic) test strips. They are widely used to rapidly and easily control a variety of biomarkers of infectious diseases and metabolic and functional disorders, as well as in consumer protection and environmental monitoring. However, traditional lateral flow tests rely on visual assessment and qualitative conclusion, which limit the objectivity and information output of the assays. Therefore, there is a need for approaches that retain the advantages of lateral flow assays and provide reliable quantitative information about the content of a target compound in a sample mixture. This review describes the main options for detecting, processing, and interpreting immunochromatographic analysis results. The possibilities of modern portable detectors that register colored, fluorescent, magnetic, and conductive labels are discussed. Prospects for further development in this direction are also examined.
Collapse
Affiliation(s)
- Alexandr E Urusov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia.
| |
Collapse
|
9
|
Chang XH, Zhang J, Wu LH, Peng YK, Yang XY, Li XL, Ma AJ, Ma JC, Chen GQ. Research Progress of Near-Infrared Fluorescence Immunoassay. MICROMACHINES 2019; 10:E422. [PMID: 31238547 PMCID: PMC6630960 DOI: 10.3390/mi10060422] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
Near-infrared fluorescence probes (NIFPs) have been widely used in immunoassay, bio-imaging and medical diagnosis. We review the basic principles of near-infrared fluorescence and near-infrared detection technology, and summarize structures, properties and characteristics of NIFPs (i.e., cyanines, xanthenes fluorescent dyes, phthalocyanines, porphyrin derivates, single-walled carbon nanotubes (SWCNTs), quantum dots and rare earth compounds). We next analyze applications of NIFPs in immunoassays, and prospect the application potential of lateral flow assay (LFA) in rapid detection of pathogens. At present, our team intends to establish a new platform that has highly sensitive NIFPs combined with portable and simple immunochromatographic test strips (ICTSs) for rapid detection of food-borne viruses. This will provide technical support for rapid detection on the port.
Collapse
Affiliation(s)
- Xiao-Hui Chang
- Beijing Inspection & Quarantine Testing Center, Beijing 100026, China.
| | - Jie Zhang
- Beijing Inspection & Quarantine Testing Center, Beijing 100026, China.
| | - Lin-Huan Wu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yan-Kun Peng
- College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Xiang-Ying Yang
- Beijing Inspection & Quarantine Testing Center, Beijing 100026, China.
| | - Xiao-Lin Li
- Beijing Inspection & Quarantine Testing Center, Beijing 100026, China.
| | - Ai-Jin Ma
- China National Institute of Standardization, Beijing 100191, China.
| | - Jun-Cai Ma
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guang-Quan Chen
- Beijing Inspection & Quarantine Testing Center, Beijing 100026, China.
| |
Collapse
|
10
|
Sobolev AM, Byzova NA, Goryacheva IY, Zherdev AV. Silanized quantum dots as labels in lateral flow test strips for C-reactive protein. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1574302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Aleksandr M. Sobolev
- Department of General and Inorganic Chemistry, Chemistry Faculty, Saratov State University, Saratov, Russia
| | - Nadezhda A. Byzova
- Laboratory of immunobiochemistry, A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Irina Yu. Goryacheva
- Department of General and Inorganic Chemistry, Chemistry Faculty, Saratov State University, Saratov, Russia
| | - Anatoly V. Zherdev
- Laboratory of immunobiochemistry, A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
11
|
Steffen P, Kwiatkowski M, Robertson WD, Zarrine-Afsar A, Deterra D, Richter V, Schlüter H. Protein species as diagnostic markers. J Proteomics 2016; 134:5-18. [DOI: 10.1016/j.jprot.2015.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/28/2015] [Accepted: 12/09/2015] [Indexed: 02/07/2023]
|
12
|
Yu S, Yu F, Liu L, Zhang H, Zhang Z, Qu L, Wu Y. Which one of the two common reporter systems is more suitable for chemiluminescent enzyme immunoassay: alkaline phosphatase or horseradish peroxidase? LUMINESCENCE 2015; 31:888-92. [DOI: 10.1002/bio.3047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Songcheng Yu
- College of Public Health; Zhengzhou University; Zhengzhou 450001 China
| | - Fei Yu
- College of Public Health; Zhengzhou University; Zhengzhou 450001 China
| | - Lie Liu
- College of Public Health; Zhengzhou University; Zhengzhou 450001 China
| | - Hongquan Zhang
- College of Public Health; Zhengzhou University; Zhengzhou 450001 China
| | - Zhenzhong Zhang
- School of Pharmaceutical Science; Zhengzhou University; Zhengzhou 450001 China
| | - Lingbo Qu
- School of Chemistry and Chemical Engineering; Henan University of Technology; Zhengzhou 450001 China
| | - Yongjun Wu
- College of Public Health; Zhengzhou University; Zhengzhou 450001 China
| |
Collapse
|
13
|
Petrakova AV, Urusov AE, Voznyak MV, Zherdev AV, Dzantiev BB. Immunochromatographic test system for the detection of T-2 toxin. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815060113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Optimizing the biological activity of Fab fragments by controlling their molecular orientation and spatial distribution across porous hydrogels. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Kang K, Dzakah EE, Huang Y, Xie M, Luo X, Li W, Wang J. Development and performance evaluation of a novel immunofluorescence chromatographic assay for histidine-rich protein 2 of Plasmodium falciparum. Malar J 2015; 14:228. [PMID: 26024887 PMCID: PMC4475284 DOI: 10.1186/s12936-015-0740-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/20/2015] [Indexed: 11/18/2022] Open
Abstract
Background The low sensitivity and specificity of Plasmodium falciparum diagnostic tests pose a serious health threat to people living in endemic areas. The objective of the study was to develop a rapid assay for the detection of histidine-rich protein 2 (HRP2) of P. falciparum in whole blood by immunofluorescence chromatographic technology. Methods A total of 1163 positive and negative blood samples were screened. The double-antibody sandwich assay was used to establish the kit and its performance was evaluated for sensitivity, specificity, accuracy, precision, stability, and clinical effectiveness. Results The cut-off level of detection of the kit was 25 parasites/μl. Common interfering substances in human blood specimens, such as bilirubin, triglyceride and cholesterol had no significant effect on HRP2 antigen detection. The precision of the kit was run with different concentration of standard calibrators and the values were less than 10 %. The performance of this diagnostic kit in the detection of the calibrators has shown that a shelf life of about 12 months gives a more reliable result. Among clinical samples tested, the HRP2 test kit and the reference products had good coincidence rate in a parallel experiment and this test kit had a more sensitive detecting level to the target protein than the reference kits used in this study. The specificity and sensitivity for this test were 99.6 % (800/803) and 99.7 % (1160/1163), respectively. Conclusions A novel HRP2 immunofluorescence detection method was developed in this study. Overall performance evaluation indicated that the kit has a rapid, high sensitivity and on-spot method for detecting P. falciparum.
Collapse
Affiliation(s)
- Keren Kang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, Guangdong, China. .,National Engineering Laboratory of Rapid Diagnostic Tests, Guangzhou Wondfo Biotech Co Ltd, Guangzhou, 510663, Guangdong, China.
| | - Emmanuel E Dzakah
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Yongping Huang
- National Engineering Laboratory of Rapid Diagnostic Tests, Guangzhou Wondfo Biotech Co Ltd, Guangzhou, 510663, Guangdong, China.
| | - Mingquan Xie
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Xiaochun Luo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Wenmei Li
- National Engineering Laboratory of Rapid Diagnostic Tests, Guangzhou Wondfo Biotech Co Ltd, Guangzhou, 510663, Guangdong, China.
| | - Jihua Wang
- National Engineering Laboratory of Rapid Diagnostic Tests, Guangzhou Wondfo Biotech Co Ltd, Guangzhou, 510663, Guangdong, China.
| |
Collapse
|
16
|
Chen A, Yang S. Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron 2015; 71:230-242. [PMID: 25912679 DOI: 10.1016/j.bios.2015.04.041] [Citation(s) in RCA: 345] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/12/2015] [Accepted: 04/13/2015] [Indexed: 12/30/2022]
Abstract
Aptamers have been identified against various targets as a type of chemical or nucleic acid ligand by systematic evolution of ligands by exponential enrichment (SELEX) with high sensitivity and specificity. Aptamers show remarkable advantages over antibodies due to the nucleic acid nature and target-induced structure-switching properties and are widely used to design various fluorescent, electrochemical, or colorimetric biosensors. However, the practical applications of aptamer-based sensing and diagnostics are still lagging behind those of antibody-based tests. Lateral flow immunoassay (LFIA) represents a well established and appropriate technology among rapid assays because of its low cost and user-friendliness. The antibody-based platform is utilized to detect numerous targets, but it is always hampered by the antibody preparation time, antibody stability, and effect of modification on the antibody. Seeking alternatives to antibodies is an area of active research and is of tremendous importance. Aptamers are receiving increasing attention in lateral flow applications because of a number of important potential performance advantages. We speculate that aptamer-based LFIA may be one of the first platforms for commercial use of aptamer-based diagnosis. This review first gives an introduction to aptamer including the selection process SELEX with its focus on aptamer advantages over antibodies, and then depicts LFIA with its focus on aptamer opportunities in LFIA over antibodies. Furthermore, we summarize the recent advances in the development of aptamer-based lateral flow biosensing assays with the aim to provide a general guide for the design of aptamer-based lateral flow biosensing assays.
Collapse
Affiliation(s)
- Ailiang Chen
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China.
| | - Shuming Yang
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| |
Collapse
|
17
|
Akanda MR, Joung HA, Tamilavan V, Park S, Kim S, Hyun MH, Kim MG, Yang H. An interference-free and rapid electrochemical lateral-flow immunoassay for one-step ultrasensitive detection with serum. Analyst 2015; 139:1420-5. [PMID: 24482801 DOI: 10.1039/c3an02328a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Point-of-care testing (POCT) of biomarkers in clinical samples is of great importance for rapid and cost-effective diagnosis. However, it is extremely challenging to develop an electrochemical POCT technique retaining both ultrasensitivity and simplicity. We report an interference-free electrochemical lateral-flow immunoassay that enables one-step ultrasensitive detection with serum. The electrochemical-chemical-chemical (ECC) redox cycling combined with an enzymatic reaction of an enzyme label is used to obtain high signal amplification. The ECC redox cycling involving Ru(NH3)6(3+), enzyme product, and tris(3-carboxyethyl)phosphine (TCEP) depends on pH, because the formal potentials of an enzyme product and TCEP increase with decreasing pH although that of Ru(NH3)6(3+) is pH-independent. With consideration of the pH dependence of ECC redox cycling, a noble combination of enzyme label, substrate, and product [β-galactosidase, 4-amino-1-naphthyl β-D-galactopyranoside, and 4-amino-1-naphthol, respectively] is introduced to ensure fast and selective ECC redox cycling of the enzyme product along with a low background level. The selective ECC redox cycling at a low applied potential (0.05 V vs. Ag/AgCl) minimizes the interference effect of electroactive species (L-ascorbic acid, acetaminophen, and uric acid) in serum. A detection limit of 0.1 pg mL(-1) for troponin I is obtained only 11 min after serum dropping without the use of an additional solution. Moreover, the lateral-flow immunoassay is applicable to the analysis of real clinical samples.
Collapse
Affiliation(s)
- Md Rajibul Akanda
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Dutta G, Park S, Singh A, Seo J, Kim S, Yang H. Low-Interference Washing-Free Electrochemical Immunosensor Using Glycerol-3-phosphate Dehydrogenase as an Enzyme Label. Anal Chem 2015; 87:3574-8. [DOI: 10.1021/ac504485a] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Gorachand Dutta
- Department
of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| | - Seonhwa Park
- Department
of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| | - Amardeep Singh
- Department
of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| | - Jeongwook Seo
- Department
of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| | - Sinyoung Kim
- Department
of Laboratory Medicine, Yonsei University College of Medicine, Seoul 135-720, Korea
| | - Haesik Yang
- Department
of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
19
|
Rapid and sensitive PCR-dipstick DNA chromatography for multiplex analysis of the oral microbiota. BIOMED RESEARCH INTERNATIONAL 2014; 2014:180323. [PMID: 25485279 PMCID: PMC4251647 DOI: 10.1155/2014/180323] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/03/2014] [Accepted: 09/08/2014] [Indexed: 02/05/2023]
Abstract
A complex of species has been associated with dental caries under the ecological hypothesis. This study aimed to develop a rapid, sensitive PCR-dipstick DNA chromatography assay that could be read by eye for multiplex and semiquantitative analysis of plaque bacteria. Parallel oligonucleotides were immobilized on a dipstick strip for multiplex analysis of target DNA sequences of the caries-associated bacteria, Streptococcus mutans, Streptococcus sobrinus, Scardovia wiggsiae, Actinomyces species, and Veillonella parvula. Streptavidin-coated blue-colored latex microspheres were to generate signal. Target DNA amplicons with an oligonucleotide-tagged terminus and a biotinylated terminus were coupled with latex beads through a streptavidin-biotin interaction and then hybridized with complementary oligonucleotides on the strip. The accumulation of captured latex beads on the test and control lines produced blue bands, enabling visual detection with the naked eye. The PCR-dipstick DNA chromatography detected quantities as low as 100 pg of DNA amplicons and demonstrated 10- to 1000-fold higher sensitivity than PCR-agarose gel electrophoresis, depending on the target bacterial species. Semiquantification of bacteria was performed by obtaining a series of chromatograms using serial 10-fold dilution of PCR-amplified DNA extracted from dental plaque samples. The assay time was less than 3 h. The semiquantification procedure revealed the relative amounts of each test species in dental plaque samples, indicating that this disposable device has great potential in analysis of microbial composition in the oral cavity and intestinal tract, as well as in point-of-care diagnosis of microbiota-associated diseases.
Collapse
|
20
|
Chen X, Xu Y, Yu J, Li J, Zhou X, Wu C, Ji Q, Ren Y, Wang L, Huang Z, Zhuang H, Piao L, Head R, Wang Y, Lou J. Antigen detection based on background fluorescence quenching immunochromatographic assay. Anal Chim Acta 2014; 841:44-50. [DOI: 10.1016/j.aca.2014.07.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 01/06/2023]
|
21
|
Wang Z, Li H, Li C, Yu Q, Shen J, De Saeger S. Development and application of a quantitative fluorescence-based immunochromatographic assay for fumonisin b1 in maize. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:6294-6298. [PMID: 24930671 DOI: 10.1021/jf5017219] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A fluorescence-based immunochromatographic assay (ICA) for fumonisin B1 (FB1) that employs conjugates of fluorescent microspheres and monoclonal antibodies (FM-mAbs) as detection reporters is described. The ICA is based on the competitive reaction between FB1-bovine serum albumin (BSA; test line) and the target FB1 for binding to the FM-mAb conjugates. A limit of detection (LOD) for FB1 of 0.12 ng/mL was obtained, with an analytical working range of 0.25-2.0 ng/mL (corresponding to 250-2000 μg/kg in maize flour samples, according to the extraction procedure). The recoveries of the ICA to detect FB1 in maize samples ranged from 91.4 to 118.2%. A quantitative comparison of the fluorescence-based ICA and HPLC-MS/MS analysis of naturally contaminated maize samples indicated good agreement between the two methods (r(2) = 0.93). By replacing the target of interest, the FM-based ICA can easily be extended to other chemical contaminants and thus represents a versatile strategy for food safety analysis.
Collapse
Affiliation(s)
- Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University , Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing 100193, People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
Dzantiev BB, Byzova NA, Urusov AE, Zherdev AV. Immunochromatographic methods in food analysis. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2013.11.007] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Berlina AN, Taranova NA, Zherdev AV, Sankov MN, Andreev IV, Martynov AI, Dzantiev BB. Quantum-dot-based immunochromatographic assay for total IgE in human serum. PLoS One 2013; 8:e77485. [PMID: 24204841 PMCID: PMC3813722 DOI: 10.1371/journal.pone.0077485] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/02/2013] [Indexed: 11/21/2022] Open
Abstract
To rapidly quantify total immunoglobulin E levels in human serum, we developed a novel quantum-dot-based immunochromatographic assay that employs digital recording of fluorescence. It can detect IgE levels of 5-1000 kU/L, with a coefficient of variation ranging from 2.0 to 9.5%. The assay can be processed in 10 min. The developed assay was tested on 95 serum samples. The correlation coefficient between the IgE values obtained by the proposed assay and those obtained by a commercial ELISA kit was 0.9884. Our assay thus shows promise as a new diagnostic tool for IgE detection.
Collapse
Affiliation(s)
- Anna N. Berlina
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda A. Taranova
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail N. Sankov
- Institute of Immunology, Russian Federal Medico-Biological Agency, Moscow, Russia
| | - Igor V. Andreev
- Institute of Immunology, Russian Federal Medico-Biological Agency, Moscow, Russia
| | - Alexandr I. Martynov
- Institute of Immunology, Russian Federal Medico-Biological Agency, Moscow, Russia
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
24
|
Dicaprio E, Ma Y, Hughes J, Li J. Epidemiology, prevention, and control of the number one foodborne illness: human norovirus. Infect Dis Clin North Am 2013; 27:651-74. [PMID: 24011835 PMCID: PMC7126578 DOI: 10.1016/j.idc.2013.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Erin Dicaprio
- Department of Food Science and Technology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, 110 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
25
|
Huang X, Aguilar ZP, Li H, Lai W, Wei H, Xu H, Xiong Y. Fluorescent Ru(phen)3(2+)-doped silica nanoparticles-based ICTS sensor for quantitative detection of enrofloxacin residues in chicken meat. Anal Chem 2013; 85:5120-8. [PMID: 23614687 DOI: 10.1021/ac400502v] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A Ru(phen)3(2+)-doped silica fluorescent nanoparticle (FN)-based immunochromatographic test strip (ICTS) sensor was developed for rapid, high sensitivity, easy to use, and low cost quantitative detection of enrofloxacin (ENR) residues in chicken meat. The fluorescence signal intensity of the FNs at the test line (FI(T)) and control line (FI(C)) was determined with a prototype of a portable fluorescent strip reader. Unique properties of Ru(phen)3(2+) doped silica nanoparticles (e.g., large Stokes shift, high emission quantum yield, and long fluorescence lifetime) were combined with the advantages of ICTS and an easy to make portable fluorescent strip reader. The signal was based on FI(T)/FI(C) ratio to effectively eliminate strip to strip variation and matrix effects. Various parameters that influenced the strip were investigated and optimized. Quantitative ENR detection with the FNs ICTS sensor using 80 μL sample took only 20 min, which is faster than the commercial ELISA kit (that took 90 min). The linear range of detection in chicken extract was established at 0.025-3.500 ng/mL with a half maximal inhibitory concentration at 0.22 ± 0.02 ng/mL. Using the optimized parameters, the limit of detection (LOD) for ENR using the FNs ICTS sensor was recorded at 0.02 ng/mL in chicken extract. This corresponds to 0.12 μg/kg chicken meat which is two (2) orders of magnitude better that the maximum residue limits (MRLs) imposed in Japan (10 μg/kg) and three (3) orders of magnitude better than those imposed in China. The intra- and inter-assay coefficient of variations (CVs) were 6.04% and 12.96% at 0.5 ng/mL, 6.92% and 12.61% at 1.0 ng/mL, and 6.66% and 11.88% at 2.0 ng/mL in chicken extract, respectively. The recoveries using the new FNs ICTS sensor from fifty (50) ENR-spiked chicken samples showed a highly significant correlation (R(2) = 0.9693) with the commercial enzyme-linked immunosorbent assay (ELISA) kit. The new FNs ICTS sensor is a simple, rapid, sensitive, accurate, and inexpensive quantitative detection of ENR residues in chicken meat and extracts.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P R China
| | | | | | | | | | | | | |
Collapse
|
26
|
|