Investigation on the Mechanism of Qubi Formula in Treating Psoriasis Based on Network Pharmacology.
EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020;
2020:4683254. [PMID:
32655662 PMCID:
PMC7327573 DOI:
10.1155/2020/4683254]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023]
Abstract
Objective
To elucidate the pharmacological mechanisms of Qubi Formula (QBF), a traditional Chinese medicine (TCM) formula which has been demonstrated as an effective therapy for psoriasis in China.
Methods
The Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, BATMAN-TCM database, and literature search were used to excavate the pharmacologically active ingredients of QBF and to predict the potential targets. Psoriasis-related targets were obtained from Therapeutic Target Database (TTD), DrugBank database (DBD), MalaCards database, and DisGeNET database. Then, we established the network concerning the interactions of potential targets of QBF with well-known psoriasis-related targets by using protein-protein interaction (PPI) data in String database. Afterwards, topological parameters (including DNMC, Degree, Closeness, and Betweenness) were calculated to excavate the core targets of Qubi Formula in treating psoriasis (main targets in the PPI network). Cytoscape was used to construct the ingredients-targets core network for Qubi Formula in treating psoriasis, and ClueGO was used to perform GO-BP and KEGG pathway enrichment analysis on these core targets.
Results
The ingredient-target-disease core network of QBF in treating psoriasis was screened to contain 175 active ingredients, which corresponded to 27 core targets. Additionally, enrichment analysis suggested that targets of QBF in treating psoriasis were mainly clustered into multiple biological processes (associated with nuclear translocation of proteins, cellular response to multiple stimuli (immunoinflammatory factors, oxidative stress, and nutrient substance), lymphocyte activation, regulation of cyclase activity, cell-cell adhesion, and cell death) and related pathways (VEGF, JAK-STAT, TLRs, NF-κB, and lymphocyte differentiation-related pathways), indicating the underlying mechanisms of QBF on psoriasis.
Conclusion
In this work, we have successfully illuminated that Qubi Formula could relieve a wide variety of pathological factors (such as inflammatory infiltration and abnormal angiogenesis) of psoriasis in a "multicompound, multitarget, and multipathway" manner by using network pharmacology. Moreover, our present outcomes might shed light on the further clinical application of QBF on psoriasis treatment.
Collapse