1
|
Ma S, Yang D, Liu Y, Wang Y, Lin T, Li Y, Yang S, Zhang W, Zhang R. LncRNA BANCR promotes tumorigenesis and enhances adriamycin resistance in colorectal cancer. Aging (Albany NY) 2019; 10:2062-2078. [PMID: 30144787 PMCID: PMC6128424 DOI: 10.18632/aging.101530] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/13/2018] [Indexed: 01/02/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignancy in the United States. Chemotherapeutic resistance is a massive obstacle for cancer treatment. The roles and molecular basis of long non-coding RNA BRAF-activated noncoding RNA (BANCR) in CRC progression and adriamycin (ADR) resistance have not been extensively identified. In this study, we found that BANCR and CSE1L expressions were upregulated in CRC tumor tissues. Meanwhile, CSE1L expression was correlated with depth of CRC. BANCR silencing suppressed cell proliferation and invasion capacity, increased apoptotic rate and potentiated cell sensitivity to ADR. CSE1L downregulation triggered a reduction of cell proliferation and invasion ability, and an increase of apoptosis rate and cell sensitivity to ADR. CSE1L overexpression attenuated si-BANCR-mediated anti-proliferation, anti-invasion and pro-apoptosis effects in CRC cells. BANCR acted as a molecular sponge of miR-203 to sequester miR-203 away from CSE1L in CRC cells, resulting in the upregulation of CSE1L expression. CSE1L knockdown inhibited expressions of DNA-repair-related proteins (53BP1 and FEN1) in HCT116 cells. BANCR knockdown also inhibited tumor growth and enhanced ADR sensitivity in CRC mice model. In conclusion, BANCR knockdown suppressed CRC progression and strengthened chemosensitization of CRC cells to ADR possibly by regulating miR-203/CSE1L axis, indicating that BANCR might be a promising target for CRC treatment.
Collapse
Affiliation(s)
- Siping Ma
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Dongxiang Yang
- Department of Orthopedics, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Yanlong Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Yongpeng Wang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Tao Lin
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Yanxi Li
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Shihua Yang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Wanchuan Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Rui Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| |
Collapse
|
2
|
Holmes TR, Dindu S, Hansen LA. Aberrant localization of signaling proteins in skin cancer: Implications for treatment. Mol Carcinog 2019; 58:1631-1639. [PMID: 31062427 DOI: 10.1002/mc.23036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023]
Abstract
Aberrant subcellular localization of signaling proteins can provide cancer cells with advantages such as resistance to apoptotic cell death, increased invasiveness and more rapid proliferation. Nuclear to cytoplasmic shifts in tumor-promoting proteins can lead to worse patient outcomes, providing opportunities to target cancer-specific processes. Herein, we review the significance of dysregulated protein localization with a focus on skin cancer. Altered localization of signaling proteins controlling cell cycle progression or cell death is a common feature of cancer. In some instances, aberrant subcellular localization results in an acquired prosurvival function. Taking advantage of this knowledge reveals novel targets useful in the development of cancer therapeutics.
Collapse
Affiliation(s)
- Thomas R Holmes
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska
| | - Shravya Dindu
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska
| | - Laura A Hansen
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska
| |
Collapse
|
3
|
Jiang MC. CAS (CSE1L) signaling pathway in tumor progression and its potential as a biomarker and target for targeted therapy. Tumour Biol 2016; 37:13077-13090. [PMID: 27596143 DOI: 10.1007/s13277-016-5301-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
CSE1L (chromosome segregation 1-like protein), also named as CAS (cellular apoptosis susceptibility protein), is highly expressed in most cancer types. CSE1L/CAS is a multiple functional protein that plays roles in apoptosis, cell survival, chromosome assembly, nucleocytoplasmic transport, microvesicle formation, and cancer metastasis; some of the functions are explicitly correlated. CSE1L is also a cancer serum biomarker. The phosphorylation of CAS is regulated by the extracellular signal-regulated kinase (ERK). The RAS/RAF/MAPK/ERK signaling pathways are the essential targets of most targeted cancer drugs, thus serum phosphorylated CSE1L may be a potential biomarker for monitoring drug resistance in targeted therapy. CSE1L can regulate Ras-induced ERK phosphorylation. CSE1L also regulates the expression and phosphorylation of CREB (cAMP response element binding protein) and MITF (microphthalmia-associated transcription factor) and is thus involved in the melanogenesis and progression of melanoma. CAS is an exosome/microvesicle membrane protein. Tumor cells consistently secrete microvesicles and tumor-derived microvesicles may be accumulated around tumors. Therefore, microvesicle membrane CSE1L may be a potential target for the development of high-efficacy antibody-drug conjugates (ADCs) for cancer therapy. This review will focus on CSE1L expression in cancers, its relationship to Ras/ERK and cAMP/PKA signaling pathways in melanoma development, its potential for the development of ADCs and tumor imaging reagents, and secretory phosphorylated CSE1L for monitoring the emergence of drug resistance in targeted cancer therapy.
Collapse
Affiliation(s)
- Ming-Chung Jiang
- Targetrust Biotech. Ltd., No. 510 Zhongzheng Rd, Xinzhuang Dist, New Taipei City, 24205, Taiwan.
| |
Collapse
|
4
|
Kimura M, Imamoto N. Biological significance of the importin-β family-dependent nucleocytoplasmic transport pathways. Traffic 2014; 15:727-48. [PMID: 24766099 DOI: 10.1111/tra.12174] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 12/19/2022]
Abstract
Importin-β family proteins (Imp-βs) are nucleocytoplasmic transport receptors (NTRs) that import and export proteins and RNAs through the nuclear pores. The family consists of 14-20 members depending on the biological species, and each member transports a specific group of cargoes. Thus, the Imp-βs mediate multiple, parallel transport pathways that can be regulated separately. In fact, the spatiotemporally differential expressions and the functional regulations of Imp-βs have been reported. Additionally, the biological significance of each pathway has been characterized by linking the function of a member of Imp-βs to a cellular consequence. Connecting these concepts, the regulation of the transport pathways conceivably induces alterations in the cellular physiological states. However, few studies have linked the regulation of an importin-β family NTR to an induced cellular response and the corresponding cargoes, despite the significance of this linkage in comprehending the biological relevance of the transport pathways. This review of recent reports on the regulation and biological functions of the Imp-βs highlights the significance of the transport pathways in physiological contexts and points out the possibility that the identification of yet unknown specific cargoes will reinforce the importance of transport regulation.
Collapse
Affiliation(s)
- Makoto Kimura
- Cellular Dynamics Laboratory, RIKEN, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
5
|
Liao CF, Lin SH, Chen HC, Tai CJ, Chang CC, Li LT, Yeh CM, Yeh KT, Chen YC, Hsu TH, Shen SC, Lee WR, Chiou JF, Luo SF, Jiang MC. CSE1L, a novel microvesicle membrane protein, mediates Ras-triggered microvesicle generation and metastasis of tumor cells. Mol Med 2012; 18:1269-80. [PMID: 22952058 DOI: 10.2119/molmed.2012.00205] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/28/2012] [Indexed: 11/06/2022] Open
Abstract
Tumor-derived microvesicles are rich in metastasis-related proteases and play a role in the interactions between tumor cells and tumor microenvironment in tumor metastasis. Because shed microvesicles may remain in the extracellular environment around tumor cells, the microvesicle membrane protein may be the potential target for cancer therapy. Here we report that chromosome segregation 1-like (CSE1L) protein is a microvesicle membrane protein and is a potential target for cancer therapy. v-H-Ras expression induced extracellular signal-regulated kinase (ERK)-dependent CSE1L phosphorylation and microvesicle biogenesis in various cancer cells. CSE1L overexpression also triggered microvesicle generation, and CSE1L knockdown diminished v-H-Ras-induced microvesicle generation, matrix metalloproteinase (MMP)-2 and MMP-9 secretion and metastasis of B16F10 melanoma cells. CSE1L was preferentially accumulated in microvesicles and was located in the microvesicle membrane. Furthermore, anti-CSE1L antibody-conjugated quantum dots could target tumors in animal models. Our findings highlight a novel role of Ras-ERK signaling in tumor progression and suggest that CSE1L may be involved in the "early" and "late" metastasis of tumor cells in tumorigenesis. Furthermore, the novel microvesicle membrane protein, CSE1L, may have clinical utility in cancer diagnosis and targeted cancer therapy.
Collapse
Affiliation(s)
- Ching-Fong Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Increased cellular apoptosis susceptibility (CSE1L/CAS) protein expression promotes protrusion extension and enhances migration of MCF-7 breast cancer cells. Exp Cell Res 2010; 316:2969-81. [DOI: 10.1016/j.yexcr.2010.07.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/22/2010] [Accepted: 07/29/2010] [Indexed: 11/24/2022]
|
7
|
Uen WC, Tai CJ, Shen SC, Lee WR, Tsao TY, Deng WP, Chiou HY, Hsu CH, Hsieh CI, Liao CF, Jiang MC. Differential distributions of CSE1L/CAS and E-cadherin in the polarized and non-polarized epithelial glands of neoplastic colorectal epithelium. J Mol Histol 2010; 41:259-66. [DOI: 10.1007/s10735-010-9286-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 08/16/2010] [Indexed: 11/29/2022]
|
8
|
Tai CJ, Hsu CH, Shen SC, Lee WR, Jiang MC. Cellular apoptosis susceptibility (CSE1L/CAS) protein in cancer metastasis and chemotherapeutic drug-induced apoptosis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:110. [PMID: 20701792 PMCID: PMC2925819 DOI: 10.1186/1756-9966-29-110] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 08/11/2010] [Indexed: 11/10/2022]
Abstract
The cellular apoptosis susceptibility (CSE1L/CAS) protein is highly expressed in cancer, and its expression is positively correlated with high cancer stage, high cancer grade, and worse outcomes of patients. CSE1L (or CAS) regulates chemotherapeutic drug-induced cancer cell apoptosis and may play important roles in mediating the cytotoxicities of chemotherapeutic drugs against cancer cells in cancer chemotherapy. CSE1L was originally regarded as a proliferation-associated protein and was thought to regulate the proliferation of cancer cells in cancer progression. However, the results of experimental studies showed that enhanced CSE1L expression is unable to increase proliferation of cancer cells and CSE1L regulates invasion and metastasis but not proliferation of cancer cells. Recent studies revealed that CSE1L is a secretory protein, and there is a higher prevalence of secretory CSE1L in the sera of patients with metastatic cancer. Therefore, CSE1L may be a useful serological marker for screening, diagnosis and prognosis, assessment of therapeutic responses, and monitoring for recurrence of cancer. In this paper, we review the expression of CSE1L in cancer and discuss why CSE1L regulates the invasion and metastasis rather than the proliferation of cancer.
Collapse
Affiliation(s)
- Cheng-Jeng Tai
- Section of Hematology-Oncology, Department of Medicine, Taipei Medical University and Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
9
|
Tung JN, Tsao TY, Tai CJ, Yeh KT, Cheng YW, Jiang MC. Distribution of lysosome-associated membrane proteins-1 and -2, and cathepsin D in eosinophilic granular bodies: possible relationship to cyst development in pilocytic astrocytomas. J Int Med Res 2010; 38:1354-64. [PMID: 20926008 DOI: 10.1177/147323001003800417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Pilocytic astrocytomas are usually cystic; cyst formation within these tumours may result in increased intracranial pressure, due to the effect of their mass, and contribute to cerebral damage. Eosinophilic granular bodies (EGBs) are produced abundantly in pilocytic astrocytomas but their role in disease progression remains unknown. Immunohistochemistry studies showed EGBs to exhibit pronounced reactivity to antibodies against lysosome-associated membrane proteins (LAMP)-1 and LAMP-2, and the lysosomal enzyme cathepsin D. Both LAMP-1 and LAMP-2 showed peripheral rim and granular staining patterns. The EGBs were scattered widely across cysts and, where EGBs aggregated in clusters, were usually close to areas of fluid in the cysts. Most EGBs had nuclei either attached or close by, indicating that the EGBs may be derived from anucleated astrocytes. The results suggest that EGBs, together with other factors, may play a role in the development of cysts in pilocytic astrocytomas.
Collapse
Affiliation(s)
- J-N Tung
- Institutes of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
10
|
Stella Tsai CS, Chen HC, Tung JN, Tsou SS, Tsao TY, Liao CF, Chen YC, Yeh CY, Yeh KT, Jiang MC. Serum cellular apoptosis susceptibility protein is a potential prognostic marker for metastatic colorectal cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1619-28. [PMID: 20150437 DOI: 10.2353/ajpath.2010.090467] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Colorectal cancer has high rates of recurrence and metastasis. Many patients with similar histopathological features show significantly different clinical outcomes, and these differences are primarily related to metastases undetected by current diagnostic methods. There is no useful serological marker for metastatic disease. We investigated the cellular apoptosis susceptibility (CSE1L/CAS) protein in comparison with carcinoembryonic antigen (CEA) as a marker for metastatic colorectal cancer. Using serum from 103 patients with stage I, II, III, and IV disease, CSE1L was detected in 36.0% (9 of 25), 57.7% (15 of 26), 71.4% (30 of 42), and 88.9% (8 of 9) of patients, respectively; a pathological CEA level was found in 16.0% (4 of 25), 42.3% (11 of 26), 47.6% (20 of 42), and 77.8% (7 of 9) of patients, respectively; a combined CSE1L/CEA assay was detected in 48.0% (12 of 25), 65.4% (17 of 26), 88.1% (37 of 42), and 100% (9 of 9) of patients, respectively. Lymphatic metastasis is an important predictor of poor prognosis and crucial for determination of therapeutic strategy. Serum CSE1L was detected in 74.5% (38 of 51) of patients with lymph node metastasis, whereas a pathological CEA level was found in only 52.9% (27 of 51) of the same patients (P < 0.001); the combined CSE1L/CEA assay increased sensitivity to 90.2% (46 of 51). Animal experiments showed CSE1L reduction in B16-F10 melanoma cells correlated with decreased metastasis to the colorectal tract in C57BL/6 mice. These results indicate that assay of serum CSE1L may facilitate diagnosis of colorectal cancer lymphatic metastases; furthermore, CSE1L is a possible therapeutic target.
Collapse
Affiliation(s)
- Chin-Shaw Stella Tsai
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Wuchi, Taichung County 435, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tung MC, Tsai CSS, Tung JN, Tsao TY, Chen HC, Yeh KT, Liao CF, Jiang MC. Higher prevalence of secretory CSE1L/CAS in sera of patients with metastatic cancer. Cancer Epidemiol Biomarkers Prev 2009; 18:1570-7. [PMID: 19383891 DOI: 10.1158/1055-9965.epi-08-0948] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Metastatic markers are highly useful diagnostic and prognostic indicators of cancer metastasis. Herein, we report that secretory CSE1L/CAS, a cellular apoptosis susceptibility protein, is a new marker for metastatic cancer. CAS was colocalized with matrix metalloproteinase-2 in vesicles surrounding the outside of MCF-7 cell membranes, and the COOH-terminal domain of CAS was associated with matrix metalloproteinase-2-containing vesicles. Immunohistochemical staining for CAS was positive in the stroma and gland lumens of human metastatic cancer tissues. CAS was also detected in conditioned medium from B16-F10 melanoma cells and more frequently in the sera of patients with metastatic cancer than in sera from patients with primary cancer. Specifically, the prevalence of serum CAS in serum samples from 146 patients was 58.2% (32 of 55), 32.0% (8 of 25), and 12.1% (8 of 66) for patients with metastatic, invasive, and primary cancers, respectively. Our results suggest that CAS is a secretory protein associated with cancer metastasis, which may have clinical utility in metastatic cancer screening and diagnosis.
Collapse
Affiliation(s)
- Min-Che Tung
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung County 435, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Function of CSE1L/CAS in the secretion of HT-29 human colorectal cells and its expression in human colon. Mol Cell Biochem 2009; 327:163-70. [PMID: 19224336 DOI: 10.1007/s11010-009-0054-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 02/04/2009] [Indexed: 01/10/2023]
Abstract
The secretion of colorectal epithelium is important for maintaining the physiological function of colorectal organ. Herein, we report that cellular apoptosis susceptibility (CAS) (or CSE1L) protein regulates the secretion of HT-29 human colorectal cells. Polarity is essential for directed secretion of substances produced by epithelial cells to the external (luminal) compartment; CAS overexpression induced polarization of HT-29 cells. CAS was punctate stained in the cytoplasm of HT-29 cells, and CAS overexpression increased the translocation of CAS-stained vesicles to the cytoplasm near cell membrane and cell protrusions. CAS overexpression increased the secretion of carcinoembryonic antigen (CEA) and cathepsin D. Immunohistochemistry showed CAS was positively stained in the goblet cells of colon mucosa and cells in the crypts of Lieberkühn of human colon as well as the glands in metastatic colorectal cancer tissue. Our results suggest that CAS regulates the secretion of colorectal cells and may regulate the metastasis of colorectal cancer.
Collapse
|