1
|
Chen Y, Yang W, Cui X, Zhang H, Li L, Fu J, Guo H. Research Progress on the Mechanism, Monitoring, and Prevention of Cardiac Injury Caused by Antineoplastic Drugs-Anthracyclines. BIOLOGY 2024; 13:689. [PMID: 39336116 PMCID: PMC11429024 DOI: 10.3390/biology13090689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024]
Abstract
Anthracyclines represent a highly efficacious class of chemotherapeutic agents employed extensively in antitumor therapy. They are universally recognized for their potency in treating diverse malignancies, encompassing breast cancer, gastrointestinal tumors, and lymphomas. Nevertheless, the accumulation of anthracyclines within the body can lead to significant cardiac toxicity, adversely impacting both the survival rates and quality of life for tumor patients. This limitation somewhat restricts their clinical utilization. Determining how to monitor and mitigate their cardiotoxicity at an early stage has become an urgent clinical problem to be solved. Therefore, this paper reviews the mechanism of action, early monitoring, and strategies for the prevention of anthracycline-induced cardiotoxicity for clinical reference.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wenwen Yang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Cardiology, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710005, China
| | - Xiaoshan Cui
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huiyu Zhang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liang Li
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jianhua Fu
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hao Guo
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
2
|
Szponar J, Niziński P, Dudka J, Kasprzak-Drozd K, Oniszczuk A. Natural Products for Preventing and Managing Anthracycline-Induced Cardiotoxicity: A Comprehensive Review. Cells 2024; 13:1151. [PMID: 38995002 PMCID: PMC11240786 DOI: 10.3390/cells13131151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
Doxorubicin (DOX) is an anthracycline anticancer agent that is highly effective in the treatment of solid tumors. Given the multiplicity of mechanisms involved in doxorubicin-induced cardiotoxicity, it is difficult to identify a precise molecular target for toxicity. The findings of a literature review suggest that natural products may offer cardioprotective benefits against doxorubicin-induced cardiotoxicity, both in vitro and in vivo. However, further confirmatory studies are required to substantiate this claim. It is of the utmost importance to direct greater attention towards the intricate signaling networks that are of paramount importance for the survival and dysfunction of cardiomyocytes. Notwithstanding encouraging progress made in preclinical studies of natural products for the prevention of DOX-induced cardiotoxicity, these have not yet been translated for clinical use. One of the most significant obstacles hindering the development of cardioprotective adjuvants based on natural products is the lack of adequate bioavailability in humans. This review presents an overview of current knowledge on doxorubicin DOX-induced cardiotoxicity, with a focus on the potential benefits of natural compounds and herbal preparations in preventing this adverse effect. As literature search engines, the browsers in the Scopus, PubMed, Web of Science databases and the ClinicalTrials.gov register were used.
Collapse
Affiliation(s)
- Jarosław Szponar
- Clinical Department of Toxicology and Cardiology, Toxicology Clinic, Stefan Wyszyński Regional Specialist Hospital, Medical University of Lublin, 20-718 Lublin, Poland;
| | - Przemysław Niziński
- Department of Pharmacology, Medical University of Lublin, Radziwiłłowska 11 Street, 20-080 Lublin, Poland;
| | - Jarosław Dudka
- Chair and Department of Toxicology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| |
Collapse
|
3
|
Yıldızhan K, Huyut Z, Altındağ F. Involvement of TRPM2 Channel on Doxorubicin-Induced Experimental Cardiotoxicity Model: Protective Role of Selenium. Biol Trace Elem Res 2023; 201:2458-2469. [PMID: 35922740 DOI: 10.1007/s12011-022-03377-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/30/2022] [Indexed: 12/31/2022]
Abstract
Doxorubicin (DOXR) is an important chemotherapeutic drug used in cancer treatment for many years. Several studies reported that the use of DOXR increased toxicity by causing an increase in oxidative stress (OS), especially in the heart. In this study, we investigated the protective effect of selenium (Se) and the role of transient receptor potential melastatin-2 (TRPM2) channel activation by using N-(p-amylcinnamoyl) anthranilic acid (ACA) in a model of DOXR-induced cardiotoxicity. Sixty female rats were equally divided into the control, dimethyl sulfoxide (DMSO), DOXR, DOXR + Se, DOXR + ACA, and DOXR + Se + ACA groups. Glutathione (GSH), glutathione peroxidase (GSH-Px), caspases (Cas) 3 and 9, interleukin 1β (IL-1β), tumor necrosis factor-α (TNF-α), reactive oxygen species (ROS), poly [ADP-ribose] polymerase 1 (PARP-1), and TRPM2 channel levels were measured by ELISA. In addition, histopathological examination was performed in cardiac tissues and TNF-α, caspase 3, and TRPM2 channel expression levels were determined immunohistochemically. The levels of GSH, GSH-Px, caspases 3 and 9, IL-1β, TNF-α, ROS, PARP-1, and TRPM2 channel in serum, and cardiac tissue in the DOXR group were higher than in the control and DMSO groups (p < 0.05). However, these parameters in Se and/or ACA treatment groups were lower than in the DOXR group (p < 0.05). Also, we determined that Se and/or ACA treatment together with DOXR application decreased the TNF-α, Cas-3, and TRPM2 channel expression levels in the cardiac tissue. The data showed that administration of Se and/or ACA treatment together with DOXR may be used as a therapeutic agent in preventing DOXR-induced cardiotoxicity.
Collapse
Affiliation(s)
- Kenan Yıldızhan
- Department of Biophysics, Faculty of Medicine, Van Yuzuncu Yil University, TR-65090, Van, Turkey.
| | - Zübeyir Huyut
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Fikret Altındağ
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
4
|
Glutathione system enhancement for cardiac protection: pharmacological options against oxidative stress and ferroptosis. Cell Death Dis 2023; 14:131. [PMID: 36792890 PMCID: PMC9932120 DOI: 10.1038/s41419-023-05645-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
The glutathione (GSH) system is considered to be one of the most powerful endogenous antioxidant systems in the cardiovascular system due to its key contribution to detoxifying xenobiotics and scavenging overreactive oxygen species (ROS). Numerous investigations have suggested that disruption of the GSH system is a critical element in the pathogenesis of myocardial injury. Meanwhile, a newly proposed type of cell death, ferroptosis, has been demonstrated to be closely related to the GSH system, which affects the process and outcome of myocardial injury. Moreover, in facing various pathological challenges, the mammalian heart, which possesses high levels of mitochondria and weak antioxidant capacity, is susceptible to oxidant production and oxidative damage. Therefore, targeted enhancement of the GSH system along with prevention of ferroptosis in the myocardium is a promising therapeutic strategy. In this review, we first systematically describe the physiological functions and anabolism of the GSH system, as well as its effects on cardiac injury. Then, we discuss the relationship between the GSH system and ferroptosis in myocardial injury. Moreover, a comprehensive summary of the activation strategies of the GSH system is presented, where we mainly identify several promising herbal monomers, which may provide valuable guidelines for the exploration of new therapeutic approaches.
Collapse
|
5
|
Chen Y, Shi S, Dai Y. Research progress of therapeutic drugs for doxorubicin-induced cardiomyopathy. Biomed Pharmacother 2022; 156:113903. [PMID: 36279722 DOI: 10.1016/j.biopha.2022.113903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 12/06/2022] Open
|
6
|
Khairnar SI, Kulkarni YA, Singh K. Cardiotoxicity linked to anticancer agents and cardioprotective strategy. Arch Pharm Res 2022; 45:704-730. [DOI: 10.1007/s12272-022-01411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 10/13/2022] [Indexed: 12/24/2022]
|
7
|
Zhang B, Liang H, Huang K, Li J, Xu D, Huang C, Li Y. Cardiotoxicity of patulin was found in H9c2 cells. Toxicon 2021; 207:21-30. [PMID: 34929212 DOI: 10.1016/j.toxicon.2021.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/27/2022]
Abstract
Patulin (PAT) is a kind of mycotoxins that is universally found at rotten fruits, especially apples and apple products. Previous studies have shown that PAT has hepatotoxicity and nephrotoxicity. However, cardiotoxicity of PAT is rarely reported. Present study aimed at investigate the cardiotoxicity and relevant mechanisms of PAT on H9c2 cells. Cytotoxicity of PAT were evaluated by MTT assay and LDH. Hoechst 33258 staining was used to examine the nuclear morphology and AV/PI double staining was employed for apoptosis on H9c2 cells. Expression level of Caspase-3, Caspase-9, Bax, Bcl-2 were quantified to verify the potential mechanism of mitochondrial apoptosis pathway. The tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin 6 (IL-6) were quantified to determine the inflammatory response by using ELISA assay. ROS, SOD, MDA, GSH levels were measured to determine the oxidative stress status. Results demonstrated that PAT significantly induced cell injury, as evidenced by the down-regulated of cell viability, and the increase of LDH release. Hoesst33258 staining and flow cytometry showed that apoptosis rate was elevated by PAT. PAT treatment up-regulated the expression of Caspase-3, Caspase-9, Bax level and down-regulated the expression of Bcl-2 level. TNF-α, IL-1β, IL-6 levels showed that PAT increased the pro-inflammatory response. As PAT concentration increased, intracellular MDA, ROS content were elevated, while GSH content and the activity of SOD were significantly decreased. Thus, it is concluded that PAT may induce apoptosis of H9c2 cells through oxidative stress.
Collapse
Affiliation(s)
- Baigang Zhang
- Life Science and Engineering, Lanzhou University of Technology, Gansu, Lanzhou, 730050, China
| | - Hairong Liang
- Life Science and Engineering, Lanzhou University of Technology, Gansu, Lanzhou, 730050, China
| | - Ke Huang
- School of Basic Medical Sciences, Lanzhou University, Gansu, Lanzhou, 730050, China; School/Hospital of Stomatology, Lanzhou University, Gansu, Lanzhou, 730050, China
| | - Jinliang Li
- Life Science and Engineering, Lanzhou University of Technology, Gansu, Lanzhou, 730050, China
| | - Dongmei Xu
- Life Science and Engineering, Lanzhou University of Technology, Gansu, Lanzhou, 730050, China
| | - Chenghui Huang
- Life Science and Engineering, Lanzhou University of Technology, Gansu, Lanzhou, 730050, China
| | - Yi Li
- School/Hospital of Stomatology, Lanzhou University, Gansu, Lanzhou, 730050, China.
| |
Collapse
|