1
|
Phogat A, Singh J, Sheoran R, Hasanpuri A, Chaudhary A, Bhardwaj S, Antil S, Kumar V, Prakash C, Malik V. Berberine Attenuates Acetamiprid Exposure-Induced Mitochondrial Dysfunction and Apoptosis in Rats via Regulating the Antioxidant Defense System. J Xenobiot 2024; 14:1079-1092. [PMID: 39189176 PMCID: PMC11348026 DOI: 10.3390/jox14030061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/21/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
Acetamiprid (ACMP) is a neonicotinoid insecticide that poses a significant threat to the environment and mankind. Oxidative stress and mitochondrial dysfunction are considered prime contributors to ACMP-induced toxic effects. Meanwhile, berberine (BBR) a natural plant alkaloid, is a topic of interest because of its therapeutic and prophylactic actions. Therefore, this study evaluated the effects of BBR on ACMP-mediated alterations in mitochondrial functions and apoptosis in rat liver tissue. Male Wistar rats were divided into four groups: (I) control, (II) BBR-treated, (III) ACMP-exposed, and (IV) BBR+ACMP co-treated groups. The doses of BBR (150 mg/kg b.wt) and ACMP (1/10 of LD50, i.e., 21.7 mg/kg b.wt) were given intragastrically for 21 consecutive days. The results showed that the administration of ACMP diminished mitochondrial complex activity, downregulated complex I (ND1 and ND2) and complex IV (COX1 and COX4) subunit mRNA expression, depleted the antioxidant defense system, and induced apoptosis in rat liver. BBR pre-treatment significantly attenuated ACMP-induced mitochondrial dysfunction by maintaining mitochondrial complex activity and upregulating ND1, ND2, COX1, and COX4 mRNA expression. BBR reversed ACMP-mediated apoptosis by diminishing Bax and caspase-3 and increasing the Bcl-2 protein level. BBR also improved the mitochondrial antioxidant defense system by upregulating mRNA expression of PGC-1α, MnSOD, and UCP-2 in rat liver tissue. This study is the first to evaluate the protective potential of BBR against pesticide-induced mitochondrial dysfunction in liver tissue. In conclusion, BBR offers protection against ACMP-induced impairment in mitochondrial functions by maintaining the antioxidant level and modulating the apoptotic cascade.
Collapse
Affiliation(s)
- Annu Phogat
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
| | - Jagjeet Singh
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India;
| | - Reena Sheoran
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
| | - Arun Hasanpuri
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
| | - Aakash Chaudhary
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
| | - Shakti Bhardwaj
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
| | - Sandeep Antil
- Department of Zoology, ANDC College, University of Delhi, New Delhi 110019, India;
| | - Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India;
| | - Chandra Prakash
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vinay Malik
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
| |
Collapse
|
2
|
Aksu F, Akkoc RF, Savur E, Çelik C. Effects of N-Acetylcysteine on Humanin and Endostatin in Rats Exposed to Formaldehyde. Cureus 2024; 16:e61354. [PMID: 38947691 PMCID: PMC11214271 DOI: 10.7759/cureus.61354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
INTRODUCTION People are constantly exposed to formaldehyde, a volatile and poisonous gas, in indoor environments. In particular, anatomists, pathologists, histologists, and those involved in embalming are exposed to higher amounts of formaldehyde continuously due to their work. This study aimed to investigate the effect of N-acetylcysteine on endostatin and humanin values in male rats exposed to experimental formaldehyde. METHODS In the study, 28 male Spraque-Dawley rats aged 12-14 weeks (seven animals in each group: control group, formaldehyde group, N-acetylcysteine group, formaldehyde+N-acetylcysteine group) were used. Four weeks later, the animals were sacrificed by decapitation. Following decapitation, endostatin and humanin levels in the serum of rats were studied by the enzyme-linked immunoassay (ELISA) method. In all analyses, p<0.05 was accepted as statistically significant. RESULTS Humanin and endostatin values were checked in the serum of rats. When humanin levels were compared between groups, a statistically significant difference was found between the formaldehyde group and both the control group (p<0.05) and the N-acetylcysteine group (p<0.05). In the formaldehyde+N-acetylcysteine group, it was determined that the humanin level was impaired due to formaldehyde exposure, approaching the control group values with the administered N-acetylcysteine. When the endostatin level was compared between the groups, a statistical significance (p<0.05) was found only between the formaldehyde group and the N-acetylcysteine group. In the formaldehyde+N-acetylcysteine group, it was determined that the endostatin level was impaired due to formaldehyde exposure, approaching the control group values with the administered N-acetylcysteine. CONCLUSION In this study, the effects of N-acetylcysteine on humanin and endostatin on rats exposed to formaldehyde were demonstrated for the first time. Formaldehyde exposure negatively affected humanin and endostatin levels in rat sera. N-acetylcysteine ameliorated the negative effects of formaldehyde, bringing humanin and endostatin levels closer to the healthy control group.
Collapse
Affiliation(s)
- Feyza Aksu
- Department of Anatomy, Faculty of Medicine, Firat University, Elazig, TUR
| | | | - Ezgi Savur
- College of Medicine, Faculty of Medicine, Firat University, Elazig, TUR
| | - Celal Çelik
- College of Medicine, Faculty of Medicine, Firat University, Elazig, TUR
| |
Collapse
|
3
|
Kaya S, Yalcın T, Tektemur A, Kuloğlu T. N-Acetylcysteine may exert hepatoprotective effect by regulating Meteorin-Like levels in Adriamycin-induced liver injury. Cell Stress Chaperones 2023; 28:849-859. [PMID: 37670199 PMCID: PMC10746670 DOI: 10.1007/s12192-023-01376-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
Adriamycin (ADR) is an important chemotherapeutic drug, but it has serious side effects such as hepatotoxicity. This study aimed to evaluate whether N-acetylcysteine (NAC) has hepatoprotective effects against ADR-induced hepatotoxicity in rats. In addition, it was aimed to determine how Meteorin-Like (MtrnL), which has pleiotropic effects on immunology, inflammation, and metabolism, is affected by ADR and/or NAC applications in liver tissue. 28 rats were randomly assigned to one of four equal groups in the study: control (no treatment), NAC (150 mg/kg/day of NAC intraperitoneally (i.p), ADR (15 mg/kg only on the first day of the experiment), and ADR + NAC (ADR 15 mg/kg on the first day of the experiment + 150 mg/kg/day NAC i.p). After 15 days, liver enzyme levels in serum, oxidant/antioxidant parameters in liver tissue, histopathological changes, caspase 3 (Casp3) and heat shock protein 70 (HSP-70) immunoreactivities, and MtrnL levels were examined. Histopathological changes, liver enzyme levels, as well as HSP-70, and Casp3 immunoreactivities increased due to ADR application. Additionally, MtrnL levels in liver tissue were significantly increased as a result of ADR application. However, it was detected that the NAC application significantly regulated the ADR-induced changes. Furthermore, it was determined that NAC administration regulated the changes in ADR-induced oxidative stress parameters. We propose that NAC may exert a hepatoprotective effect by regulating ADR-induced altered oxidative stress parameters, MtrnL levels, Casp3, and HSP-70 immunoreactivities in the liver.
Collapse
Affiliation(s)
- Sercan Kaya
- Health Services Vocational School, Batman University, Batman, Turkey.
| | - Tuba Yalcın
- Health Services Vocational School, Batman University, Batman, Turkey
| | - Ahmet Tektemur
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Tuncay Kuloğlu
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
4
|
Phogat A, Singh J, Malik V, Kumar V. Neuroprotective potential of berberine against acetamiprid induced toxicity in rats: Implication of oxidative stress, mitochondrial alterations, and structural changes in brain regions. J Biochem Mol Toxicol 2023; 37:e23434. [PMID: 37350525 DOI: 10.1002/jbt.23434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/10/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Acetamiprid (ACMP) is an extensively used neonicotinoid pesticide to control sucking and chewing insects and is known to cause nontarget toxicity. The present study aimed to evaluate the ameliorative potential of berberine (BBR)-a polyphenolic alkaloid- on ACMP-induced oxidative stress, mitochondrial dysfunctioning, and structural changes in different rat brain regions. The male Wistar rats were divided into four groups, that is, control, BBR-treated (150 mg/kg b.wt), ACMP-exposed (21.7 mg/kg b.wt) and BBR + ACMP co-treated; and were dosed intragastrically for 21 consecutive days. Results of the biochemical analysis showed that BBR significantly ameliorated ACMP-induced oxidative stress by decreasing lipid peroxidation and protein oxidation along with a marked increase in endogenous antioxidants and lowered AChE activity in rat brain regions. Inside mitochondria, BBR significantly attenuated the toxic effects of ACMP by increasing the activity of mitochondrial complexes. Findings of polymerase chain reaction also demonstrated the modulatory effects of BBR against ACMP-mediated downregulation of ND1, ND2, COX1, and COX4 subunits of mitochondrial complexes. The histopathological and ultrastructural examination also validated the biochemical and transcriptional alterations following toxicity of ACMP exposure and the protective potential of BBR against ACMP-induced neurotoxicity. Thus, the present study indicates the promising ameliorative potential of BBR against ACMP-induced neurotoxicity via its antioxidative and modulatory activities.
Collapse
Affiliation(s)
- Annu Phogat
- Department of Zoology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Jagjeet Singh
- Department of Zoology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Vinay Malik
- Department of Zoology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
5
|
Singh J, Phogat A, Kumar V, Malik V. N-Acetylcysteine Mediated Regulation of MnSOD, UCP-2 and Cytochrome C Associated with Amelioration of Monocrotophos-Induced Hepatotoxicity in Rats. Toxicol Int 2023. [DOI: 10.18311/ti/2022/v29i4/30325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Pesticides are now a risk to the environment and public health. Monocrotophos (MCP) is known to cause organ toxicity and impart degenerative effects at cellular levels. N-acetylcysteine (NAC) is a natural antioxidant having various prophylactic properties. Male Wistar rats were given NAC (200 mg/kg b.wt), MCP (0.9 mg/kg b.wt) and NAC followed by MCP; intragastrically for 28 consecutive days. Regulation of MnSOD, UCP-2 and cytochrome c was analyzed by western blotting and polymerase chain reaction. Histology, electron microscopy and weight parameters were evaluated in the liver. MCP exposure significantly decreased body weight gain, relative liver weight, and structural changes. Altered MnSOD protein expression, decreased transcription of UCP-2 and MnSOD, and released cytochrome c indicated that oxidative stress is involved in MCP exposure. Treatment of NAC to MCP-exposed rats normalized the weight and structural changes, restored MnSOD and UCP-2 levels and prevented the release of cytochrome c. The present study suggests that the regulation of UCP-2, MnSOD and cytochrome c is involved in NAC efficacy against MCP toxicity. These findings illustrate that NAC can serve as a potential therapeutic agent for toxicity and oxidative stress in mammals.
Collapse
|
6
|
Ma Z, Wang W, Pan C, Fan C, Li Y, Wang W, Lan T, Gong F, Zhao C, Zhao Z, Yu S, Yuan M. N-acetylcysteine improves diabetic associated erectile dysfunction in streptozotocin-induced diabetic mice by inhibiting oxidative stress. J Cell Mol Med 2022; 26:3527-3537. [PMID: 35593216 PMCID: PMC9189351 DOI: 10.1111/jcmm.17394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022] Open
Abstract
Oxidative stress appears to play a role in the pathogenesis of diabetes mellitus erectile dysfunction (DMED). This study aimed to investigate the effect of N‐acetylcysteine (NAC) on DMED in streptozotocin‐induced diabetic mice and to explore potential mechanisms. In the present study, we show that an erectile dysfunction is present in the streptozotocin‐induced mouse model of diabetes as indicated by decreases in intracavernous pressure responses to electro‐stimulation as well as from results of the apomorphine test of erectile function. After treatment of NAC, the intracavernous pressure was increased. In these DMED mice, oxidative stress and inflammatory responses were significantly reduced within the cavernous microenvironment, while activity of antioxidant enzymes in this cavernous tissue was enhanced after NAC treatment. These changes protected mitochondrial stress damage and a significant decreased in apoptosis within the cavernous tissue of DMED mice. This appears to involve activation of the nuclear factor erythroid 2‐like‐2 (Nrf2) signalling pathway, as well as suppression of the mitogen‐activated protein kinase (MAPK) p38/ NF‐κB pathway within cavernous tissue. In conclusion, NAC can improve erectile function through inhibiting oxidative stress via activating Nrf2 pathways and reducing apoptosis in streptozotocin‐induced diabetic mice. NAC might provide a promising therapeutic strategy for individuals with DMED.
Collapse
Affiliation(s)
- Zhen Ma
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenzhen Wang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Pan
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cuiqin Fan
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Ye Li
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Wenjing Wang
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Tian Lan
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Fangxin Gong
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Changbo Zhao
- Department of Urology, Liaocheng People's Hospital, Shandong, China
| | - Zichao Zhao
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuyan Yu
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Mingzhen Yuan
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|