1
|
Chhabra V, Meenakshi S, Maity S, Saini D, Saini M, Murti K, Kumar N. Impact of Fluoride Exposure on Reproductive Health: Insights into Molecular Mechanisms and Health Implications. Reprod Toxicol 2025:108907. [PMID: 40222424 DOI: 10.1016/j.reprotox.2025.108907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/05/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
While the benefits of fluoride in preventing dental caries are well-established, concerns about its potential toxicity at high intake levels are rising. This review investigates the link between chronic fluoride exposure and reproductive health outcomes at the molecular level, focusing on population growth and child sex ratios in the fluorosis-affected and non-fluorosis regions. The exploration of the detrimental effects of fluoride on both male and female reproductive systems is necessary. In males, hormonal variations, alterations in spermatogenesis, capacitation, and sperm motility using molecular markers, epigenetic, transcriptomic, and proteomic data. For females, hormonal imbalances, disruptions in oocyte formation, teratogenicity (congenital disabilities), and compromised infant development due to maternal fluorosis using similar approaches. Furthermore, we explored drugs that address affected pathways, the potential benefits of vitamins and natural remedies, and lifestyle modifications to minimise adverse effects. The impact of various molecular pathways like apoptosis, autophagy, DNA damage, hormonal imbalance, inflammatory response, mitochondrial dynamics, and cell signalling pathways has been linked to reproductive toxicity induced by chronic and specific doses of fluoride. Analysing existing research and exploring potential therapeutic avenues contributes to the development of strategies to safeguard reproductive well-being in populations exposed to high fluoride levels.
Collapse
Affiliation(s)
- Vishal Chhabra
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - Sarasa Meenakshi
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - Shreya Maity
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - Dheeraj Saini
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - Mohit Saini
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India.
| |
Collapse
|
2
|
Meenakshi S, Bahekar T, Narapaka PK, Pal B, Prakash V, Dhingra S, Kumar N, Murti K. Impact of fluorosis on molecular predictors in pathogenesis of type 2 diabetes associated microvascular complications. J Trace Elem Med Biol 2024; 86:127506. [PMID: 39128255 DOI: 10.1016/j.jtemb.2024.127506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
AIM This review presents specific insights on the molecular underpinnings of the connection between fluorosis, type 2 diabetes, and microvascular complications, along with the novel biomarkers that are available for early detection. SUMMARY Fluoride is an essential trace element for the mineralization of teeth and bones in humans. Exposure to higher concentrations of fluoride has harmful effects that significantly outweigh its advantageous ones. Dental fluorosis and skeletal fluorosis are the common side effects of exposure to fluoride, which affect millions of individuals globally. Alongside, it also causes non-skeletal fluorosis, which affects the population suffering from non-communicable diseases like diabetes by impacting the soft tissues and causing diabetic microvascular complications. Previous studies reported the prevalence range of these diabetic complications of neuropathy (3-65 %), nephropathy (1-63 %), and retinopathy (2-33 %). Fluoride contributes to the development of these complications by causing oxidative stress, cellular damage, degrading the functioning capability of mitochondria, and thickening the retinal vein basement. CONCLUSION Early diagnosis is a prompt way of prevention, and for that, biomarkers have emerged as an innovative and useful technique. This allows healthcare practitioners and policymakers in endemic areas to comprehend the molecular complexities involved in the advancement of diabetic microvascular problems in the context of high fluoride exposure.
Collapse
Affiliation(s)
- Sarasa Meenakshi
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India.
| | - Triveni Bahekar
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India.
| | - Pavan Kumar Narapaka
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India.
| | - Biplab Pal
- Department of Pharmacology, Lovely Professional University, Phagwara, Punjab 144402 India.
| | - Ved Prakash
- Department of Endocrinology, Indira Gandhi institute of medical sciences (IGIMS), Bailey Road, Sheikhpura, Patna, Bihar 800014, India.
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India.
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India.
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India.
| |
Collapse
|
3
|
Swamy RS, Kumar N, Shenoy S, Kumar N, Rao V. Effect of naringin on sodium fluoride‑induced neurobehavioral deficits in Wistar rats. Biomed Rep 2024; 20:97. [PMID: 38765862 PMCID: PMC11099606 DOI: 10.3892/br.2024.1785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/12/2024] [Indexed: 05/22/2024] Open
Abstract
There is a lack of treatment for the detrimental effects of fluorosis. Sodium fluoride at a concentration of 10 ppm induces stress, depression and memory impairment in adult Wistar rats. Naringin, a flavanone glycoside isolated from citrus fruits such as lemons and oranges, possesses anti-inflammatory, antioxidant and neuroprotective properties; therefore, it was used for treatment of fluoride induced toxicity in the present study. Adult Wistar rats were divided into eight groups (n=8). The normal control (NOR) group was provided with normal tap water. The sodium fluoride (FLU)10 group received water containing 10 ppm sodium fluoride for 60 days. The treatment groups (FLU10NAR100 and FLU10NAR50) received drinking water with 10 ppm sodium fluoride ad libitum along with Naringin 100 and 50 mg/kg body weight (bw) per oral gavage, respectively. The NAR100 and NAR50 groups received Naringin 100 and 50 mg/kg bw. The PRONAR100 and PRONAR50 groups received Naringin 100 and 50 mg/kg bw for the first 15 days and then subsequently received FLU10 ppm for 60 days (total of 75 days). All animals were subjected to behavioural tests consisting of the open field test (OFT), forced swim test (FST) and novel object recognition test (NORT). After euthanasia, the hippocampus and prefrontal cortex were stained with Cresyl violet. To measure the oxidative stress caused by fluoride and its effect on antioxidant levels, estimation of reduced glutathione (GSH) by Ellman's method, lipid peroxidation (LPO) measured in terms of the MDA:thiobarbituric acid reaction and catalase was performed. To evaluate the effect of fluoride on activity of acetylcholine, estimation of acetylcholinesterase (AChE) by Ellman's method was performed. In NORT and FST, significant changes (P<0.05) were present in the FLU10NAR100 and FLU10NAR50 groups compared with the FLU10 group, showing recovery from memory deficit and depression. The OFT results were insignificant. The LPO was reduced in all the other groups except the FLU10 group, with statistically significant changes. Catalase activity was significantly lower in FLU10 as compared with the NAR100, NAR50, PRONAR100 and PRONAR50 groups. GSH and AChE activities did not show significant changes as compared with the FLU10 group. The CA3 and prefrontal cortex viable and degenerated neuron count in the FLU10 group were insignificant compared with all other groups, except for the NAR100 and NAR50 groups. Thus, Naringin can be a useful drug to avoid the neurological effects of fluoride.
Collapse
Affiliation(s)
- Ravindra Shantakumar Swamy
- Division of Anatomy, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Hajipur, Hajipur, Bihar 844102, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Naveen Kumar
- Department of Anatomy, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Vanishree Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
4
|
Geiken A, Kock M, Banz L, Schwendicke F, Graetz C. Dental Practice Websites in Germany-How Do They Inform about Fluoridation? Dent J (Basel) 2024; 12:65. [PMID: 38534289 DOI: 10.3390/dj12030065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Fluoridation (Fl) is effective in preventing caries; however, it is unclear to what extent its use is counteracted by misinformation on the internet. This study aimed to evaluate the information provided on professional websites of German dental practices regarding fluoridation. A systematic search was performed by two independent examiners, utilizing three search engines, from 10 September 2021 to 11 December 2021. Modified, validated questionnaires (LIDA, DISCERN) were used to evaluate technical and functional aspects, generic quality, and risk of bias. Demographic information and statements about Fl were also collected. The intra- and inter-rater reliability assessments were excellent. Of the 81 websites analyzed, 64 (79%) mentioned Fl, and 31 (38%) indicated it as a primary focus. Most websites met at least 50% of the LIDA (90%) and DISCERN criteria (99%), indicating that the general quality was good. Thirty (37%) of the websites explained the impact of Fl, and forty-five (56%) indicated an opinion (for/against) on Fl. The practice location and the clinical focus were not associated with the overall quality of websites. Only a minority of websites explained the effects of Fl. Taken together, this study highlights that there is a distinct lack of good-quality information on FL.
Collapse
Affiliation(s)
- Antje Geiken
- Clinic of Conservative Dentistry and Periodontology, University of Kiel, 24105 Kiel, Germany
| | - Mirja Kock
- Clinic of Conservative Dentistry and Periodontology, University of Kiel, 24105 Kiel, Germany
| | - Lisa Banz
- Clinic of Conservative Dentistry and Periodontology, University of Kiel, 24105 Kiel, Germany
| | - Falk Schwendicke
- Clinic for Conservative Dentistry and Periodontology, University Hospital of Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Christian Graetz
- Clinic of Conservative Dentistry and Periodontology, University of Kiel, 24105 Kiel, Germany
| |
Collapse
|