1
|
Liu R, Liu R, Song G, Li Q, Cui Z, Long Y. Mitochondria Dysfunction and Cell Apoptosis Limit Resistance of Nile Tilapia (Oreochromis niloticus) to Lethal Cold Stress. Animals (Basel) 2022; 12:ani12182382. [PMID: 36139242 PMCID: PMC9495169 DOI: 10.3390/ani12182382] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Sensitivity of Nile tilapia (Oreochromis niloticus) to cold stress represents a major concern for both aquaculture and theoretical study; however, the cellular and molecular mechanisms determining cold susceptibility of it remain largely unknown. In this study, we first estimated the median survival time of juvenile Nile tilapia under exposure to lethal cold stress (12 °C). The fish were classified as cold-sensitive or cold-tolerant based on their behavioral manifestation after exposed to 12 °C for 3 days. Subsequently, histological, biochemical and gene expression analyses were performed for the fish with different cold resistance to explore the cellular and molecular events underlying cold susceptibility of Nile tilapia. We found that exposure of Nile tilapia to lethal cold stress caused systemic tissue structure changes, mitochondrial swelling and dysfunction, induction of apoptosis and endoplasmic reticulum (ER) stress-related genes and cell apoptosis. The extent of these adverse cellular and molecular events determines an individual’s ability to survive cold stress. Our data indicate that mitochondria dysfunction and mitochondria-mediated cell apoptosis are the main factors limiting Nile tilapia’s cold resistance. Abstract Inability of Nile tilapia (Oreochromis niloticus) to withstand cold stress represents a major economic concern, which restricts the culture area, limits the growing period and even results in mass mortality in cold seasons. However, the cellular and molecular mechanisms determining cold susceptibility of Nile tilapia remain largely unknown. In this study, we characterized the ability of juvenile Nile tilapia to survive lethal cold stress (12 °C) and the median survival time (LT50) of the experimental fish under exposure to 12 °C cold stress was estimated as 3.14 d. After being exposed to 12 °C for 3 d, the survivors that lost equilibrium (LE) and those that swam normally (NO) were regarded as cold-sensitive and cold-tolerant, respectively. The untreated (Ctrl), NO and LE fish were subjected to histological, biochemical and gene expression analyses to explore the cellular and molecular events underlying cold susceptibility of Nile tilapia. Exposure of Nile tilapia to lethal cold stress caused systemic tissue structure changes, mitochondrial swelling and dysfunction, induction of apoptosis and endoplasmic reticulum (ER) stress-related genes and cell apoptosis. The extent of these adverse cellular and molecular events determines an individual’s ability to survive cold stress. Our data indicate that mitochondria dysfunction and mitochondria-mediated cell apoptosis are the main factors limiting Nile tilapia’s cold resistance.
Collapse
Affiliation(s)
- Ran Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Renyan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zongbin Cui
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Correspondence: ; Tel.: +86-27-68780100
| |
Collapse
|
2
|
Cui G, Li Y, Ding K, Hao S, Wang J, Zhang Z. Attribution of Bax and mitochondrial permeability transition pore on cantharidin-induced apoptosis of Sf9 cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 142:91-101. [PMID: 29107253 DOI: 10.1016/j.pestbp.2017.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 01/11/2017] [Accepted: 01/14/2017] [Indexed: 06/07/2023]
Abstract
To investigate the insecticidal mechanism of cantharidin, a promising biological pesticide substance from blister beetle, on Sf9 cells, a cultured cell line derived from fall armyworm, Spodoptera frugiperda, we preliminary studied the attribution of Bax channel and mitochondrial permeability transition pore on cantharidin-induced mitochondrial apoptosis signal pathway. Changes in cell morphology, activity of mitochondrial dehydrogenases, release of cytochrome C and mitochondrial transmembrane potential were detected when the two channels were blocked by specific inhibitors, Bax channel blocker and cyclosporin A. Results showed that cantharidin-induced apoptotic features, including changes in the cell morphology, release of cytochrome C and decrease in mitochondrial transmembrane potential could be significantly inhibited by Bax channel blocker, while cyclosporin A accelerated the downward trend of mitochondrial dehydrogenases activity and caused a decrease of Ca2+ in mitochondria. In summary, Bax might be necessary but not exclusively for the apoptosis induced by cantharidin and the attribution of these channels seems to be more complexity.
Collapse
Affiliation(s)
- Gaofeng Cui
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yuansheng Li
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Kai Ding
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Shaodong Hao
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Jinzhong Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Zhiyong Zhang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
3
|
Aboryag NB, Mohamed DM, Dehe L, Shaqura M, Treskatsch S, Shakibaei M, Schäfer M, Mousa SA. Histopathological Changes in the Kidney following Congestive Heart Failure by Volume Overload in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6894040. [PMID: 28831296 PMCID: PMC5555028 DOI: 10.1155/2017/6894040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/07/2017] [Accepted: 05/02/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND This study investigated histopathological changes and apoptotic factors that may be involved in the renal damage caused by congestive heart failure in a rat model of infrarenal aortocaval fistula (ACF). METHODS Heart failure was induced using a modified approach of ACF in male Wistar rats. Sham-operated controls and ACF rats were characterized by their morphometric and hemodynamic parameters and investigated for their histopathological, ultrastructural, and apoptotic factor changes in the kidney. RESULTS ACF-induced heart failure is associated with histopathological signs of congestion and glomerular and tubular atrophy, as well as nuclear and cellular degeneration in the kidney. In parallel, overexpression of proapoptotic Bax protein, release of cytochrome C from the outer mitochondrial membrane into cell cytoplasm, and nuclear transfer of activated caspase 3 indicate apoptotic events. This was confirmed by electron microscopic findings of apoptotic signs in the kidney such as swollen mitochondria and degenerated nuclei in renal tubular cells. CONCLUSIONS This study provides morphological evidence of renal injury during heart failure which may be due to caspase-mediated apoptosis via overexpression of proapoptotic Bax protein, subsequent mitochondrial cytochrome C release, and final nuclear transfer of activated caspase 3, supporting the notion of a cardiorenal syndrome.
Collapse
Affiliation(s)
- Noureddin B. Aboryag
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Doaa M. Mohamed
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Lukas Dehe
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Mohammed Shaqura
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Sacha Treskatsch
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Mehdi Shakibaei
- Department of Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Schäfer
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Shaaban A. Mousa
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
4
|
Song XB, Liu G, Wang ZY, Wang L. Puerarin protects against cadmium-induced proximal tubular cell apoptosis by restoring mitochondrial function. Chem Biol Interact 2016; 260:219-231. [PMID: 27717697 DOI: 10.1016/j.cbi.2016.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/03/2016] [Accepted: 10/03/2016] [Indexed: 12/26/2022]
Abstract
Puerarin (PU) is a potent free radical scavenger with a protective effect in nephrotoxin-mediated oxidative damage. Here, we show a novel molecular mechanism by which PU exerts its anti-apoptotic effects in cadmium (Cd)-exposed primary rat proximal tubular (rPT) cells. Morphological assessment and flow cytometric analysis revealed that PU significantly decreased Cd-induced apoptotic cell death of rPT cells. Administration of PU protected cells against Cd-induced depletion of mitochondrial membrane potential (ΔΨm) and lipid peroxidation. Cd-mediated mitochondrial permeability transition pore (MPTP) opening, disruption of mitochondrial ultrastructure, mitochondrial cytochrome c (cyt-c) release, caspase-3 activation and subsequently poly ADP-ribose polymerase (PARP) cleavage could be effectively blocked by the addition of PU. Moreover, up-regulation of Bcl-2 and down-regulation of Bax and hence increased Bcl-2/Bax ratio were observed with the PU administration. In addition, PU reversed Cd-induced ATP depletion by restoring ΔΨm to affect ATP production and by regulating expression levels of ANT-1 and ANT-2 to improve ATP transport. In summary, PU inhibited Cd-induced apoptosis in rPT cells by ameliorating the mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xiang-Bin Song
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an 271018, People's Republic of China
| | - Gang Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an 271018, People's Republic of China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an 271018, People's Republic of China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an 271018, People's Republic of China.
| |
Collapse
|
5
|
Go YM, Roede JR, Orr M, Liang Y, Jones DP. Integrated redox proteomics and metabolomics of mitochondria to identify mechanisms of cd toxicity. Toxicol Sci 2014; 139:59-73. [PMID: 24496640 DOI: 10.1093/toxsci/kfu018] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cadmium (Cd) exposure contributes to human diseases affecting liver, kidney, lung, and other organ systems, but mechanisms underlying the pleotropic nature of these toxicities are poorly understood. Cd accumulates in humans from dietary, environmental (including cigarette smoke), and occupational sources, and has a twenty-year biologic half-life. Our previous mouse and cell studies showed that environmental low-dose Cd exposure altered protein redox states resulting in stimulation of inflammatory signaling and disruption of the actin cytoskeleton system, suggesting that Cd could impact multiple mechanisms of disease. In the current study, we investigated the effects of acute Cd exposure on the redox proteome and metabolome of mouse liver mitochondria to gain insight into associated toxicological mechanisms and functions. We analyzed redox states of liver mitochondrial proteins by redox proteomics using isotope coded affinity tag (ICAT) combined mass spectrometry. Redox ICAT identified 2687 cysteine-containing peptides (peptidyl Cys) of which 1667 peptidyl Cys (657 proteins) were detected in both control and Cd-exposed samples. Of these, 46% (1247 peptidyl Cys, 547 proteins) were oxidized by Cd more than 1.5-fold relative to controls. Bioinformatics analysis using MetaCore software showed that Cd affected 86 pathways, including 24 Cys in proteins functioning in branched chain amino acid (BCAA) and 14 Cys in proteins functioning in fatty acid (acylcarnitine/carnitine) metabolism. Consistently, high-resolution metabolomics data showed that Cd treatment altered levels of BCAA and carnitine metabolites. Together, these results show that mitochondrial protein redox and metabolites are targets in Cd-induced hepatotoxicity. The results further indicate that redox proteomics and metabolomics can be used in an integrated systems approach to investigate complex disease mechanisms.
Collapse
Affiliation(s)
- Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322
| | | | | | | | | |
Collapse
|
6
|
Jeong JJ, Park N, Kwon YJ, Ye DJ, Moon A, Chun YJ. Role of annexin A5 in cisplatin-induced toxicity in renal cells: molecular mechanism of apoptosis. J Biol Chem 2013; 289:2469-81. [PMID: 24318879 DOI: 10.1074/jbc.m113.450163] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Annexin A5 belongs to a large family of calcium-binding and phospholipid-binding proteins and may act as an endogenous regulator of various pathophysiological processes. There is increasing evidence that annexin A5 is related to cytotoxicity, but the precise function of this protein has yet to be elucidated. In this study, we aimed to verify the function of annexin A5 in the apoptosis of renal epithelial cells. Real-time PCR and Western blot analysis, together with immunofluorescence analysis, showed that the expression of annexin A5 significantly increased in the presence of cisplatin in both human and rat renal epithelial cells. With regard to the mechanism of cisplatin-induced apoptosis, apoptosis-inducing factor (AIF) release into the cytosol was observed, and the underlying mechanism was identified as voltage-dependent anion channel (VDAC) oligomerization. Mitochondrial membrane potential (Δψm) was found to be greatly disrupted in cisplatin-treated cells. Moreover, cisplatin strongly induced translocation of annexin A5 into mitochondria. To understand the functional significance of annexin A5 in renal cell death, we used a siRNA-mediated approach to knock down annexin A5. Annexin A5 depletion by siRNA led to decreased annexin A5 translocation into mitochondria and significantly reduced VDAC oligomerization and AIF release. Annexin A5 siRNA also increased cell viability compared with the control. Moreover, expression of annexin A5 was induced by other nephrotoxicants such as CdCl2 and bacitracin. Taken together, our data suggest that annexin A5 may play a crucial role in cisplatin-induced toxicity by mediating the mitochondrial apoptotic pathway via the induction and oligomerization of VDAC.
Collapse
Affiliation(s)
- Jin-Joo Jeong
- From the College of Pharmacy, Chung-Ang University, Seoul 156-756 and
| | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Mao WP, Zhang NN, Zhou FY, Li WX, Liu HY, Feng J, Zhou L, Wei CJ, Pan YB, He ZJ. Cadmium directly induced mitochondrial dysfunction of human embryonic kidney cells. Hum Exp Toxicol 2010; 30:920-9. [DOI: 10.1177/0960327110384286] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cadmium (Cd) is the major component of polluted environment, which has numerous undesirable effects on health. Cd could induce apoptosis of HEK293 cells, and the mitochondria may play a key role. However, the mode of action is unclear. In the present study, we aimed to evaluate the ability of the Cd to induce dysfunction of mitochondria. We examined the effect of cadmium chloride (1, 5 and 10 μM) on mitochondrial membrane permeability and potential as well as oxidative stress markers in mitochondria isolated from HEK293 cells. We found that Cd could directly increase in permeability and decrease in membrane potential of mitochondria, even resulted in mitochondrial swelling, and that Cd could inhibit the activities of ATPase, lactate dehydrogenase (LDH), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), enhanced the levels of reactive oxygen species (ROS) and lipid peroxidation (LPO). On the whole, the results show that Cd can directly lead to mitochondrial dysfunction of HEK293 cells, including increased permeability, inhibiting respiration and evoking oxidative stress. Thus, for the first time, this paper makes an overall analysis of Cd-induced changes of structure and function of isolated mitochondria. Our findings may also have general implications in Cd-induced apoptosis by mitochondria pathway.
Collapse
Affiliation(s)
- WP Mao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, P.R. China,
| | - NN Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, P.R. China
| | - FY Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, P.R. China
| | - WX Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, P.R. China
| | - HY Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, P.R. China
| | - J. Feng
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, P.R. China
| | - L. Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, P.R. China
| | - CJ Wei
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, P.R. China
| | - YB Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, P.R. China
| | - ZJ He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, P.R. China
| |
Collapse
|
9
|
Abstract
At the cellular level, cadmium (Cd) induces both damaging and repair processes in which the cellular redox status plays a crucial role. Being not redox-active, Cd is unable to generate reactive oxygen species (ROS) directly, but Cd-induced oxidative stress is a common phenomenon observed in multiple studies. The current review gives an overview on Cd-induced ROS production and anti-oxidative defense in organisms under different Cd regimes. Moreover, the Cd-induced oxidative challenge is discussed with a focus on damage and signaling as downstream responses. Gathering these data, it was clear that oxidative stress related responses are affected during Cd stress, but the apparent discrepancies observed in between the different studies points towards the necessity to increase our knowledge on the spatial and temporal ROS signature under Cd stress. This information is essential in order to reveal the exact role of Cd-induced oxidative stress in the modulation of downstream responses under a diverse array of conditions.
Collapse
|
10
|
Lee WK, Thévenod F. A role for mitochondrial aquaporins in cellular life-and-death decisions? Am J Physiol Cell Physiol 2006; 291:C195-202. [PMID: 16624989 DOI: 10.1152/ajpcell.00641.2005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria dominate the process of life-and-death decisions of the cell. Continuous generation of ATP is essential for cell sustenance, but, on the other hand, mitochondria play a central role in the orchestra of events that lead to apoptotic cell death. Changes of mitochondrial volume contribute to the modulation of physiological mitochondrial function, and several ion permeability pathways located in the inner mitochondrial membrane have been implicated in the mediation of physiological swelling-contraction reactions, such as the K+ cycle. However, the channels and transporters involved in these processes have not yet been identified. Osmotic swelling is also one of the fundamental characteristics exhibited by mitochondria in pathological situations, which activates downstream cascades, culminating in apoptosis. The permeability transition pore has long been postulated to be the primary mediator for water movement in mitochondrial swelling during cell death, but its molecular identity remains obscure. Inevitably, accumulating evidence shows that mitochondrial swelling induced by apoptotic stimuli can also occur independently of permeability transition pore activation. Recently, a novel mechanism for osmotic swelling of mitochondria has been described. Aquaporin-8 and -9 channels have been identified in the inner mitochondrial membrane of various tissues, including the kidney, liver, and brain, where they may mediate water transport associated with physiological volume changes, contribute to the transport of metabolic substrates, and/or participate in osmotic swelling induced by apoptotic stimuli. Hence, the recent discovery that aquaporins are expressed in mitochondria opens up new areas of investigation in health and disease.
Collapse
Affiliation(s)
- Wing-Kee Lee
- Dept. Physiology and Pathophysiology, Univ. of Witten/Herdecke, Faculty of Medicine, D-58448 Witten, Germany
| | | |
Collapse
|
11
|
Lee WK, Bork U, Gholamrezaei F, Thévenod F. Cd2+-induced cytochromecrelease in apoptotic proximal tubule cells: role of mitochondrial permeability transition pore and Ca2+uniporter. Am J Physiol Renal Physiol 2005; 288:F27-39. [PMID: 15339793 DOI: 10.1152/ajprenal.00224.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cd2+induces apoptosis of kidney proximal tubule (PT) cells. Mitochondria play a pivotal role in toxic compound-induced apoptosis by releasing cytochrome c. Our objective was to investigate the mechanisms underlying Cd2+-induced cytochrome c release from mitochondria in rat PT cells. Using Hoechst 33342 or MTT assay, 10 μM Cd2+induced ∼5–10% apoptosis in PT cells at 6 and 24 h, which was associated with cytochrome c and apoptosis-inducing factor release at 24 h only. This correlated with previously described maximal intracellular Cd2+concentrations at 24 h, suggesting that elevated Cd2+may directly induce mitochondrial liberation of proapoptotic factors. Indeed, Cd2+caused swelling of energized isolated kidney cortex mitochondria (EC50∼9 μM) and cytochrome c release, which were independent of permeability transition pore (PTP) opening since PTP inhibitors cyclosporin A or bongkrekic acid had no effect. On the contrary, Cd2+inhibited swelling and cytochrome c release induced by PTP openers (PO43−or H2O2+Ca2+). The mitochondrial Ca2+uniporter (MCU) played a key role in mitochondrial damage: 1) MCU inhibitors (La3+, ruthenium red, Ru360) prevented swelling and cytochrome c release; and 2) ruthenium red attenuated Cd2+inhibition of PO43−-induced swelling. Using the Cd2+-sensitive fluorescent indicator FluoZin-1, Cd2+was also taken up by mitoplasts. The aquaporin inhibitor AgNO3abolished Cd2+-induced swelling of mitoplasts. This could be partially mediated by activation of the mitoplast-enriched water channel aquaporin-8. Thus cytosolic Cd2+concentrations exceeding a certain threshold may directly cause mitochondrial damage and apoptotic development by interacting with MCU and water channels in the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Wing-Kee Lee
- Department of Physiology and Pathophysiology, Faculty of Medicine, University of Witten/Herdecke, D-58448 Witten, Germany
| | | | | | | |
Collapse
|