1
|
Kreutz A, Chang X, Hogberg HT, Wetmore BA. Advancing understanding of human variability through toxicokinetic modeling, in vitro-in vivo extrapolation, and new approach methodologies. Hum Genomics 2024; 18:129. [PMID: 39574200 PMCID: PMC11580331 DOI: 10.1186/s40246-024-00691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/01/2024] [Indexed: 11/25/2024] Open
Abstract
The merging of physiology and toxicokinetics, or pharmacokinetics, with computational modeling to characterize dosimetry has led to major advances for both the chemical and pharmaceutical research arenas. Driven by the mutual need to estimate internal exposures where in vivo data generation was simply not possible, the application of toxicokinetic modeling has grown exponentially in the past 30 years. In toxicology the need has been the derivation of quantitative estimates of toxicokinetic and toxicodynamic variability to evaluate the suitability of the tenfold uncertainty factor employed in risk assessment decision-making. Consideration of a host of physiologic, ontogenetic, genetic, and exposure factors are all required for comprehensive characterization. Fortunately, the underlying framework of physiologically based toxicokinetic models can accommodate these inputs, in addition to being amenable to capturing time-varying dynamics. Meanwhile, international interest in advancing new approach methodologies has fueled the generation of in vitro toxicity and toxicokinetic data that can be applied in in vitro-in vivo extrapolation approaches to provide human-specific risk-based information for historically data-poor chemicals. This review will provide a brief introduction to the structure and evolution of toxicokinetic and physiologically based toxicokinetic models as they advanced to incorporate variability and a wide range of complex exposure scenarios. This will be followed by a state of the science update describing current and emerging experimental and modeling strategies for population and life-stage variability, including the increasing application of in vitro-in vivo extrapolation with physiologically based toxicokinetic models in pharmaceutical and chemical safety research. The review will conclude with case study examples demonstrating novel applications of physiologically based toxicokinetic modeling and an update on its applications for regulatory decision-making. Physiologically based toxicokinetic modeling provides a sound framework for variability evaluation in chemical risk assessment.
Collapse
Affiliation(s)
- Anna Kreutz
- Inotiv, 601 Keystone Park Drive, Suite 200, Morrisville, NC, 27560, USA.
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA.
| | - Xiaoqing Chang
- Inotiv, 601 Keystone Park Drive, Suite 200, Morrisville, NC, 27560, USA
| | | | - Barbara A Wetmore
- Office of Research and Development, Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
2
|
Gouliarmou V, Lostia AM, Coecke S, Bernasconi C, Bessems J, Dorne JL, Ferguson S, Testai E, Remy UG, Brian Houston J, Monshouwer M, Nong A, Pelkonen O, Morath S, Wetmore BA, Worth A, Zanelli U, Zorzoli MC, Whelan M. Establishing a systematic framework to characterise in vitro methods for human hepatic metabolic clearance. Toxicol In Vitro 2018; 53:233-244. [DOI: 10.1016/j.tiv.2018.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/17/2018] [Accepted: 08/08/2018] [Indexed: 12/26/2022]
|
3
|
Riebeling C, Jungnickel H, Luch A, Haase A. Systems Biology to Support Nanomaterial Grouping. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 947:143-171. [PMID: 28168668 DOI: 10.1007/978-3-319-47754-1_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The assessment of potential health risks of engineered nanomaterials (ENMs) is a challenging task due to the high number and great variety of already existing and newly emerging ENMs. Reliable grouping or categorization of ENMs with respect to hazards could help to facilitate prioritization and decision making for regulatory purposes. The development of grouping criteria, however, requires a broad and comprehensive data basis. A promising platform addressing this challenge is the systems biology approach. The different areas of systems biology, most prominently transcriptomics, proteomics and metabolomics, each of which provide a wealth of data that can be used to reveal novel biomarkers and biological pathways involved in the mode-of-action of ENMs. Combining such data with classical toxicological data would enable a more comprehensive understanding and hence might lead to more powerful and reliable prediction models. Physico-chemical data provide crucial information on the ENMs and need to be integrated, too. Overall statistical analysis should reveal robust grouping and categorization criteria and may ultimately help to identify meaningful biomarkers and biological pathways that sufficiently characterize the corresponding ENM subgroups. This chapter aims to give an overview on the different systems biology technologies and their current applications in the field of nanotoxicology, as well as to identify the existing challenges.
Collapse
Affiliation(s)
- Christian Riebeling
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany
| | - Harald Jungnickel
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany
| | - Andrea Haase
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany.
| |
Collapse
|
4
|
Kuempel ED, Sweeney LM, Morris JB, Jarabek AM. Advances in Inhalation Dosimetry Models and Methods for Occupational Risk Assessment and Exposure Limit Derivation. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2015; 12 Suppl 1:S18-40. [PMID: 26551218 PMCID: PMC4685615 DOI: 10.1080/15459624.2015.1060328] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The purpose of this article is to provide an overview and practical guide to occupational health professionals concerning the derivation and use of dose estimates in risk assessment for development of occupational exposure limits (OELs) for inhaled substances. Dosimetry is the study and practice of measuring or estimating the internal dose of a substance in individuals or a population. Dosimetry thus provides an essential link to understanding the relationship between an external exposure and a biological response. Use of dosimetry principles and tools can improve the accuracy of risk assessment, and reduce the uncertainty, by providing reliable estimates of the internal dose at the target tissue. This is accomplished through specific measurement data or predictive models, when available, or the use of basic dosimetry principles for broad classes of materials. Accurate dose estimation is essential not only for dose-response assessment, but also for interspecies extrapolation and for risk characterization at given exposures. Inhalation dosimetry is the focus of this paper since it is a major route of exposure in the workplace. Practical examples of dose estimation and OEL derivation are provided for inhaled gases and particulates.
Collapse
Affiliation(s)
- Eileen D. Kuempel
- National Institute for Occupational Safety and Health, Education and Information Division, Cincinnati, Ohio
| | - Lisa M. Sweeney
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Naval Medical Research Unit Dayton, Wright-Patterson Air Force Base, Ohio
| | - John B. Morris
- School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Annie M. Jarabek
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, Research Triangle Park, North Carolina
| |
Collapse
|
5
|
Wetmore BA, Allen B, Clewell HJ, Parker T, Wambaugh JF, Almond LM, Sochaski MA, Thomas RS. Incorporating population variability and susceptible subpopulations into dosimetry for high-throughput toxicity testing. Toxicol Sci 2014; 142:210-24. [PMID: 25145659 DOI: 10.1093/toxsci/kfu169] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Momentum is growing worldwide to use in vitro high-throughput screening (HTS) to evaluate human health effects of chemicals. However, the integration of dosimetry into HTS assays and incorporation of population variability will be essential before its application in a risk assessment context. Previously, we employed in vitro hepatic metabolic clearance and plasma protein binding data with in vitro in vivo extrapolation (IVIVE) modeling to estimate oral equivalent doses, or daily oral chemical doses required to achieve steady-state blood concentrations (Css) equivalent to media concentrations having a defined effect in an in vitro HTS assay. In this study, hepatic clearance rates of selected ToxCast chemicals were measured in vitro for 13 cytochrome P450 and five uridine 5'-diphospho-glucuronysyltransferase isozymes using recombinantly expressed enzymes. The isozyme-specific clearance rates were then incorporated into an IVIVE model that captures known differences in isozyme expression across several life stages and ethnic populations. Comparison of the median Css for a healthy population against the median or the upper 95th percentile for more sensitive populations revealed differences of 1.3- to 4.3-fold or 3.1- to 13.1-fold, respectively. Such values may be used to derive chemical-specific human toxicokinetic adjustment factors. The IVIVE model was also used to estimate subpopulation-specific oral equivalent doses that were directly compared with subpopulation-specific exposure estimates. This study successfully combines isozyme and physiologic differences to quantitate subpopulation pharmacokinetic variability. Incorporation of these values with dosimetry and in vitro bioactivities provides a viable approach that could be employed within a high-throughput risk assessment framework.
Collapse
Affiliation(s)
- Barbara A Wetmore
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709-2137
| | - Brittany Allen
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709-2137
| | - Harvey J Clewell
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709-2137
| | - Timothy Parker
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709-2137
| | - John F Wambaugh
- United States Environmental Protection Agency, Office of Research and Development, National Center for Computational Toxicology, Research Triangle Park, North Carolina 27711
| | - Lisa M Almond
- Simcyp Limited (a Certara company), Blades Enterprise Centre, John Street, Sheffield S2 4SU, UK
| | - Mark A Sochaski
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709-2137
| | - Russell S Thomas
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709-2137
| |
Collapse
|
6
|
Fisher RL, Vickers AEM. Preparation and culture of precision-cut organ slices from human and animal. Xenobiotica 2012; 43:8-14. [PMID: 23030812 DOI: 10.3109/00498254.2012.728013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
1.Human and animal precision-cut organ slices are being widely used to obtain drug metabolism and toxicity profiles in vitro. These data are then used to predict what might be seen in human patients. The accuracy of this prediction and extrapolation of the findings based on human or animal in vitro systems to the findings that occur in vivo is dependent on both the quality of the tissue itself and the quality of the in vitro system. 2.The quality of human organs used in research is dependent on procurement methods, warm ischaemia time, preservation solutions, cold ischaemia time, and donor-specific factors. It is important to confirm that the organs being used are highly viable and fully functional before using them in scientific studies. 3.The optimal preparation and incubation of organ slices is also essential in maintaining slice viability and function. It is important to prepare the slices in a cold preservation solution, to prepare the slices at a correct thickness, and to incubate the slices in a system where the slice rotates in out of the oxygen atmosphere and medium. 4.Meeting the criteria outlined here will lead to successful organ slice cultures for investigating drug-induced mechanisms and organ-specific toxicity.
Collapse
|
7
|
Coecke S, Pelkonen O, Leite SB, Bernauer U, Bessems JG, Bois FY, Gundert-Remy U, Loizou G, Testai E, Zaldívar JM. Toxicokinetics as a key to the integrated toxicity risk assessment based primarily on non-animal approaches. Toxicol In Vitro 2012; 27:1570-7. [PMID: 22771339 DOI: 10.1016/j.tiv.2012.06.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 03/09/2012] [Accepted: 06/22/2012] [Indexed: 02/02/2023]
Abstract
Toxicokinetics (TK) is the endpoint that informs about the penetration into and fate within the body of a toxic substance, including the possible emergence of metabolites. Traditionally, the data needed to understand those phenomena have been obtained in vivo. Currently, with a drive towards non-animal testing approaches, TK has been identified as a key element to integrate the results from in silico, in vitro and already available in vivo studies. TK is needed to estimate the range of target organ doses that can be expected from realistic human external exposure scenarios. This information is crucial for determining the dose/concentration range that should be used for in vitro testing. Vice versa, TK is necessary to convert the in vitro results, generated at tissue/cell or sub-cellular level, into dose response or potency information relating to the entire target organism, i.e. the human body (in vitro-in vivo extrapolation, IVIVE). Physiologically based toxicokinetic modelling (PBTK) is currently regarded as the most adequate approach to simulate human TK and extrapolate between in vitro and in vivo contexts. The fact that PBTK models are mechanism-based which allows them to be 'generic' to a certain extent (various extrapolations possible) has been critical for their success so far. The need for high-quality in vitro and in silico data on absorption, distribution, metabolism as well as excretion (ADME) as input for PBTK models to predict human dose-response curves is currently a bottleneck for integrative risk assessment.
Collapse
Affiliation(s)
- Sandra Coecke
- ECVAM, Institute for Health & Consumer Protection, European Commission Joint Research Centre, 21027 Ispra (VA), Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Dourson M, Hertzberg R, Allen B, Haber L, Parker A, Kroner O, Maier A, Kohrman M. Evidence-based dose–response assessment for thyroid tumorigenesis from acrylamide. Regul Toxicol Pharmacol 2008; 52:264-89. [DOI: 10.1016/j.yrtph.2008.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 08/04/2008] [Accepted: 08/08/2008] [Indexed: 02/07/2023]
|
9
|
Clewell HJ, Andersen ME. Applying Mode-of-Action and Pharmacokinetic Considerations in Contemporary Cancer Risk Assessments: An Example with Trichloroethylene. Crit Rev Toxicol 2008; 34:385-445. [PMID: 15560567 DOI: 10.1080/10408440490500795] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The guidelines for carcinogen risk assessment recently proposed by the U.S. Environmental Protection Agency (U.S. EPA) provide an increased opportunity for the consideration of pharmacokinetic and mechanistic data in the risk assessment process. However, the greater flexibility of the new guidelines can also make their actual implementation for a particular chemical highly problematic. To illuminate the process of performing a cancer risk assessment under the new guidelines, the rationale for a state-of-the-science risk assessment for trichloroethylene (TCE) is presented. For TCE, there is evidence of increased cell proliferation due to receptor interaction or cytotoxicity in every instance in which tumors are observed, and most tumors represent an increase in the incidence of a commonly observed, species-specific lesion. A physiologically based pharmacokinetic (PBPK) model was applied to estimate target tissue doses for the three principal animal tumors associated with TCE exposure: liver, lung, and kidney. The lowest points of departure (lower bound estimates of the exposure associated with 10% tumor incidence) for lifetime human exposure to TCE were obtained for mouse liver tumors, assuming a mode of action primarily involving the mitogenicity of the metabolite trichloroacetic acid (TCA). The associated linear unit risk estimates for mouse liver tumors are 1.5 x 10(-6) for lifetime exposure to 1 microg TCE per cubic meter in air and 0.4 x 10(-6) for lifetime exposure to 1 microg TCE per liter in drinking water. However, these risk estimates ignore the evidence that the human is likely to be much less responsive than the mouse to the carcinogenic effects of TCA in the liver and that the carcinogenic effects of TCE are unlikely to occur at low environmental exposures. Based on consideration of the most plausible carcinogenic modes of action of TCE, a margin-of-exposure (MOE) approach would appear to be more appropriate. Applying an MOE of 1000, environmental exposures below 66 microg TCE per cubic meter in air and 265 microg TCE per liter in drinking water are considered unlikely to present a carcinogenic hazard to human health.
Collapse
|
10
|
Lipscomb JC, Poet TS. In vitro measurements of metabolism for application in pharmacokinetic modeling. Pharmacol Ther 2008; 118:82-103. [DOI: 10.1016/j.pharmthera.2008.01.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 01/24/2008] [Indexed: 11/25/2022]
|
11
|
Clewell RA, Clewell HJ. Development and specification of physiologically based pharmacokinetic models for use in risk assessment. Regul Toxicol Pharmacol 2008; 50:129-43. [DOI: 10.1016/j.yrtph.2007.10.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 10/25/2007] [Accepted: 10/27/2007] [Indexed: 10/22/2022]
|
12
|
Mirfazaelian A, Fisher JW. Organ growth functions in maturing male Sprague-Dawley rats based on a collective database. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1052-63. [PMID: 17497417 DOI: 10.1080/15287390601172106] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ten different organ weights (liver, spleen, kidneys, heart, lungs, brain, adrenals, testes, epididymes, and seminal vesicles) of male Sprague-Dawley (S-D) rats of different ages (1-280 d) were extracted based on a thorough literature survey database. A generalized Michaelis-Menten (GMM) model, used to fit organ weights versus age in a previous study (Schoeffner et al., 1999) based on a limited data, was used to find the best fit model for the present expanded data compilation. The GMM model has the functional form: Wt = (Wt(o).K(gamma) + Wt(max).Age(gamma))/(K(gamma) + Age(gamma)) where Wt is organ/tissue weight at a specified age, Wt(o) and Wt(max) are weight at birth and maximal growth, respectively, and K and gamma are constants. Organ weights were significantly correlated with their respective ages for all organs and tissues. GMM-derived organ growth and percent body weight (%BW) fractions of different tissues were plotted against animal age and compared with experimental values as well as previously published models. The GMM-based organ growth and %BW fraction profiles were in general agreement with our empirical data as well as with previous studies. The present model was compared with the GMM model developed previously for six organs--liver, spleen, kidneys, heart, lungs, and brain--based on a limited data, and no significant difference was noticed between the two sets of predictions. It was concluded that the GMM models presented herein for different male S-D rats organs (liver, spleen, kidneys, heart, lungs, brain, adrenals, testes, epididymes, and seminal vesicles) are capable of predicting organ weights and %BW ratios accurately at different ages.
Collapse
Affiliation(s)
- Ahmad Mirfazaelian
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
13
|
Mirfazaelian A, Kim KB, Lee S, Kim HJ, Bruckner JV, Fisher JW. Organ growth functions in maturing male Sprague-Dawley rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:429-38. [PMID: 17454567 DOI: 10.1080/15287390600755265] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Growth equations can be used in physiologically based pharmacokinetic (PBPK) modeling to provide physiological parameters (e.g., body weight, tissue/organ volumes) for maturing rodents. No diligent systematic exercise was found in the literature dealing with growth equations for developing rats' tissues. A generalized Michaelis-Menten (GMM) model, originally developed to fit body weight vs. age data, was chosen to estimate different physiological compartment sizes. The GMM model has the functional form: Wt = (Wt(o).K(gamma) + Wt(max).Age(gamma))/(K(gamma) + Age(gamma)) where Wt is organ/tissue weight at a specified age, Wt(o) and Wt(max) are weight at birth and maximal growth respectively, and K and gamma are constants. Weights of freshly collected organs (liver, spleen, kidneys, heart, lungs, brain, gastrointestinal tract and adipose tissue), measured in male Sprague-Dawley rats of different ages (1-280 d) in our laboratory, were used to evaluate this model's performance. The GMM model was fitted to the organ weights, and the resulting parameters were statistically significant for all organs and tissues. Organ weights were highly correlated with their respective ages. GMM-derived organ growth and percent body weight (%BW) fractions of different tissues were plotted against animal age and compared with experimental values. The GMM-based organ growth and %BW fraction profiles were in general agreement with our empirical data as well as previous studies. The GMM model gave adequately precise weight predictions at all ages for all the tissues/organs examined.
Collapse
Affiliation(s)
- Ahmad Mirfazaelian
- Department of Pharmaceutics, School of Pharmacy, University of Tehran, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
14
|
Clewell HJ, Gentry PR, Covington TR, Sarangapani R, Teeguarden JG. Evaluation of the Potential Impact of Age- and Gender-Specific Pharmacokinetic Differences on Tissue Dosimetry 2Current address: Novartis Pharmaceuticals, East Hanover, NJ 07936. Toxicol Sci 2004; 79:381-93. [PMID: 15056818 DOI: 10.1093/toxsci/kfh109] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The physiological and biochemical processes that determine the tissue concentration time courses (pharmacokinetics) of xenobiotics vary, in some cases significantly, with age and gender. While it is known that age- and gender-specific differences have the potential to affect tissue concentrations and, hence, individual risk, the relative importance of the contributing processes and the quantitative impact of these differences for various life stages are not well characterized. The objective of this study was to identify age- and gender-specific differences in physiological and biochemical processes that affect tissue dosimetry and integrate them into a predictive physiologically based pharmacokinetic (PBPK) life-stage model. The life-stage model was exercised for several environmental chemicals with a variety of physicochemical, biochemical, and mode-of-action properties. In general, predictions of average pharmacokinetic dose metrics for a chemical across life stages were within a factor of two, although larger transient variations were predicted, particularly during the neonatal period. The most important age-dependent pharmacokinetic factor appears to be the potential for decreased clearance of a toxic chemical in the perinatal period due to the immaturity of many metabolic enzyme systems, although this same factor may also reduce the production of a reactive metabolite. Given the potential for age-dependent pharmacodynamic factors during early life, there may be chemicals and health outcomes for which decreased clearance over a relatively brief period could have a substantial impact on risk.
Collapse
|