1
|
Kang Z, Yan Y, Lu R, Dong X, Xu J, Zheng D, Li S, Gao Q, Liu S. Synthesis and Biological Profiling of Novel Strigolactone Derivatives for Arabidopsis Growth and Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12859-12874. [PMID: 37602432 DOI: 10.1021/acs.jafc.3c02135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The artificially synthesized strigolactone (SL) analogue GR24 is currently the most widely used reference compound in studying the biological functions of SLs. To elucidate the structure-activity relationship and find more promising derivatives with unique molecular profiles, we design and synthesized three series of novel GR24 derivatives and explored their activities in hypocotyl and root development of Arabidopsis. Among the 50 synthesized compounds, A11a, A12a, and A20d were found to have high activities comparable to GR24 for hypocotyl and/or primary root elongation inhibition in Arabidopsis. Some new analogues have been discovered to exhibit unique activities: (1) A20c, A21e, and A21o are specific inhibitors in primary root elongation; (2) A21c, A26c, and A27a exhibit a high promotion effect on Arabidopsis primary root elongation; and (3) A27e possesses the most unique profiles completely opposite to GR24 that promotes both hypocotyl elongation and primary root development. Moreover, we revealed that the AtD14 receptor does not affect the inhibitory effect of SL analogues in Arabidopsis root development. The ligand-receptor interactions for the most representative analogues A11a and A27e were deciphered with a long time scale molecular dynamics simulation study, which provides the molecular basis of their distinct functions, and may help scientists design novel phytohormones.
Collapse
Affiliation(s)
- Zhaoyong Kang
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Yujie Yan
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Ruirui Lu
- Shenzhen Key Laboratory of Agricultural Synthetic Biology, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, P. R. China
| | - Xiaoqi Dong
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Jun Xu
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Dong Zheng
- Shenzhen Key Laboratory of Agricultural Synthetic Biology, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, P. R. China
| | - Suhua Li
- Shenzhen Key Laboratory of Agricultural Synthetic Biology, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, P. R. China
| | - Qingzhi Gao
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
- Department of Biology, Gudui BioPharma Technology Inc., 5 Lanyuan Road, Huayuan Industrial Park, Tianjin 300384, P. R. China
| | - Shengnan Liu
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| |
Collapse
|
2
|
Biolatti M, Blangetti M, Baggieri M, Marchi A, Gioacchini S, Bajetto G, Arnodo D, Bucci P, Fioravanti R, Kojouri M, Bersani M, D'Arrigo G, Siragusa L, Ghinato S, De Andrea M, Gugliesi F, Albano C, Pasquero S, Visentin I, D'Ugo E, Esposito F, Malune P, Tramontano E, Prandi C, Spyrakis F, Magurano F, Dell'Oste V. Strigolactones as Broad-Spectrum Antivirals against β-Coronaviruses through Targeting the Main Protease M pro. ACS Infect Dis 2023; 9:1310-1318. [PMID: 37358826 DOI: 10.1021/acsinfecdis.3c00219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
The current SARS-CoV-2 pandemic and the likelihood that new coronavirus strains will emerge in the immediate future point out the urgent need to identify new pan-coronavirus inhibitors. Strigolactones (SLs) are a class of plant hormones with multifaceted activities whose roles in plant-related fields have been extensively explored. Recently, we proved that SLs also exert antiviral activity toward herpesviruses, such as human cytomegalovirus (HCMV). Here we show that the synthetic SLs TH-EGO and EDOT-EGO impair β-coronavirus replication including SARS-CoV-2 and the common cold human coronavirus HCoV-OC43. Interestingly, in silico simulations suggest the binding of SLs in the SARS-CoV-2 main protease (Mpro) active site, and this was further confirmed by an in vitro activity assay. Overall, our results highlight the potential efficacy of SLs as broad-spectrum antivirals against β-coronaviruses, which may provide the rationale for repurposing this class of hormones for the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Marco Blangetti
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Melissa Baggieri
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonella Marchi
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Silvia Gioacchini
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Greta Bajetto
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, 28100 Novara, Italy
| | - Davide Arnodo
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Paola Bucci
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Raoul Fioravanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Maedeh Kojouri
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Matteo Bersani
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy
| | - Giulia D'Arrigo
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy
| | - Lydia Siragusa
- Molecular Discovery Ltd., Kinetic Business Centre, Elstree, Borehamwood, WD6 4PJ Hertfordshire, United Kingdom
- Molecular Horizon s.r.l., 06084 Bettona (PG), Italy
| | - Simone Ghinato
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Marco De Andrea
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, 28100 Novara, Italy
| | - Francesca Gugliesi
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Camilla Albano
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Selina Pasquero
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Ivan Visentin
- Department of Agricultural, Forestry, and Food Sciences, University of Turin, 10095 Grugliasco, Turin, Italy
| | - Emilio D'Ugo
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Paolo Malune
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Cristina Prandi
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy
| | - Fabio Magurano
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Valentina Dell'Oste
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
3
|
Yang ST, Fan JB, Liu TT, Ning S, Xu JH, Zhou YJ, Deng X. Development of Strigolactones as Novel Autophagy/Mitophagy Inhibitors against Colorectal Cancer Cells by Blocking the Autophagosome-Lysosome Fusion. J Med Chem 2022; 65:9706-9717. [PMID: 35852796 DOI: 10.1021/acs.jmedchem.2c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Inhibition of autophagy has been widely viewed as a promising strategy for anticancer therapy. However, few effective and specific autophagy inhibitors have been reported. Herein, we described the design, synthesis, and biological characteristics of new analogues of strigolactones (SLs), an emerging class of plant hormones, against colorectal cancers. Among them, an enantiopure analogue 6 exerted potent and selective cytotoxicity against colorectal cancer cells, but not normal human colon mucosal epithelial cells, which were further confirmed by the plate colony formation assay. Moreover, it significantly inhibited tumor growth in an HCT116 xenograft mouse model with low toxicity. Mechanistically, it is associated with selective induction of cell apoptosis and cell cycle arrest. Remarkably, 6 acted as a potent autophagy/mitophagy inhibitor by selectively increasing the autophagic flux while blocking the autophagosome-lysosome fusion in HCT116 cells. This study features stereo-defined SLs as novel autophagy inhibitors with high cancer cell specificity, which paves a new path for anticolorectal cancer therapy.
Collapse
Affiliation(s)
- Shu-Ting Yang
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan 410013, China
| | - Jin-Bao Fan
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan 410013, China
| | - Ting-Ting Liu
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan 410013, China
| | - Shuai Ning
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan 410013, China
| | - Jia-Hao Xu
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan 410013, China
| | - Ying-Jun Zhou
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan 410013, China
- Hunan Key laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan 410013, China
| | - Xu Deng
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan 410013, China
- Hunan Key laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
4
|
Antika G, Cinar ZÖ, Seçen E, Özbil M, Tokay E, Köçkar F, Prandi C, Tumer TB. Strigolactone Analogs: Two New Potential Bioactiphores for Glioblastoma. ACS Chem Neurosci 2022; 13:572-580. [PMID: 35138812 PMCID: PMC8895406 DOI: 10.1021/acschemneuro.1c00702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Strigolactones (SLs), carotenoid-derived phytohormones, control the plant response and signaling pathways for stressful conditions. In addition, they impact numerous cellular processes in mammalians and present new scaffolds for various biomedical applications. Recent studies demonstrated that SLs possess potent antitumor activity against several cancer cells. Herein, we sought to elucidate the inhibitory effects of SL analogs on the growth and survival of human brain tumor cell lines. Among four tested SLs, we showed for the first time that two lead bioactiphores, indanone-derived SL and EGO10, can inhibit cancer cell proliferation, induce apoptosis, and induce G1 cell cycle arrest at low concentrations. SL analogs were marked by increased expression of Bax/Caspase-3 genes and downregulation of Bcl-2. In silico studies were conducted to identify drug-likeness, blood-brain barrier penetrating properties, and molecular docking with Bcl-2 protein. Taken together, this study indicates that SLs may be promising antiglioma agents, presenting novel pharmacophores for further preclinical and clinical assessment.
Collapse
Affiliation(s)
- Gizem Antika
- Graduate Program of Molecular Biology and Genetics, School of Graduate Studies, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | - Zeynep Özlem Cinar
- Graduate Program of Molecular Biology and Genetics, School of Graduate Studies, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | - Esma Seçen
- Graduate Program of Molecular Medicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena 07740, Germany
| | - Mehmet Özbil
- Gebze Technical University, Institute of Biotechnology, 41400 Gebze, Kocaeli, Turkey
| | - Esra Tokay
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Balikesir University, Balikesir 10145, Turkey
| | - Feray Köçkar
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Balikesir University, Balikesir 10145, Turkey
| | - Cristina Prandi
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey
| |
Collapse
|
5
|
Prandi C, Kapulnik Y, Koltai H. Strigolactones: Phytohormones with Promising Biomedical Applications. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cristina Prandi
- Department of Chemistry University of Turin via P.Giuria 7 10125 Torino Italy
| | - Yoram Kapulnik
- BARD (Israel Binational Agricultural Research and Development Fund) Rishon LeZion 7505101 Israel
| | - Hinanit Koltai
- Agriculture Research Organization, Volcani Center Rishon Lezion Israel
| |
Collapse
|
6
|
Strigolactones, from Plants to Human Health: Achievements and Challenges. Molecules 2021; 26:molecules26154579. [PMID: 34361731 PMCID: PMC8348160 DOI: 10.3390/molecules26154579] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Strigolactones (SLs) are a class of sesquiterpenoid plant hormones that play a role in the response of plants to various biotic and abiotic stresses. When released into the rhizosphere, they are perceived by both beneficial symbiotic mycorrhizal fungi and parasitic plants. Due to their multiple roles, SLs are potentially interesting agricultural targets. Indeed, the use of SLs as agrochemicals can favor sustainable agriculture via multiple mechanisms, including shaping root architecture, promoting ideal branching, stimulating nutrient assimilation, controlling parasitic weeds, mitigating drought and enhancing mycorrhization. Moreover, over the last few years, a number of studies have shed light onto the effects exerted by SLs on human cells and on their possible applications in medicine. For example, SLs have been demonstrated to play a key role in the control of pathways related to apoptosis and inflammation. The elucidation of the molecular mechanisms behind their action has inspired further investigations into their effects on human cells and their possible uses as anti-cancer and antimicrobial agents.
Collapse
|
7
|
Krasylenko Y, Komis G, Hlynska S, Vavrdová T, Ovečka M, Pospíšil T, Šamaj J. GR24, A Synthetic Strigolactone Analog, and Light Affect the Organization of Cortical Microtubules in Arabidopsis Hypocotyl Cells. FRONTIERS IN PLANT SCIENCE 2021; 12:675981. [PMID: 34305975 PMCID: PMC8293678 DOI: 10.3389/fpls.2021.675981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/06/2021] [Indexed: 06/01/2023]
Abstract
Strigolactones are plant hormones regulating cytoskeleton-mediated developmental events in roots, such as lateral root formation and elongation of root hairs and hypocotyls. The latter process was addressed herein by the exogenous application of a synthetic strigolactone, GR24, and an inhibitor of strigolactone biosynthesis, TIS108, on hypocotyls of wild-type Arabidopsis and a strigolactone signaling mutant max2-1 (more axillary growth 2-1). Owing to the interdependence between light and strigolactone signaling, the present work was extended to seedlings grown under a standard light/dark regime, or under continuous darkness. Given the essential role of the cortical microtubules in cell elongation, their organization and dynamics were characterized under the conditions of altered strigolactone signaling using fluorescence microscopy methods with different spatiotemporal capacities, such as confocal laser scanning microscopy (CLSM) and structured illumination microscopy (SIM). It was found that GR24-dependent inhibition of hypocotyl elongation correlated with changes in cortical microtubule organization and dynamics, observed in living wild-type and max2-1 seedlings stably expressing genetically encoded fluorescent molecular markers for microtubules. Quantitative assessment of microscopic datasets revealed that chemical and/or genetic manipulation of strigolactone signaling affected microtubule remodeling, especially under light conditions. The application of GR24 in dark conditions partially alleviated cytoskeletal rearrangement, suggesting a new mechanistic connection between cytoskeletal behavior and the light-dependence of strigolactone signaling.
Collapse
Affiliation(s)
- Yuliya Krasylenko
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - George Komis
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Sofiia Hlynska
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Tereza Vavrdová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Miroslav Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Tomáš Pospíšil
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
8
|
Tannous M, Caldera F, Hoti G, Dianzani U, Cavalli R, Trotta F. Drug-Encapsulated Cyclodextrin Nanosponges. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2207:247-283. [PMID: 33113141 DOI: 10.1007/978-1-0716-0920-0_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To date, a number of nanocarriers, either inorganic or organic, have been developed to improve the delivery and therapeutic efficacy of various drugs. Drug delivery systems have attempted to overcome the undesirable pharmacokinetic problems encountered. Among the various nanomaterials that have been designed as potential nanocarriers, cyclodextrin-based polymers are of particular interest in this review.Cyclodextrins (CD) are a class of cyclic glucopyranose oligomers, obtained from starch by enzymatic action, with a characteristic toroidal shape that forms a truncated cone-shaped lipophilic cavity. The main common native cyclodextrins are named α, β, and γ which comprise six, seven, and eight glucopyranose units, respectively. Cyclodextrins have the capability to include compounds whose size and polarity are compatible with those of their cavity.Cyclodextrin-based cross-linked polymers, often referred to as "cyclodextrin nanosponges" (CDNSs), attract great attention from researchers for solving major bioavailability problems such as inadequate solubility, poor dissolution rate, and limited stability of some agents, as well as increasing their effectiveness and decreasing unwanted side effects.Registered patents about this novel system in various fields, different pharmaceutical applications, and classes of drugs encapsulated by CDNSs are detailed. The features outlined make CDNSs a promising platform for the development of innovative and advanced delivery systems.
Collapse
Affiliation(s)
- Maria Tannous
- Dipartimento di Chimica, Università di Torino, Torino, Italy.,Department of Chemistry, University of Balamand, Tripoli, Lebanon
| | | | - Gjylije Hoti
- Dipartimento di Chimica, Università di Torino, Torino, Italy
| | - Umberto Dianzani
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Torino, Italy
| | - Roberta Cavalli
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | | |
Collapse
|
9
|
Strigolactone Analogs Are Promising Antiviral Agents for the Treatment of Human Cytomegalovirus Infection. Microorganisms 2020; 8:microorganisms8050703. [PMID: 32397638 PMCID: PMC7284764 DOI: 10.3390/microorganisms8050703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
The human cytomegalovirus (HCMV) is a widespread pathogen and is associated with severe diseases in immunocompromised individuals. Moreover, HCMV infection is the most frequent cause of congenital malformation in developed countries. Although nucleoside analogs have been successfully employed against HCMV, their use is hampered by the occurrence of serious side effects. There is thus an urgent clinical need for less toxic, but highly effective, antiviral drugs. Strigolactones (SLs) are a novel class of plant hormones with a multifaceted activity. While their role in plant-related fields has been extensively explored, their effects on human cells and their potential applications in medicine are far from being fully exploited. In particular, their antiviral activity has never been investigated. In the present study, a panel of SL analogs has been assessed for antiviral activity against HCMV. We demonstrate that TH-EGO and EDOT-EGO significantly inhibit HCMV replication in vitro, impairing late protein expression. Moreover, we show that the SL-dependent induction of apoptosis in HCMV-infected cells is a contributing mechanism to SL antiviral properties. Overall, our results indicate that SLs may be a promising alternative to nucleoside analogs for the treatment of HCMV infections.
Collapse
|
10
|
Kurt B, Ozleyen A, Antika G, Yilmaz YB, Tumer TB. Multitarget Profiling of a Strigolactone Analogue for Early Events of Alzheimer's Disease: In Vitro Therapeutic Activities against Neuroinflammation. ACS Chem Neurosci 2020; 11:501-507. [PMID: 32017526 DOI: 10.1021/acschemneuro.9b00694] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuropathological changes in Alzheimer's disease (AD) are directly linked to the early inflammatory microenvironment in the brain. Therefore, disease-modifying agents targeting neuroinflammation may open up new avenues in the treatment of AD. Strigolactones (SLs), subclasses of structurally diverse and biologically active apocarotenoids, have been recently identified as novel phytohormones. In spite of the remarkable anticancer capacity shown by SLs, their effects on the brain remained unexplored. Herein, the SIM-A9 microglial cell line was used as a phenotypic screening tool to search for the representative SL, GR24, demonstrating marked potency in the suppression of lipopolysaccharide (LPS)-induced neuroinflammatory/neurotoxic mediators by regulating NF-κB, Nrf2, and PPARγ signaling. GR24 also in the brain endothelial cell line bEnd.3 mitigated the LPS-increased permeability as evidenced by reduced Evans' blue extravasation through enhancing the expression of tight junction protein, occludin. Collectively, the present work shows the anti-neuroinflammatory and glia/neuroprotective properties of GR24, making SLs promising scaffolds for the development of novel anti-AD candidates.
Collapse
Affiliation(s)
- Begum Kurt
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, 17020 Turkey
| | - Adem Ozleyen
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, 17020 Turkey
| | - Gizem Antika
- Graduate Program of Molecular Biology and Genetics, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, 17020 Turkey
| | - Yakup Berkay Yilmaz
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, 17020 Turkey
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale, 17020 Turkey
| |
Collapse
|
11
|
The strigolactone analog GR-24 inhibits angiogenesis in vivo and in vitro by a mechanism involving cytoskeletal reorganization and VEGFR2 signalling. Biochem Pharmacol 2019; 168:366-383. [DOI: 10.1016/j.bcp.2019.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022]
|
12
|
Prandi C, Occhiato EG. From synthetic control to natural products: a focus on N-heterocycles. PEST MANAGEMENT SCIENCE 2019; 75:2385-2402. [PMID: 30624033 DOI: 10.1002/ps.5322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Natural products containing a N-heterocycle motif are widespread in nature and medicinal plants, in particular, have proved to be a source of almost unlimited N-derived structures with high molecular diversity. Because of their intrinsic potential for use in both biomedical and agricultural applications, there is a general need for new compounds and for the synthesis of 'natural-inspired' analogues. Importantly, transition of a natural product from discovery to a 'market lead' is associated with an increasingly challenging demand for more of the compound, which cannot be met by isolation from natural plant sources, often due to low extraction yields and uneven availability of the plant source itself. Synthesis remains the most reliable approach to provide valuable products for the market. In this review, a comprehensive overview of our contribution to synthetic access to N-derived natural products is given. Major strengths of the proposed methodologies are discussed critically. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Ernesto G Occhiato
- Department of Chemistry 'U. Schiff', Università degli Studi di Firenze, Sesto Fiorentino, Italy
| |
Collapse
|
13
|
Gene Ontology and Expression Studies of Strigolactone Analogues on a Hepatocellular Carcinoma Cell Line. Anal Cell Pathol (Amst) 2019; 2019:1598182. [PMID: 31482051 PMCID: PMC6701435 DOI: 10.1155/2019/1598182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Human hepatocellular carcinoma (HCC) is the most common and recurrent type of primary adult liver cancer without any effective therapy. Plant-derived compounds acting as anticancer agents can induce apoptosis by targeting several signaling pathways. Strigolactone (SL) is a novel class of phytohormone, whose analogues have been reported to possess anticancer properties on a panel of human cancer cell lines through inducing cell cycle arrest, destabilizing microtubular integrity, reducing damaged in the DNA repair machinery, and inducing apoptosis. In our previous study, we reported that a novel SL analogue, TIT3, reduces HepG2 cell proliferation, inhibits cell migration, and induces apoptosis. To decipher the mechanisms of TIT3-induced anticancer activity in HepG2, we performed RNA sequencing and the differential expression of genes was analyzed using different tools. RNA-Seq data showed that the genes responsible for microtubule organization such as TUBB, BUB1B, TUBG2, TUBGCP6, TPX2, and MAP7 were significantly downregulated. Several epigenetic modulators such as UHRF1, HDAC7, and DNMT1 were also considerably downregulated, and this effect was associated with significant upregulation of various proapoptotic genes including CASP3, TNF-α, CASP7, and CDKN1A (p21). Likewise, damaged DNA repair genes such as RAD51, RAD52, and DDB2 were also significantly downregulated. This study indicates that TIT3-induced antiproliferative and proapoptotic activities on HCC cells could involve several signaling pathways. Our results suggest that TIT3 might be a promising drug to treat HCC.
Collapse
|
14
|
Modi SR, Kokkola T. Strigolactone GR24 upregulates target genes of the cytoprotective transcription factor Nrf2 in skeletal muscle. F1000Res 2019; 7:1459. [PMID: 30728949 PMCID: PMC6347031 DOI: 10.12688/f1000research.16172.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/07/2018] [Indexed: 12/31/2022] Open
Abstract
GR24 is a synthetic strigolactone analog, demonstrated to regulate the development of plants and arbuscular mycorrhizal fungi. GR24 possesses anti-cancer and anti-apoptotic properties, enhances insulin sensitivity and mitochondrial biogenesis in skeletal myotubes, inhibits adipogenesis, decreases inflammation in adipocytes and macrophages and downregulates the expression of hepatic gluconeogenic enzymes. Transcription factor Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) is a master regulator of antioxidant response, regulating a multitude of genes involved in cellular stress responses and anti-inflammatory pathways, thus maintaining cellular redox homeostasis. Nrf2 activation reduces the deleterious effects of mitochondrial toxins and has multiple roles in promoting mitochondrial function and dynamics. We studied the role of GR24 on gene expression in rat L6 skeletal muscle cells which were differentiated into myotubes. The myotubes were treated with GR24 and analyzed by microarray gene expression profiling. GR24 upregulated the cytoprotective transcription factor Nrf2 and its target genes, activating antioxidant defences, suggesting that GR24 may protect skeletal muscle from the toxic effects of oxidative stress.
Collapse
Affiliation(s)
- Shalem Raju Modi
- Department of Internal Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, 70210, Finland
| | - Tarja Kokkola
- Department of Internal Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, 70210, Finland
| |
Collapse
|
15
|
Argenziano M, Lombardi C, Ferrara B, Trotta F, Caldera F, Blangetti M, Koltai H, Kapulnik Y, Yarden R, Gigliotti L, Dianzani U, Dianzani C, Prandi C, Cavalli R. Glutathione/pH-responsive nanosponges enhance strigolactone delivery to prostate cancer cells. Oncotarget 2018; 9:35813-35829. [PMID: 30533197 PMCID: PMC6254672 DOI: 10.18632/oncotarget.26287] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
Strigolactones (SLs) are carotenoid-derived plant hormones that exhibit anti-cancer activities. We previously demonstrated that two SL analogues, MEB55 and ST362, inhibit the growth and survival of various cancer cell lines. However, these compounds have low aqueous solubility and stability at physiological pH. Here, we generated SL-loaded glutathione/pH-responsive nanosponges (GSH/pH-NS) to selectively deliver SLs to prostate cancer cells and enhance their therapeutic efficacy. The SLs were readily incorporated into the GSH/pH-NS. The drug loading efficiency was 13.9% for MEB55 and 15.4% for ST362, and the encapsulation efficiency was 88.7% and 96.5%, respectively. Kinetic analysis revealed that release of MEB55 and ST362 from the GSH/pH-NS was accelerated at acidic pH and in the presence of a high GSH concentration. Evaluation of the effects of MEB55- and ST362-loaded GSH/pH-NS on the growth of DU145 (high GSH) and PC-3 (low GSH) prostate cancer cells revealed that the GSH/pH-NS inhibited the proliferation of DU145 cells to a greater extent than free MEB55 or ST362 over a range of concentrations. These findings indicate GSH/pH-NS are efficient tools for controlled delivery of SLs to prostate cancer cells and may enhance the therapeutic efficacy of these compounds.
Collapse
Affiliation(s)
- Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | | | - Benedetta Ferrara
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | | | | | | | - Hinanit Koltai
- Agricultural Research Organization, Volcani Center, Rishon LeTsiyon, Israel
| | - Yoram Kapulnik
- Agricultural Research Organization, Volcani Center, Rishon LeTsiyon, Israel
| | - Ronit Yarden
- Georgetown University Medical Center, Washington DC, USA
| | - Luca Gigliotti
- Department of Health Sciences, Universita del Piemonte Orientale, Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences, Universita del Piemonte Orientale, Novara, Italy
| | - Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | | | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| |
Collapse
|
16
|
Tumer TB, Yılmaz B, Ozleyen A, Kurt B, Tok TT, Taskin KM, Kulabas SS. GR24, a synthetic analog of Strigolactones, alleviates inflammation and promotes Nrf2 cytoprotective response: In vitro and in silico evidences. Comput Biol Chem 2018; 76:179-190. [DOI: 10.1016/j.compbiolchem.2018.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/17/2022]
|
17
|
Hasan MN, Razvi SSI, Kuerban A, Balamash KS, Al-Bishri WM, Abulnaja KO, Choudhry H, Khan JA, Moselhy SS, M Z, Kumosani TA, Al-Malki AL, Alhosin M, Asami T. Strigolactones-a novel class of phytohormones as anti-cancer agents. JOURNAL OF PESTICIDE SCIENCE 2018; 43:168-172. [PMID: 30363122 PMCID: PMC6140662 DOI: 10.1584/jpestics.d17-090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/02/2018] [Indexed: 05/05/2023]
Abstract
Chemotherapy shows some promising results in the inhibition of cancer, but resistance to chemotherapy and its severe side effects may occur in due course, resulting in only restricted and narrow benefits. Therefore, there is a pressing need to find alternative chemotherapeutic drugs for combating cancers. Plants have been used since ages in medicine, and by the dawn of 19th century, various potent and promising anti-cancer products have been derived from plants. Strigolactones (SLs) are a novel class of phytohormones involved in regulating the branching of shoots. Recently, many novel synthesized SL analogues have been found to be effective against solid and non-solid tumours. These hormones have been reported to have a unique mechanism of inhibiting cancer cells by lowering their viability and promoting apoptosis and cell death at micromolar concentrations. Therefore, synthetic SL analogues could be future potent anti-cancer drug candidates. Further research is needed to identify and deduce the significance of these synthetic SL analogues.
Collapse
Affiliation(s)
- Mohammed Nihal Hasan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed S. I. Razvi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abudukadeer Kuerban
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khadijah Saeed Balamash
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Widad M. Al-Bishri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid Omar Abulnaja
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Experimental Biochemistry Unit, King Fahd Medical Research Center, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Bioactive Natural Products Research Group, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Bioactive Natural Products Research Group, Jeddah, Saudi Arabia
| | - Jehan A. Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Biological Sciences Department (Genomic division), Faculty of Science, Jeddah, Saudi Arabia
| | - Said Salama Moselhy
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Experimental Biochemistry Unit, King Fahd Medical Research Center, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Bioactive Natural Products Research Group, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Zamzami M
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, Jeddah, Saudi Arabia
| | - Taha A. Kumosani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Experimental Biochemistry Unit, King Fahd Medical Research Center, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Production of Bioproducts for Industrial Applications Research Group, Jeddah, Saudi Arabia
| | - Abdulrahman L. Al-Malki
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Experimental Biochemistry Unit, King Fahd Medical Research Center, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Bioactive Natural Products Research Group, Jeddah, Saudi Arabia
| | - Mahmoud Alhosin
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, Jeddah, Saudi Arabia
| | - Tadao Asami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, Jeddah, Saudi Arabia
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113–8657, Japan
| |
Collapse
|
18
|
Jiang K, Asami T. Chemical regulators of plant hormones and their applications in basic research and agriculture*. Biosci Biotechnol Biochem 2018; 82:1265-1300. [DOI: 10.1080/09168451.2018.1462693] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ABSTRACT
Plant hormones are small molecules that play versatile roles in regulating plant growth, development, and responses to the environment. Classic methodologies, including genetics, analytic chemistry, biochemistry, and molecular biology, have contributed to the progress in plant hormone studies. In addition, chemical regulators of plant hormone functions have been important in such studies. Today, synthetic chemicals, including plant growth regulators, are used to study and manipulate biological systems, collectively referred to as chemical biology. Here, we summarize the available chemical regulators and their contributions to plant hormone studies. We also pose questions that remain to be addressed in plant hormone studies and that might be solved with the help of chemical regulators.
Collapse
Affiliation(s)
- Kai Jiang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Lombardi C, Artuso E, Grandi E, Lolli M, Spyrakis F, Priola E, Prandi C. Recent advances in the synthesis of analogues of phytohormones strigolactones with ring-closing metathesis as a key step. Org Biomol Chem 2018; 15:8218-8231. [PMID: 28880031 DOI: 10.1039/c7ob01917c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this paper, we synthesized and evaluated the biological activity of structural analogues of natural strigolactones in which the butenolide D-ring has been replaced with a γ-lactam. The key step to obtain the α,β-unsaturated-γ-lactam was an RCM on suitably substituted amides. Strigolactones (SLs) are plant hormones with various developmental functions. As soil signaling chemicals, they are required for establishing beneficial mycorrhizal plant/fungus symbiosis. Beside these auxinic roles, recently SLs have been successfully investigated as antitumoral agents. Peculiar to the SL perception system is the enzymatic activity of the hormone receptor. SARs data have shown that the presence of the butenolide D-ring is crucial to retain the biological activity. The substitution of the butenolide with a lactam might shed light on the mechanism of perception. In the following, a dedicated in silico study suggested the binding modes of the synthesized compounds to the receptor of SLs in plants.
Collapse
Affiliation(s)
- Chiara Lombardi
- Department of Chemistry, University of Turin, via P. Giuria 7 10125, Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
20
|
Sanchez E, Artuso E, Lombardi C, Visentin I, Lace B, Saeed W, Lolli ML, Kobauri P, Ali Z, spyrakis F, Cubas P, Cardinale F, Prandi C. Structure-activity relationships of strigolactones via a novel, quantitative in planta bioassay. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2333-2343. [PMID: 29554337 PMCID: PMC5913603 DOI: 10.1093/jxb/ery092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/27/2018] [Indexed: 06/01/2023]
Abstract
Strigolactones (SLs) are plant hormones with various functions in development, responses to stress, and interactions with (micro)organisms in the rhizosphere, including with seeds of parasitic plants. Their perception for hormonal functions requires an α,β-hydrolase belonging to the D14 clade in higher plants; perception of host-produced SLs by parasitic seeds relies on similar but phylogenetically distinct proteins (D14-like). D14 and D14-like proteins are peculiar receptors, because they cleave SLs before undergoing a conformational change that elicits downstream events. Structure-activity relationship data show that the butenolide D-ring is crucial for bioactivity. We applied a bioisosteric approach to the structure of SLs by synthetizing analogues and mimics of natural SLs in which the D-ring was changed from a butenolide to a lactam and then evaluating their bioactivity. This was done by using a novel bioassay based on Arabidopsis transgenic lines expressing AtD14 fused to firefly luciferase, in parallel with the quantification of germination-inducing activity on parasitic seeds. The results obtained showed that the in planta bioassay is robust and quantitative, and thus can be confidently added to the SL-survey toolbox. The results also showed that modification of the butenolide ring into a lactam one significantly hampers the biological activity exhibited by SLs possessing a canonical lactonic D-ring.
Collapse
Affiliation(s)
- Elena Sanchez
- Centro Nacional de Biotecnología-CSIC, Plant Molecular Genetics Department, C/ Darwin, Campus UAM, Madrid, Spain
| | - Emma Artuso
- Department of Chemistry, University of Turin, via P. Giuria Turin, Italy
| | - Chiara Lombardi
- Centro Nacional de Biotecnología-CSIC, Plant Molecular Genetics Department, C/ Darwin, Campus UAM, Madrid, Spain
| | - Ivan Visentin
- Department of Agricultural, Forestry and Food Science, Largo P. Braccini, Grugliasco (TO), Italy
| | - Beatrice Lace
- Centro Nacional de Biotecnología-CSIC, Plant Molecular Genetics Department, C/ Darwin, Campus UAM, Madrid, Spain
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr., Freiburg, Germany
| | - Wajeeha Saeed
- Department of Agricultural, Forestry and Food Science, Largo P. Braccini, Grugliasco (TO), Italy
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Marco L Lolli
- Department of Drug Science and Technology, University of Turin, via P. Giuria Turin, Italy
| | - Piermichele Kobauri
- Department of Drug Science and Technology, University of Turin, via P. Giuria Turin, Italy
| | - Zahid Ali
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Francesca spyrakis
- Department of Drug Science and Technology, University of Turin, via P. Giuria Turin, Italy
| | - Pilar Cubas
- Department of Chemistry, University of Turin, via P. Giuria Turin, Italy
| | - Francesca Cardinale
- Department of Agricultural, Forestry and Food Science, Largo P. Braccini, Grugliasco (TO), Italy
| | - Cristina Prandi
- Centro Nacional de Biotecnología-CSIC, Plant Molecular Genetics Department, C/ Darwin, Campus UAM, Madrid, Spain
| |
Collapse
|
21
|
Zwanenburg B, Blanco-Ania D. Strigolactones: new plant hormones in the spotlight. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2205-2218. [PMID: 29385517 DOI: 10.1093/jxb/erx487] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/12/2017] [Indexed: 05/20/2023]
Abstract
The development and growth of plants are regulated by interplay of a plethora of complex chemical reactions in which plant hormones play a pivotal role. In recent years, a group of new plant hormones, namely strigolactones (SLs), was discovered and identified. The first SL, strigol, was isolated in 1966, but it took almost 20 years before the details of its structure were fully elucidated. At present, two families of SLs are known, one having the stereochemistry of (+)-strigol and the other that of (-)-orobanchol, the most abundant naturally occurring SL. The most well-known bioproperty of SLs is the germination of seeds of the parasitic weeds Striga and Orobanche. It is evident that SLs are going to play a prominent role in modern molecular botany. In this review, relevant molecular and bioproperties of SLs are discussed. Items of importance are the effect of stereochemistry, structure-activity relationships, design and synthesis of analogues with a simple structure, but with retention of bioactivity, introduction of fluorescent labels into SLs, biosynthetic origin of SLs, mode of action in plants, application in agriculture for the control of parasitic weeds, stimulation of the branching of arbuscular mycorrhizal (AM) fungi, and the control of plant architecture. The future potential of SLs in molecular botany is highlighted.
Collapse
Affiliation(s)
- Binne Zwanenburg
- Radboud University, Institute for Molecules and Materials, Cluster of Organic Chemistry, The Netherlands
| | - Daniel Blanco-Ania
- Radboud University, Institute for Molecules and Materials, Cluster of Organic Chemistry, The Netherlands
| |
Collapse
|
22
|
Synthetic strigolactone analogues reveal anti-cancer activities on hepatocellular carcinoma cells. Bioorg Med Chem Lett 2018; 28:1077-1083. [PMID: 29456109 DOI: 10.1016/j.bmcl.2018.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/25/2022]
Abstract
Hepatocellular carcinoma (HCC) remains one of the leading causes of death worldwide. The complex etiology is attributed to many factors like heredity, cirrhosis, hepatitis infections or the dysregulation of the different molecular pathways. Nevertheless, the current treatment regimens have either severe side effects or tumors gradually acquire resistance upon prolonged use. Thus, developing a new selective treatment for HCC is the need of the hour. Many anticancer agents derived from plants have been evaluated for their cytotoxicity towards many human cancer cell lines. Strigolactones (SLs)-a newly discovered class of phytohormones, play a crucial role in the development of plant-root and shoot. Recently, many synthetic analogues of SLs have demonstrated pro-apoptotic effects on different cancer cell lines like prostate, breast, colon and lung. In this study, we tested synthetic SLs analogues on HCC cell line-HepG2 and evaluated their capability to induce cell proliferation inhibition and apoptosis. Primary WST-1 assays, followed by annexin-V/7AAD staining, demonstrated the anti-proliferative effects. The SLs analogues TIT3 and TIT7 were found to significantly reduce HepG2 cell viability in a dose- and time-dependent manner and induce apoptosis. Interestingly, though TIT3 and TIT7 strongly affected cancer cell proliferation, both compounds showed moderate anti-proliferative effect on normal cells. Further, migration of cancer cells was suppressed upon treatment with TIT3 and TIT7 in a wound healing assay. In summary, these findings suggest that two SLs analogues TIT3 and TIT7 exert selective inhibitory effects on cancer cells most likely through targeting microtubules. SLs analogues could be used in future as potential anti-cancer candidates in chemotherapy.
Collapse
|
23
|
Croglio MP, Haake JM, Ryan CP, Wang VS, Lapier J, Schlarbaum JP, Dayani Y, Artuso E, Prandi C, Koltai H, Agama K, Pommier Y, Chen Y, Tricoli L, LaRocque JR, Albanese C, Yarden RI. Analogs of the novel phytohormone, strigolactone, trigger apoptosis and synergize with PARP inhibitors by inducing DNA damage and inhibiting DNA repair. Oncotarget 2017; 7:13984-4001. [PMID: 26910887 PMCID: PMC4924693 DOI: 10.18632/oncotarget.7414] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 01/16/2016] [Indexed: 12/28/2022] Open
Abstract
Strigolactones are a novel class of plant hormones produced in roots that regulate shoot and root development. We previously reported that strigolactone analogs (SLs) induce G2/M cell cycle arrest and apoptosis in a variety of human cancer cells and inhibit tumor growth of human breast cancer xenografts in mice. SLs had no significant influences on non-transformed cells. Here we report for the first time that SLs induce DNA damage in the form of DNA double-strand breaks (DSBs) and activate the DNA damage response signaling by inducing phosphorylation of ATM, ATR and DNA-PKcs and co-localization of the DNA damage signaling protein, 53BP1, with γH2AX nuclear foci. We further report that in addition to DSBs induction, SLs simultaneously impair DSBs repair, mostly homology-directed repair (HDR) and to a lesser extent non-homologous end joining (NHEJ). In response to SLs, RAD51, the homologous DSB repair protein, is ubiquitinated and targeted for proteasomal degradation and it fails to co-localize with γH2AX foci. Interestingly, SLs synergize with DNA damaging agents-based therapeutics. The combination of PARP inhibitors and SLs showed an especially potent synergy, but only in BRCA1-proficient cells. No synergy was observed between SLs and PARP inhibitors in BRCA1-deficient cells, supporting a role for SLs in HDR impairment. Together, our data suggest that SLs increase genome instability and cell death by a unique mechanism of inducing DNA damage and inhibiting DNA repair.
Collapse
Affiliation(s)
- Michael P Croglio
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Jefferson M Haake
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Colin P Ryan
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Victor S Wang
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Jennifer Lapier
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Jamie P Schlarbaum
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Yaron Dayani
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Emma Artuso
- Department of Chemistry, University of Turin, Turin, Italy
| | | | - Hinanit Koltai
- Institute of Plant Sciences, ARO, Volcani Center, Bet Dagan, Israel
| | - Keli Agama
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yu Chen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lucas Tricoli
- The Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, NW, Washington DC, USA
| | - Jeannine R LaRocque
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Christopher Albanese
- The Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, NW, Washington DC, USA.,Department of Pathology, Georgetown University Medical Center, NW, Washington DC, USA
| | - Ronit I Yarden
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA.,The Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, NW, Washington DC, USA
| |
Collapse
|
24
|
Zheng JX, Han YS, Wang JC, Yang H, Kong H, Liu KJ, Chen SY, Chen YR, Chang YQ, Chen WM, Guo JL, Sun PH. Strigolactones: a plant phytohormone as novel anti-inflammatory agents. MEDCHEMCOMM 2017; 9:181-188. [PMID: 30108912 DOI: 10.1039/c7md00461c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/28/2017] [Indexed: 12/24/2022]
Abstract
Strigolactones (SLs) are a novel class of plant hormones with enormous potential for the prevention and treatment of inflammation. To further investigate the anti-inflammatory activities of SLs, a representative SL, GR24, and the reductive products of its D-ring were synthesized and their anti-inflammatory activities were fully evaluated on both in vitro and in vivo models. Among these compounds, the two most active optical isomers (2a and 6a) demonstrated strong inhibitory activity on the release of inflammatory cytokines, including nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) by blocking the nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways; they also greatly inhibited the migration of neutrophils and macrophages in fluorescent protein labeled zebrafish larvae. These results identified the promising anti-inflammatory effects of SLs, and suggested that both the absolute configuration of SL and the α,β-unsaturated D-ring structure are essential for the observed anti-inflammatory activity.
Collapse
Affiliation(s)
- Jun-Xia Zheng
- School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou , PR China
| | - Yu-Shui Han
- College of Pharmacy , Jinan University , Guangzhou , PR China
| | - Jin-Cai Wang
- College of Pharmacy , Jinan University , Guangzhou , PR China
| | - Hui Yang
- College of Pharmacy , Jinan University , Guangzhou , PR China
| | - Hao Kong
- College of Pharmacy , Jinan University , Guangzhou , PR China
| | - Kang-Jia Liu
- College of Pharmacy , Jinan University , Guangzhou , PR China
| | - Si-Yu Chen
- College of Pharmacy , Jinan University , Guangzhou , PR China
| | - Yi-Rui Chen
- School of Stomatology and Medicine , Foshan University , Foshan , PR China . ; Tel: +86 2085224497
| | - Yi-Qun Chang
- College of Pharmacy , Jinan University , Guangzhou , PR China
| | - Wei-Min Chen
- College of Pharmacy , Jinan University , Guangzhou , PR China
| | - Jia-Liang Guo
- School of Stomatology and Medicine , Foshan University , Foshan , PR China . ; Tel: +86 2085224497
| | - Ping-Hua Sun
- College of Pharmacy , Jinan University , Guangzhou , PR China
| |
Collapse
|
25
|
Nejrotti S, Prina Cerai G, Oppedisano A, Maranzana A, Occhiato EG, Scarpi D, Deagostino A, Prandi C. A Gold(I)-Catalyzed Oxidative Rearrangement of Heterocycle-Derived 1,3-Enynes Provides an Efficient and Selective Route to Divinyl Ketones. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Stefano Nejrotti
- Dipartimento di Chimica; Università degli Studi di Torino; via P. Giuria 7 10125 Torino Italy
| | - Gabriele Prina Cerai
- Dipartimento di Chimica; Università degli Studi di Torino; via P. Giuria 7 10125 Torino Italy
| | - Alberto Oppedisano
- Dipartimento di Chimica; Università degli Studi di Torino; via P. Giuria 7 10125 Torino Italy
| | - Andrea Maranzana
- Dipartimento di Chimica; Università degli Studi di Torino; via P. Giuria 7 10125 Torino Italy
| | - Ernesto G. Occhiato
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; via della Lastruccia 13 50019 Sesto Fiorentino (Fi) Italy
| | - Dina Scarpi
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; via della Lastruccia 13 50019 Sesto Fiorentino (Fi) Italy
| | - Annamaria Deagostino
- Dipartimento di Chimica; Università degli Studi di Torino; via P. Giuria 7 10125 Torino Italy
| | - Cristina Prandi
- Dipartimento di Chimica; Università degli Studi di Torino; via P. Giuria 7 10125 Torino Italy
| |
Collapse
|
26
|
Vurro M, Prandi C, Baroccio F. Strigolactones: how far is their commercial use for agricultural purposes? PEST MANAGEMENT SCIENCE 2016; 72:2026-2034. [PMID: 26869010 DOI: 10.1002/ps.4254] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 05/08/2023]
Abstract
Strigolactones are a class of natural and synthetic compounds that in the past decade have been exciting the scientific community not only for their intriguing biological properties but also for their potential applications in agriculture. These applications range from their use as hormones to modify and/or manage plant architecture, to their use as stimulants to induce seed germination of parasitic weeds and thus control their infestation by a reduced seed bank, to their use as 'biostimulants' of plant root colonisation by arbuscular mycorrhizal fungi, improving plant nutritional capabilities, to other still unknown effects on microbial soil communities. More recently, these compounds have also been attracting the interest of agrochemical companies. In spite of their biological attractiveness, practical applications are still greatly hampered by the low product yields obtainable by plant root exudates, by the costs of their synthesis, by the lack of knowledge of their off-target effects and by the not yet specified or properly identified legislation that could regulate the use of these compounds, depending on the agricultural purposes. The aim of this article is to discuss, in the light of current knowledge, the different scenarios that might play out in the near future with regard to the practical application of strigolactones. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maurizio Vurro
- Institute of Sciences of Food Production, National Research Council, Bari, Italy.
| | | | - Francesca Baroccio
- Central Inspectorate for Quality Control and Antifraud of Foodstuff and Agricultural Products, Laboratory of Rome, Ministry of Agriculture Food and Forestry, Rome, Italy
| |
Collapse
|
27
|
Lace B, Prandi C. Shaping Small Bioactive Molecules to Untangle Their Biological Function: A Focus on Fluorescent Plant Hormones. MOLECULAR PLANT 2016; 9:1099-1118. [PMID: 27378726 DOI: 10.1016/j.molp.2016.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 06/21/2016] [Accepted: 06/21/2016] [Indexed: 05/14/2023]
Abstract
Modern biology overlaps with chemistry in explaining the structure and function of all cellular processes at the molecular level. Plant hormone research is perfectly located at the interface between these two disciplines, taking advantage of synthetic and computational chemistry as a tool to decipher the complex biological mechanisms regulating the action of plant hormones. These small signaling molecules regulate a wide range of developmental processes, adapting plant growth to ever changing environmental conditions. The synthesis of small bioactive molecules mimicking the activity of endogenous hormones allows us to unveil many molecular features of their functioning, giving rise to a new field, plant chemical biology. In this framework, fluorescence labeling of plant hormones is emerging as a successful strategy to track the fate of these challenging molecules inside living organisms. Thanks to the increasing availability of new fluorescent probes as well as advanced and innovative imaging technologies, we are now in a position to investigate many of the dynamic mechanisms through which plant hormones exert their action. Such a deep and detailed comprehension is mandatory for the development of new green technologies for practical applications. In this review, we summarize the results obtained so far concerning the fluorescent labeling of plant hormones, highlighting the basic steps leading to the design and synthesis of these compelling molecular tools and their applications.
Collapse
Affiliation(s)
- Beatrice Lace
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy
| | - Cristina Prandi
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy.
| |
Collapse
|
28
|
Fridlender M, Kapulnik Y, Koltai H. Plant derived substances with anti-cancer activity: from folklore to practice. FRONTIERS IN PLANT SCIENCE 2015; 6:799. [PMID: 26483815 PMCID: PMC4589652 DOI: 10.3389/fpls.2015.00799] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/14/2015] [Indexed: 05/20/2023]
Abstract
Plants have had an essential role in the folklore of ancient cultures. In addition to the use as food and spices, plants have also been utilized as medicines for over 5000 years. It is estimated that 70-95% of the population in developing countries continues to use traditional medicines even today. A new trend, that involved the isolation of plant active compounds begun during the early nineteenth century. This trend led to the discovery of different active compounds that are derived from plants. In the last decades, more and more new materials derived from plants have been authorized and subscribed as medicines, including those with anti-cancer activity. Cancer is among the leading causes of morbidity and mortality worldwide. The number of new cases is expected to rise by about 70% over the next two decades. Thus, there is a real need for new efficient anti-cancer drugs with reduced side effects, and plants are a promising source for such entities. Here we focus on some plant-derived substances exhibiting anti-cancer and chemoprevention activity, their mode of action and bioavailability. These include paclitaxel, curcumin, and cannabinoids. In addition, development and use of their synthetic analogs, and those of strigolactones, are discussed. Also discussed are commercial considerations and future prospects for development of plant derived substances with anti-cancer activity.
Collapse
Affiliation(s)
| | | | - Hinanit Koltai
- *Correspondence: Hinanit Koltai, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, POB6, Bet Dagan 50250, Israel,
| |
Collapse
|