1
|
Tripathi S, Najem H, Dussold C, Pacheco S, Du R, Sooreshjani M, Hurley L, Chandler JP, Stupp R, Sonabend AM, Horbinski CM, Lukas RV, Xiu J, Lopez G, Nicolaides TP, Brown V, Wadhwani NR, Lam SK, James CD, Rao G, Castro MG, Heimberger AB, DeCuypere M. Pediatric glioma immune profiling identifies TIM3 as a therapeutic target in BRAF fusion pilocytic astrocytoma. J Clin Invest 2024; 134:e177413. [PMID: 39137048 PMCID: PMC11444160 DOI: 10.1172/jci177413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Despite being the leading cause of cancer-related childhood mortality, pediatric gliomas have been relatively understudied, and the repurposing of immunotherapies has not been successful. Whole-transcriptome sequencing, single-cell sequencing, and sequential multiplex immunofluorescence were used to identify an immunotherapeutic strategy that could be applied to multiple preclinical glioma models. MAPK-driven pediatric gliomas have a higher IFN signature relative to other molecular subgroups. Single-cell sequencing identified an activated and cytotoxic microglia (MG) population designated MG-Act in BRAF-fused, MAPK-activated pilocytic astrocytoma (PA), but not in high-grade gliomas or normal brain. T cell immunoglobulin and mucin domain 3 (TIM3) was expressed on MG-Act and on the myeloid cells lining the tumor vasculature but not normal brain vasculature. TIM3 expression became upregulated on immune cells in the PA microenvironment, and anti-TIM3 reprogrammed ex vivo immune cells from human PAs to a proinflammatory cytotoxic phenotype. In a genetically engineered murine model of MAPK-driven, low-grade gliomas, anti-TIM3 treatment increased median survival over IgG- and anti-PD-1-treated mice. Single-cell RNA-Seq data during the therapeutic window of anti-TIM3 revealed enrichment of the MG-Act population. The therapeutic activity of anti-TIM3 was abrogated in mice on the CX3CR1 MG-KO background. These data support the use of anti-TIM3 in clinical trials of pediatric low-grade, MAPK-driven gliomas.
Collapse
Affiliation(s)
- Shashwat Tripathi
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
| | - Hinda Najem
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
| | - Corey Dussold
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
| | - Sebastian Pacheco
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
| | - Ruochen Du
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
| | - Moloud Sooreshjani
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
| | - Lisa Hurley
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
| | - James P Chandler
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
| | - Roger Stupp
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
| | - Adam M Sonabend
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
| | - Craig M Horbinski
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rimas V Lukas
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
| | - Joanne Xiu
- Caris Life Sciences, Phoenix, Arizona, USA
| | | | | | - Valerie Brown
- Department of Pediatrics, Penn State Cancer Institute, Hershey, Pennsylvania, USA
| | | | - Sandi K Lam
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
- Division of Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Charles David James
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston Texas, USA
| | - Maria G Castro
- Department of Neurological Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Amy B Heimberger
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
| | - Michael DeCuypere
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, and
- Division of Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Messiaen J, Jacobs SA, De Smet F. The tumor micro-environment in pediatric glioma: friend or foe? Front Immunol 2023; 14:1227126. [PMID: 37901250 PMCID: PMC10611473 DOI: 10.3389/fimmu.2023.1227126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Brain tumors are the leading cause of morbidity and mortality related to cancer in children, where high-grade glioma harbor the worst prognosis. It has become obvious that pediatric glioma differs significantly from their adult counterparts, rendering extrapolations difficult. Curative options for several types of glioma are lacking, albeit ongoing research efforts and clinical trials. As already proven in the past, inter- and intratumoral heterogeneity plays an important role in the resistance to therapy and thus implicates morbidity and mortality for these patients. However, while less studied, the tumor micro-environment (TME) adds another level of heterogeneity. Knowledge gaps exist on how the TME interacts with the tumor cells and how the location of the various cell types in the TME influences tumor growth and the response to treatment. Some studies identified the presence of several (immune) cell types as prognostic factors, but often lack a deeper understanding of the underlying mechanisms, possibly leading to contradictory findings. Although the TME in pediatric glioma is regarded as "cold", several treatment options are emerging, with the TME being the primary target of treatment. Therefore, it is crucial to study the TME of pediatric glioma, so that the interactions between TME, tumoral cells and therapeutics can be better understood before, during and after treatment. In this review, we provide an overview of the available insights into the composition and role of the TME across different types of pediatric glioma. Moreover, where possible, we provide a framework on how a particular TME may influence responses to conventional- and/or immunotherapy.
Collapse
Affiliation(s)
- Julie Messiaen
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Sandra A. Jacobs
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Pediatric Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Tan G, Spillane KM, Maher J. The Role and Regulation of the NKG2D/NKG2D Ligand System in Cancer. BIOLOGY 2023; 12:1079. [PMID: 37626965 PMCID: PMC10452210 DOI: 10.3390/biology12081079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
The family of human NKG2D ligands (NKG2DL) consists of eight stress-induced molecules. Over 80% of human cancers express these ligands on the surface of tumour cells and/or associated stromal elements. In mice, NKG2D deficiency increases susceptibility to some types of cancer, implicating this system in immune surveillance for malignancy. However, NKG2DL can also be shed, released via exosomes and trapped intracellularly, leading to immunosuppressive effects. Moreover, NKG2D can enhance chronic inflammatory processes which themselves can increase cancer risk and progression. Indeed, tumours commonly deploy a range of countermeasures that can neutralise or even corrupt this surveillance system, tipping the balance away from immune control towards tumour progression. Consequently, the prognostic impact of NKG2DL expression in human cancer is variable. In this review, we consider the underlying biology and regulation of the NKG2D/NKG2DL system and its expression and role in a range of cancer types. We also consider the opportunities for pharmacological modulation of NKG2DL expression while cautioning that such interventions need to be carefully calibrated according to the biology of the specific cancer type.
Collapse
Affiliation(s)
- Ge Tan
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK;
| | | | - John Maher
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK;
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne BN21 2UD, UK
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
4
|
Rechberger JS, Toll SA, Vanbilloen WJF, Daniels DJ, Khatua S. Exploring the Molecular Complexity of Medulloblastoma: Implications for Diagnosis and Treatment. Diagnostics (Basel) 2023; 13:2398. [PMID: 37510143 PMCID: PMC10378552 DOI: 10.3390/diagnostics13142398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Medulloblastoma is the most common malignant brain tumor in children. Over the last few decades, significant progress has been made in revealing the key molecular underpinnings of this disease, leading to the identification of distinct molecular subgroups with different clinical outcomes. In this review, we provide an update on the molecular landscape of medulloblastoma and treatment strategies. We discuss the four main molecular subgroups (WNT-activated, SHH-activated, and non-WNT/non-SHH groups 3 and 4), highlighting the key genetic alterations and signaling pathways associated with each entity. Furthermore, we explore the emerging role of epigenetic regulation in medulloblastoma and the mechanism of resistance to therapy. We also delve into the latest developments in targeted therapies and immunotherapies. Continuing collaborative efforts are needed to further unravel the complex molecular mechanisms and profile optimal treatment for this devastating disease.
Collapse
Affiliation(s)
- Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephanie A Toll
- Department of Pediatrics, Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI 48201, USA
| | - Wouter J F Vanbilloen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurology, Elisabeth-Tweesteden Hospital, 5022 Tilburg, The Netherlands
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Budhiraja S, Najem H, Tripathi S, Wadhawani NR, Horbinski C, McCord M, Lenzen AC, Heimberger AB, DeCuypere M. Immunobiology and Cytokine Modulation of the Pediatric Brain Tumor Microenvironment: A Scoping Review. Cancers (Basel) 2023; 15:3655. [PMID: 37509316 PMCID: PMC10377457 DOI: 10.3390/cancers15143655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Utilizing a Scoping Review strategy in the domain of immune biology to identify immune therapeutic targets, knowledge gaps for implementing immune therapeutic strategies for pediatric brain tumors was assessed. The analysis demonstrated limited efforts to date to characterize and understand the immunological aspects of tumor biology with an over-reliance on observations from the adult glioma population. Foundational knowledge regarding the frequency and ubiquity of immune therapeutic targets is an area of unmet need along with the development of immune-competent pediatric tumor models to test therapeutics and especially combinatorial treatment. Opportunities arise in the evolution of pediatric tumor classification from histological to molecular with targeted immune therapeutics.
Collapse
Affiliation(s)
- Shreya Budhiraja
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (C.H.); (A.B.H.)
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Hinda Najem
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (C.H.); (A.B.H.)
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Shashwat Tripathi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (C.H.); (A.B.H.)
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Nitin R. Wadhawani
- Division of Pathology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Craig Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (C.H.); (A.B.H.)
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Matthew McCord
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alicia C. Lenzen
- Division of Hematology, Oncology, Neuro-Oncology, and Stem Cell Transplantation, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Amy B. Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (C.H.); (A.B.H.)
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Michael DeCuypere
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (C.H.); (A.B.H.)
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
6
|
Yao B, Delaidelli A, Vogel H, Sorensen PH. Pediatric Brain Tumours: Lessons from the Immune Microenvironment. Curr Oncol 2023; 30:5024-5046. [PMID: 37232837 PMCID: PMC10217418 DOI: 10.3390/curroncol30050379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
In spite of recent advances in tumour molecular subtyping, pediatric brain tumours (PBTs) remain the leading cause of cancer-related deaths in children. While some PBTs are treatable with favourable outcomes, recurrent and metastatic disease for certain types of PBTs remains challenging and is often fatal. Tumour immunotherapy has emerged as a hopeful avenue for the treatment of childhood tumours, and recent immunotherapy efforts have been directed towards PBTs. This strategy has the potential to combat otherwise incurable PBTs, while minimizing off-target effects and long-term sequelae. As the infiltration and activation states of immune cells, including tumour-infiltrating lymphocytes and tumour-associated macrophages, are key to shaping responses towards immunotherapy, this review explores the immune landscape of the developing brain and discusses the tumour immune microenvironments of common PBTs, with hopes of conferring insights that may inform future treatment design.
Collapse
Affiliation(s)
- Betty Yao
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (B.Y.)
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (B.Y.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hannes Vogel
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Poul H. Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (B.Y.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
7
|
Kurdi M, Mulla N, Malibary H, Bamaga AK, Fadul MM, Faizo E, Hakamy S, Baeesa S. Immune microenvironment of medulloblastoma: The association between its molecular subgroups and potential targeted immunotherapeutic receptors. World J Clin Oncol 2023; 14:117-130. [PMID: 37009528 PMCID: PMC10052334 DOI: 10.5306/wjco.v14.i3.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/19/2023] Open
Abstract
Medulloblastoma (MB) is considered the commonest malignant brain tumor in children. Multimodal treatments consisting of surgery, radiation, and chemotherapy have improved patients’ survival. Nevertheless, the recurrence occurs in 30% of cases. The persistent mortality rates, the failure of current therapies to extend life expectancy, and the serious complications of non-targeted cytotoxic treatment indicate the need for more refined therapeutic approaches. Most MBs originating from the neurons of external granular layer line the outer surface of neocerebellum and responsible for the afferent and efferent connections. Recently, MBs have been segregated into four molecular subgroups: Wingless-activated (WNT-MB) (Group 1); Sonic-hedgehog-activated (SHH-MB) (Group 2); Group 3 and 4 MBs. These molecular alterations follow specific gene mutations and disease-risk stratifications. The current treatment protocols and ongoing clinical trials against these molecular subgroups are still using common chemotherapeutic agents by which their efficacy have improved the progression-free survival but did not change the overall survival. However, the need to explore new therapies targeting specific receptors in MB microenvironment became essential. The immune microenvironment of MBs consists of distinctive cellular heterogeneities including immune cells and none-immune cells. Tumour associate macrophage and tumour infiltrating lymphocyte are considered the main principal cells in tumour microenvironment, and their role are still under investigation. In this review, we discuss the mechanism of interaction between MB cells and immune cells in the microenvironment, with an overview of the recent investigations and clinical trials
Collapse
Affiliation(s)
- Maher Kurdi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Rabigh 213733, Saudi Arabia
- Neuromuscular Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 213733, Saudi Arabia
| | - Nasser Mulla
- Department of Internal Medicine, Faculty of Medicine, Taibah University, Medina 213733, Saudi Arabia
| | - Husam Malibary
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 213733, Saudi Arabia
| | - Ahmed K Bamaga
- Department of Paediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah 213733, Saudi Arabia
| | - Motaz M Fadul
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Rabigh 213733, Saudi Arabia
| | - Eyad Faizo
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Tabuk University, Tabuk 213733, Saudi Arabia
| | - Sahar Hakamy
- Neurmuscular Unit, Center of Excellence of Genomic Medicine, Jeddah 21423, Saudi Arabia
| | - Saleh Baeesa
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Gorini F, Miceli M, de Antonellis P, Amente S, Zollo M, Ferrucci V. Epigenetics and immune cells in medulloblastoma. Front Genet 2023; 14:1135404. [PMID: 36968588 PMCID: PMC10036437 DOI: 10.3389/fgene.2023.1135404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Medulloblastoma (MB) is a highly malignant childhood tumor of the cerebellum. Transcriptional and epigenetic signatures have classified MB into four molecular subgroups, further stratified into biologically different subtypes with distinct somatic copy-number aberrations, driver genes, epigenetic alterations, activated pathways, and clinical outcomes. The brain tumor microenvironment (BTME) is of importance to regulate a complex network of cells, including immune cells, involved in cancer progression in brain malignancies. MB was considered with a “cold” immunophenotype due to the low influx of immune cells across the blood brain barrier (BBB). Recently, this assumption has been reconsidered because of the identification of infiltrating immune cells showing immunosuppressive phenotypes in the BTME of MB tumors. Here, we are providing a comprehensive overview of the current status of epigenetics alterations occurring during cancer progression with a description of the genomic landscape of MB by focusing on immune cells within the BTME. We further describe how new immunotherapeutic approaches could influence concurring epigenetic mechanisms of the immunosuppressive cells in BTME. In conclusion, the modulation of these molecular genetic complexes in BTME during cancer progression might enhance the therapeutic benefit, thus firing new weapons to fight MB.
Collapse
Affiliation(s)
- Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples, Naples, Italy
| | - Marco Miceli
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Pasqualino de Antonellis
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples, Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples, Naples, Italy
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples, Naples, Italy
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- DAI Medicina di Laboratorio e Trasfusionale, ‘AOU Federico II Policlinico, Naples, Italy
| | - Veronica Ferrucci
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples, Naples, Italy
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- *Correspondence: Veronica Ferrucci,
| |
Collapse
|
9
|
Guzman G, Pellot K, Reed MR, Rodriguez A. CAR T-cells to treat brain tumors. Brain Res Bull 2023; 196:76-98. [PMID: 36841424 DOI: 10.1016/j.brainresbull.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Tremendous success using CAR T therapy in hematological malignancies has garnered significant interest in developing such treatments for solid tumors, including brain tumors. This success, however, has yet to be mirrored in solid organ neoplasms. CAR T function has shown limited efficacy against brain tumors due to several factors including the immunosuppressive tumor microenvironment, blood-brain barrier, and tumor-antigen heterogeneity. Despite these considerations, CAR T-cell therapy has the potential to be implemented as a treatment modality for brain tumors. Here, we review adult and pediatric brain tumors, including glioblastoma, diffuse midline gliomas, and medulloblastomas that continue to portend a grim prognosis. We describe insights gained from different preclinical models using CAR T therapy against various brain tumors and results gathered from ongoing clinical trials. Furthermore, we outline the challenges limiting CAR T therapy success against brain tumors and summarize advancements made to overcome these obstacles.
Collapse
Affiliation(s)
- Grace Guzman
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Megan R Reed
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
10
|
Fares J, Davis ZB, Rechberger JS, Toll SA, Schwartz JD, Daniels DJ, Miller JS, Khatua S. Advances in NK cell therapy for brain tumors. NPJ Precis Oncol 2023; 7:17. [PMID: 36792722 PMCID: PMC9932101 DOI: 10.1038/s41698-023-00356-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Despite advances in treatment regimens that comprise surgery, chemotherapy, and radiation, outcome of many brain tumors remains dismal, more so when they recur. The proximity of brain tumors to delicate neural structures often precludes complete surgical resection. Toxicity and long-term side effects of systemic therapy remain a concern. Novel therapies are warranted. The field of NK cell-based cancer therapy has grown exponentially and currently constitutes a major area of immunotherapy innovation. This provides a new avenue for the treatment of cancerous lesions in the brain. In this review, we explore the mechanisms by which the brain tumor microenvironment suppresses NK cell mediated tumor control, and the methods being used to create NK cell products that subvert immune suppression. We discuss the pre-clinical studies evaluating NK cell-based immunotherapies that target several neuro-malignancies and highlight advances in molecular imaging of NK cells that allow monitoring of NK cell-based therapeutics. We review current and ongoing NK cell based clinical trials in neuro-oncology.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zachary B Davis
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55454, USA
| | - Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Stephanie A Toll
- Department of Pediatrics, Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, 48201, USA
| | - Jonathan D Schwartz
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55454, USA.
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
11
|
Chatterjee A, Asija S, Yadav S, Purwar R, Goda JS. Clinical utility of CAR T cell therapy in brain tumors: Lessons learned from the past, current evidence and the future stakes. Int Rev Immunol 2022; 41:606-624. [PMID: 36191126 DOI: 10.1080/08830185.2022.2125963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
The unprecedented clinical success of Chimeric Antigen Receptor (CAR) T cell therapy in hematological malignancies has led researchers to study its role in solid tumors. Although, its utility in solid tumors especially in neuroblastoma has begun to emerge, preclinical studies of its efficacy in other solid tumors like osteosarcomas or gliomas has caught the attention of oncologist to be tried in clinical trials. Malignant high-grade brain tumors like glioblastomas or midline gliomas in children represent some of the most difficult malignancies to be managed with conventionally available therapeutics, while relapsed gliomas continue to have the most dismal prognosis due to limited therapeutic options. Innovative therapies such as CAR T cells could give an additional leverage to the treating oncologists by potentially improving outcomes and ameliorating the toxicity of the currently available therapies. Moreover, CAR T cell therapy has the potential to be integrated into the therapeutic paradigm for aggressive gliomas in the near future. In this review we discuss the challenges in using CAR T cell therapy in brain tumors, enumerate the completed and ongoing clinical trials of different types of CAR T cell therapy for different brain tumors with special emphasis on glioblastoma and also discuss the future role of CAR T cells in Brain tumors.
Collapse
Affiliation(s)
- Abhishek Chatterjee
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Sweety Asija
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Sandhya Yadav
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Rahul Purwar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Jayant S Goda
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
12
|
Immunogenic Cell Death Enhances Immunotherapy of Diffuse Intrinsic Pontine Glioma: From Preclinical to Clinical Studies. Pharmaceutics 2022; 14:pharmaceutics14091762. [PMID: 36145510 PMCID: PMC9502387 DOI: 10.3390/pharmaceutics14091762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is the most lethal tumor involving the pediatric central nervous system. The median survival of children that are diagnosed with DIPG is only 9 to 11 months. More than 200 clinical trials have failed to increase the survival outcomes using conventional cytotoxic or myeloablative chemotherapy. Immunotherapy presents exciting therapeutic opportunities against DIPG that is characterized by unique and heterogeneous features. However, the non-inflammatory DIPG microenvironment greatly limits the role of immunotherapy in DIPG. Encouragingly, the induction of immunogenic cell death, accompanied by the release of damage-associated molecular patterns (DAMPs) shows satisfactory efficacy of immune stimulation and antitumor strategies. This review dwells on the dilemma and advances in immunotherapy for DIPG, and the potential efficacy of immunogenic cell death (ICD) in the immunotherapy of DIPG.
Collapse
|
13
|
Eisemann T, Wechsler-Reya RJ. Coming in from the cold: overcoming the hostile immune microenvironment of medulloblastoma. Genes Dev 2022; 36:514-532. [PMID: 35680424 PMCID: PMC9186392 DOI: 10.1101/gad.349538.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Medulloblastoma is an aggressive brain tumor that occurs predominantly in children. Despite intensive therapy, many patients die of the disease, and novel therapies are desperately needed. Although immunotherapy has shown promise in many cancers, the low mutational burden, limited infiltration of immune effector cells, and immune-suppressive microenvironment of medulloblastoma have led to the assumption that it is unlikely to respond to immunotherapy. However, emerging evidence is challenging this view. Here we review recent preclinical and clinical studies that have identified mechanisms of immune evasion in medulloblastoma, and highlight possible therapeutic interventions that may give new hope to medulloblastoma patients and their families.
Collapse
Affiliation(s)
- Tanja Eisemann
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA.,Department of Pediatrics, University of California at San Diego, La Jolla, California 92161, USA
| |
Collapse
|
14
|
Pediatric glioblastoma: mechanisms of immune evasion and potential therapeutic opportunities. Cancer Immunol Immunother 2022; 71:1813-1822. [PMID: 35020009 DOI: 10.1007/s00262-021-03131-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
Pediatric glioblastoma is relatively rare compared with its adult counterpart but is associated with a similarly grim prognosis. Available data indicate that pediatric glioblastomas are molecularly distinct from adult tumors, and relatively little is known about the pediatric glioblastoma tumor microenvironment (TME). Cancer immunotherapy has emerged as a new pillar of cancer treatment and is revolutionizing the care of patients with many advanced solid tumors, including melanoma, non-small cell lung cancer, head and neck cancer, and renal cell carcinoma. Unfortunately, attempts to treat adult glioblastoma with current immunotherapies have had limited success to date. Nevertheless, the immune milieu in pediatric glioblastoma is distinct from that found in adult tumors, and evidence suggests that pediatric tumors are less immunosuppressive. As a result, immunotherapies should be specifically evaluated in the pediatric context. The purpose of this review is to explore known and emerging mechanisms of immune evasion in pediatric glioblastoma and highlight potential opportunities for implementing immunotherapy in the treatment of these devastating pediatric brain tumors.
Collapse
|
15
|
Carmena Moratalla A, Carpentier Solorio Y, Lemaitre F, Farzam-Kia N, Levert A, Zandee SEJ, Lahav B, Guimond JV, Haddad E, Girard M, Duquette P, Larochelle C, Prat A, Arbour N. Stress Signal ULBP4, an NKG2D Ligand, Is Upregulated in Multiple Sclerosis and Shapes CD8 + T-Cell Behaviors. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/1/e1119. [PMID: 34873031 PMCID: PMC8656234 DOI: 10.1212/nxi.0000000000001119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVES We posit the involvement of the natural killer group 2D (NKG2D) pathway in multiple sclerosis (MS) pathology via the presence of specific NKG2D ligands (NKG2DLs). We aim to evaluate the expression of NKG2DLs in the CNS and CSF of patients with MS and to identify cellular stressors inducing the expression of UL16-binding protein 4 (ULBP4), the only detectable NKG2DL. Finally, we evaluate the impact of ULBP4 on functions such as cytokine production and motility by CD8+ T lymphocytes, a subset largely expressing NKG2D, the cognate receptor. METHODS Human postmortem brain samples and CSF from patients with MS and controls were used to evaluate NKG2DL expression. In vitro assays using primary cultures of human astrocytes and neurons were performed to identify stressors inducing ULBP4 expression. Human CD8+ T lymphocytes from MS donors and age/sex-matched healthy controls were isolated to evaluate the functional impact of soluble ULBP4. RESULTS We detected mRNA coding for the 8 identified human NKG2DLs in brain samples from patients with MS and controls, but only ULBP4 protein expression was detectable by Western blot. ULBP4 levels were greater in patients with MS, particularly in active and chronic active lesions and normal-appearing white matter, compared with normal-appearing gray matter from MS donors and white and gray matter from controls. Soluble ULBP4 was also detected in CSF of patients with MS and controls, but a smaller shed/soluble form of 25 kDa was significantly elevated in CSF from female patients with MS compared with controls and male patients with MS. Our data indicate that soluble ULBP4 affects various functions of CD8+ T lymphocytes. First, it enhanced the production of the proinflammatory cytokines GM-CSF and interferon-γ (IFNγ). Second, it increased CD8+ T lymphocyte motility and favored a kinapse-like behavior when cultured in the presence of human astrocytes. CD8+ T lymphocytes from patients with MS were especially altered by the presence of soluble ULBP4 compared with healthy controls. DISCUSSION Our study provides new evidence for the involvement of NKG2D and its ligand ULBP4 in MS pathology. Our results point to ULBP4 as a viable target to specifically block 1 component of the NKG2D pathway without altering immune surveillance involving other NKG2DL.
Collapse
Affiliation(s)
- Ana Carmena Moratalla
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Yves Carpentier Solorio
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Florent Lemaitre
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Negar Farzam-Kia
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Annie Levert
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Stephanie E J Zandee
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Boaz Lahav
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Jean Victor Guimond
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Elie Haddad
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Marc Girard
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Pierre Duquette
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Catherine Larochelle
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Alexandre Prat
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Nathalie Arbour
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada.
| |
Collapse
|
16
|
McEachron TA, Helman LJ. Recent Advances in Pediatric Cancer Research. Cancer Res 2021; 81:5783-5799. [PMID: 34561271 DOI: 10.1158/0008-5472.can-21-1191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/05/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
Over the past few years, the field of pediatric cancer has experienced a shift in momentum, and this has led to new and exciting findings that have relevance beyond pediatric malignancies. Here we present the current status of key aspects of pediatric cancer research. We have focused on genetic and epigenetic drivers of disease, cellular origins of different pediatric cancers, disease models, the tumor microenvironment, and cellular immunotherapies.
Collapse
Affiliation(s)
| | - Lee J Helman
- Osteosarcoma Institute, Dallas, Texas
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
17
|
Bailey CP, Figueroa M, Gangadharan A, Yang Y, Romero MM, Kennis BA, Yadavilli S, Henry V, Collier T, Monje M, Lee DA, Wang L, Nazarian J, Gopalakrishnan V, Zaky W, Becher OJ, Chandra J. Pharmacologic inhibition of lysine-specific demethylase 1 as a therapeutic and immune-sensitization strategy in pediatric high-grade glioma. Neuro Oncol 2021; 22:1302-1314. [PMID: 32166329 DOI: 10.1093/neuonc/noaa058] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Diffuse midline gliomas (DMG), including brainstem diffuse intrinsic pontine glioma (DIPG), are incurable pediatric high-grade gliomas (pHGG). Mutations in the H3 histone tail (H3.1/3.3-K27M) are a feature of DIPG, rendering them therapeutically sensitive to small-molecule inhibition of chromatin modifiers. Pharmacological inhibition of lysine-specific demethylase 1 (LSD1) is clinically relevant but has not been carefully investigated in pHGG or DIPG. METHODS Patient-derived DIPG cell lines, orthotopic mouse models, and pHGG datasets were used to evaluate effects of LSD1 inhibitors on cytotoxicity and immune gene expression. Immune cell cytotoxicity was assessed in DIPG cells pretreated with LSD1 inhibitors, and informatics platforms were used to determine immune infiltration of pHGG. RESULTS Selective cytotoxicity and an immunogenic gene signature were established in DIPG cell lines using clinically relevant LSD1 inhibitors. Pediatric HGG patient sequencing data demonstrated survival benefit of this LSD1-dependent gene signature. Pretreatment of DIPG with these inhibitors increased lysis by natural killer (NK) cells. Catalytic LSD1 inhibitors induced tumor regression and augmented NK cell infusion in vivo to reduce tumor burden. CIBERSORT analysis of patient data confirmed NK infiltration is beneficial to patient survival, while CD8 T cells are negatively prognostic. Catalytic LSD1 inhibitors are nonperturbing to NK cells, while scaffolding LSD1 inhibitors are toxic to NK cells and do not induce the gene signature in DIPG cells. CONCLUSIONS LSD1 inhibition using catalytic inhibitors is selectively cytotoxic and promotes an immune gene signature that increases NK cell killing in vitro and in vivo, representing a therapeutic opportunity for pHGG. KEY POINTS 1. LSD1 inhibition using several clinically relevant compounds is selectively cytotoxic in DIPG and shows in vivo efficacy as a single agent.2. An LSD1-controlled gene signature predicts survival in pHGG patients and is seen in neural tissue from LSD1 inhibitor-treated mice.3. LSD1 inhibition enhances NK cell cytotoxicity against DIPG in vivo and in vitro with correlative genetic biomarkers.
Collapse
Affiliation(s)
- Cavan P Bailey
- Department of Pediatrics , Research, The MD Anderson Cancer Center, Houston, Texas.,Department of Epigenetics and Molecular Carcinogenesis, The MD Anderson Cancer Center, Houston, Texas.,Center for Cancer Epigenetics, The MD Anderson Cancer Center, Houston, Texas
| | - Mary Figueroa
- Department of Pediatrics , Research, The MD Anderson Cancer Center, Houston, Texas.,Department of Epigenetics and Molecular Carcinogenesis, The MD Anderson Cancer Center, Houston, Texas.,Center for Cancer Epigenetics, The MD Anderson Cancer Center, Houston, Texas
| | - Achintyan Gangadharan
- Department of Pediatrics , Research, The MD Anderson Cancer Center, Houston, Texas.,Department of Epigenetics and Molecular Carcinogenesis, The MD Anderson Cancer Center, Houston, Texas
| | - Yanwen Yang
- Department of Pediatrics , Research, The MD Anderson Cancer Center, Houston, Texas
| | - Megan M Romero
- Department of Pediatrics, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Bridget A Kennis
- Department of Pediatrics , Research, The MD Anderson Cancer Center, Houston, Texas
| | - Sridevi Yadavilli
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC
| | - Verlene Henry
- Department of Pediatrics , Research, The MD Anderson Cancer Center, Houston, Texas
| | - Tiara Collier
- Brain Tumor Center, The MD Anderson Cancer Center, Houston, Texas
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, California
| | - Dean A Lee
- Department of Pediatrics, Nationwide Children's and the Ohio State Comprehensive Cancer Center, Columbus, Ohio
| | - Linghua Wang
- Department of Genomic Medicine, The MD Anderson Cancer Center, Houston, Texas
| | - Javad Nazarian
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC
| | - Vidya Gopalakrishnan
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas.,Center for Cancer Epigenetics, The MD Anderson Cancer Center, Houston, Texas
| | - Wafik Zaky
- Department of Pediatrics , Research, The MD Anderson Cancer Center, Houston, Texas
| | - Oren J Becher
- Department of Pediatrics, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Joya Chandra
- Department of Pediatrics , Research, The MD Anderson Cancer Center, Houston, Texas.,Department of Epigenetics and Molecular Carcinogenesis, The MD Anderson Cancer Center, Houston, Texas.,Center for Cancer Epigenetics, The MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
18
|
Khatua S, Cooper LJN, Sandberg DI, Ketonen L, Johnson JM, Rytting ME, Liu DD, Meador H, Trikha P, Nakkula RJ, Behbehani GK, Ragoonanan D, Gupta S, Kotrotsou A, Idris T, Shpall EJ, Rezvani K, Colen R, Zaky W, Lee DA, Gopalakrishnan V. Phase I study of intraventricular infusions of autologous ex vivo expanded NK cells in children with recurrent medulloblastoma and ependymoma. Neuro Oncol 2021; 22:1214-1225. [PMID: 32152626 DOI: 10.1093/neuonc/noaa047] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Recurrent pediatric medulloblastoma and ependymoma have a grim prognosis. We report a first-in-human, phase I study of intraventricular infusions of ex vivo expanded autologous natural killer (NK) cells in these tumors, with correlative studies. METHODS Twelve patients were enrolled, 9 received protocol therapy up to 3 infusions weekly, in escalating doses from 3 × 106 to 3 × 108 NK cells/m2/infusion, for up to 3 cycles. Cerebrospinal fluid (CSF) was obtained for cellular profile, persistence, and phenotypic analysis of NK cells. Radiomic characterization on pretreatment MRI scans was performed in 7 patients, to develop a non-invasive imaging-based signature. RESULTS Primary objectives of NK cell harvest, expansion, release, and safety of 112 intraventricular infusions of NK cells were achieved in all 9 patients. There were no dose-limiting toxicities. All patients showed progressive disease (PD), except 1 patient showed stable disease for one month at end of study follow-up. Another patient had transient radiographic response of the intraventricular tumor after 5 infusions of NK cell before progressing to PD. At higher dose levels, NK cells increased in the CSF during treatment with repetitive infusions (mean 11.6-fold). Frequent infusions of NK cells resulted in CSF pleocytosis. Radiomic signatures were profiled in 7 patients, evaluating ability to predict upfront radiographic changes, although they did not attain statistical significance. CONCLUSIONS This study demonstrated feasibility of production and safety of intraventricular infusions of autologous NK cells. These findings support further investigation of locoregional NK cell infusions in children with brain malignancies.
Collapse
Affiliation(s)
- Soumen Khatua
- Department of Pediatrics, MD Anderson Cancer Center, Houston
| | | | - David I Sandberg
- Department of Neurosurgery, MD Anderson Cancer Center, Houston.,Department of Neurosurgery, McGovern Medical School/University of Texas Health Science Center, Houston
| | - Leena Ketonen
- Department of Diagnostic Imaging, MD Anderson Cancer Center, Houston
| | - Jason M Johnson
- Department of Diagnostic Imaging, MD Anderson Cancer Center, Houston
| | | | - Diane D Liu
- Department of Biostatistics, University of Texas MD Anderson Cancer center
| | - Heather Meador
- Department of Pediatrics, MD Anderson Cancer Center, Houston
| | - Prashant Trikha
- Department of Hematology, Oncology and BMT, Nationwide Children's Hospital, Columbus, Ohio and Department of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Robin J Nakkula
- Department of Hematology, Oncology and BMT, Nationwide Children's Hospital, Columbus, Ohio and Department of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Gregory K Behbehani
- Department of Hematology, Oncology and BMT, Nationwide Children's Hospital, Columbus, Ohio and Department of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | | | - Sumit Gupta
- Department of Pediatrics, MD Anderson Cancer Center, Houston
| | | | - Tagwa Idris
- Department of Radiology, Harvard Medical School
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston
| | - Katy Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston
| | - Rivka Colen
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Wafik Zaky
- Department of Pediatrics, MD Anderson Cancer Center, Houston
| | - Dean A Lee
- Department of Hematology, Oncology and BMT, Nationwide Children's Hospital, Columbus, Ohio and Department of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | | |
Collapse
|
19
|
Nguyen HM, Saha D. The Current State of Oncolytic Herpes Simplex Virus for Glioblastoma Treatment. Oncolytic Virother 2021; 10:1-27. [PMID: 33659221 PMCID: PMC7917312 DOI: 10.2147/ov.s268426] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is a lethal primary malignant brain tumor with no current effective treatments. The recent emergence of immuno-virotherapy and FDA approval of T-VEC have generated a great expectation towards oncolytic herpes simplex viruses (oHSVs) as a promising treatment option for GBM. Since the generation and testing of the first genetically engineered oHSV in glioma in the early 1990s, oHSV-based therapies have shown a long way of great progress in terms of anti-GBM efficacy and safety, both preclinically and clinically. Here, we revisit the literature to understand the recent advancement of oHSV in the treatment of GBM. In addition, we discuss current obstacles to oHSV-based therapies and possible strategies to overcome these pitfalls.
Collapse
Affiliation(s)
- Hong-My Nguyen
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, School of Pharmacy, Abilene, TX, 79601, USA
| | - Dipongkor Saha
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, School of Pharmacy, Abilene, TX, 79601, USA
| |
Collapse
|
20
|
NK Cell Adoptive Immunotherapy of Cancer: Evaluating Recognition Strategies and Overcoming Limitations. Transplant Cell Ther 2020; 27:21-35. [PMID: 33007496 DOI: 10.1016/j.bbmt.2020.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/14/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Natural killer (NK) cells, the primary effector cells of the innate immune system, utilize multiple strategies to recognize tumor cells by (1) detecting the presence of activating receptor ligands, which are often upregulated in cancer; (2) targeting cells that have a loss of major histocompatibility complex (MHC); and (3) binding to antibodies that bind to tumor-specific antigens on the tumor cell surface. All these strategies have been successfully harnessed in adoptive NK cell immunotherapies targeting cancer. In this review, we review the applications of NK cell therapies across different tumor types. Similar to other forms of immunotherapy, tumor-induced immune escape and immune suppression can limit NK cell therapies' efficacy. Therefore, we also discuss how these limitations can be overcome by conferring NK cells with the ability to redirect their tumor-targeting capabilities and survive the immune-suppressive tumor microenvironment. Finally, we also discuss how future iterations can benefit from combination therapies with other immunotherapeutic agents.
Collapse
|
21
|
Patterson JD, Henson JC, Breese RO, Bielamowicz KJ, Rodriguez A. CAR T Cell Therapy for Pediatric Brain Tumors. Front Oncol 2020; 10:1582. [PMID: 32903405 PMCID: PMC7435009 DOI: 10.3389/fonc.2020.01582] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/22/2020] [Indexed: 12/31/2022] Open
Abstract
Chimeric Antigen Receptor (CAR) T cell therapy has recently begun to be used for solid tumors such as glioblastoma multiforme. Many children with pediatric malignant brain tumors develop extensive long-term morbidity of intensive multimodal curative treatment. Others with certain diagnoses and relapsed disease continue to have limited therapies and a dismal prognosis. Novel treatments such as CAR T cells could potentially improve outcomes and ameliorate the toxicity of current treatment. In this review, we discuss the potential of using CAR therapy for pediatric brain tumors. The emerging insights on the molecular subtypes and tumor microenvironment of these tumors provide avenues to devise strategies for CAR T cell therapy. Unique characteristics of these brain tumors, such as location and associated morbid treatment induced neuro-inflammation, are novel challenges not commonly encountered in adult brain tumors. Despite these considerations, CAR T cell therapy has the potential to be integrated into treatment schema for aggressive pediatric malignant brain tumors in the future.
Collapse
Affiliation(s)
- John D Patterson
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jeffrey C Henson
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Rebecca O Breese
- Department of General Surgery, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Kevin J Bielamowicz
- Division of Hematology/Oncology, Department of Pediatrics, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
22
|
Lieberman NAP, DeGolier K, Kovar HM, Davis A, Hoglund V, Stevens J, Winter C, Deutsch G, Furlan SN, Vitanza NA, Leary SES, Crane CA. Characterization of the immune microenvironment of diffuse intrinsic pontine glioma: implications for development of immunotherapy. Neuro Oncol 2020; 21:83-94. [PMID: 30169876 DOI: 10.1093/neuonc/noy145] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Diffuse intrinsic pontine glioma (DIPG) is a uniformly fatal CNS tumor diagnosed in 300 American children per year. Radiation is the only effective treatment and extends overall survival to a median of 11 months. Due to its location in the brainstem, DIPG cannot be surgically resected. Immunotherapy has the ability to target tumor cells specifically; however, little is known about the tumor microenvironment in DIPGs. We sought to characterize infiltrating immune cells and immunosuppressive factor expression in pediatric low- and high-grade gliomas and DIPG. Methods Tumor microarrays were stained for infiltrating immune cells. RNA was isolated from snap-frozen tumor tissue and Nanostring analysis performed. DIPG and glioblastoma cells were co-cultured with healthy donor macrophages, T cells, or natural killer (NK) cells, and flow cytometry and cytotoxicity assays performed to characterize the phenotype and function, respectively, of the immune cells. Results DIPG tumors do not have increased macrophage or T-cell infiltration relative to nontumor control, nor do they overexpress immunosuppressive factors such as programmed death ligand 1 and/or transforming growth factor β1. H3.3-K27M DIPG cells do not repolarize macrophages, but are not effectively targeted by activated allogeneic T cells. NK cells lysed all DIPG cultures. Conclusions DIPG tumors have neither a highly immunosuppressive nor inflammatory microenvironment. Therefore, major considerations for the development of immunotherapy will be the recruitment, activation, and retention of tumor-specific effector immune cells.
Collapse
Affiliation(s)
- Nicole A P Lieberman
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Kole DeGolier
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Heather M Kovar
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Amira Davis
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Virginia Hoglund
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Jeffrey Stevens
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, Washington
| | - Conrad Winter
- Seattle Children's Hospital Pathology, Seattle, Washington
| | - Gail Deutsch
- Department of Pathology, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, Washington
| | - Scott N Furlan
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Nicholas A Vitanza
- Division of Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, University of Washington School of Medicine, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sarah E S Leary
- Division of Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, University of Washington School of Medicine, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Courtney A Crane
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Neurological Surgery, University of Washington, Seattle, Washington
| |
Collapse
|
23
|
Meza Guzman LG, Keating N, Nicholson SE. Natural Killer Cells: Tumor Surveillance and Signaling. Cancers (Basel) 2020; 12:cancers12040952. [PMID: 32290478 PMCID: PMC7226588 DOI: 10.3390/cancers12040952] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells play a pivotal role in cancer immunotherapy due to their innate ability to detect and kill tumorigenic cells. The decision to kill is determined by the expression of a myriad of activating and inhibitory receptors on the NK cell surface. Cell-to-cell engagement results in either self-tolerance or a cytotoxic response, governed by a fine balance between the signaling cascades downstream of the activating and inhibitory receptors. To evade a cytotoxic immune response, tumor cells can modulate the surface expression of receptor ligands and additionally, alter the conditions in the tumor microenvironment (TME), tilting the scales toward a suppressed cytotoxic NK response. To fully harness the killing power of NK cells for clinical benefit, we need to understand what defines the threshold for activation and what is required to break tolerance. This review will focus on the intracellular signaling pathways activated or suppressed in NK cells and the roles signaling intermediates play during an NK cytotoxic response.
Collapse
Affiliation(s)
- Lizeth G. Meza Guzman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (L.G.M.G.); (S.E.N.); Tel.: +61-9345-2555 (S.E.N.)
| | - Narelle Keating
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sandra E. Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (L.G.M.G.); (S.E.N.); Tel.: +61-9345-2555 (S.E.N.)
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW We aim to review the most recent findings in the use of NK cells in childhood cancers. RECENT FINDINGS Natural killer cells are cytotoxic to tumor cells. In pediatric leukemias, adoptive transfer of NK cells can bridge children not in remission to transplant. Interleukins (IL2, IL15) can enhance NK cell function. NK cell-CAR therapy has advantages of shorter life span that lessens chronic toxicities, lower risk of graft versus host disease when using allogeneic cells, ability of NK cells to recognize tumor cells that have downregulated MHC to escape T cells, and possibly less likelihood of cytokine storm. Cytotoxicity to solid tumors (rhabdomyosarcoma, Ewing's sarcoma, neuroblastoma) is seen with graft versus tumor effect in transplant and in combination with antibodies. Challenges lie in the microenvironment which is suppressive for NK cells. NK cell immunotherapy in childhood cancers is promising and recent works aim to overcome challenges.
Collapse
|
25
|
Lin GL, Nagaraja S, Filbin MG, Suvà ML, Vogel H, Monje M. Non-inflammatory tumor microenvironment of diffuse intrinsic pontine glioma. Acta Neuropathol Commun 2018; 6:51. [PMID: 29954445 PMCID: PMC6022714 DOI: 10.1186/s40478-018-0553-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 01/05/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a universally fatal malignancy of the childhood central nervous system, with a median overall survival of 9-11 months. We have previously shown that primary DIPG tissue contains numerous tumor-associated macrophages, and substantial work has demonstrated a significant pathological role for adult glioma-associated macrophages. However, work over the past decade has highlighted many molecular and genomic differences between pediatric and adult high-grade gliomas. Thus, we directly compared inflammatory characteristics of DIPG and adult glioblastoma (GBM). We found that the leukocyte (CD45+) compartment in primary DIPG tissue samples is predominantly composed of CD11b + macrophages, with very few CD3+ T-lymphocytes. In contrast, T-lymphocytes are more abundant in adult GBM tissue samples. RNA sequencing of macrophages isolated from primary tumor samples revealed that DIPG- and adult GBM-associated macrophages both express gene programs related to ECM remodeling and angiogenesis, but DIPG-associated macrophages express substantially fewer inflammatory factors than their adult GBM counterparts. Examining the secretome of glioma cells, we found that patient-derived DIPG cell cultures secrete markedly fewer cytokines and chemokines than patient-derived adult GBM cultures. Concordantly, bulk and single-cell RNA sequencing data indicates low to absent expression of chemokines and cytokines in DIPG. Together, these observations suggest that the inflammatory milieu of the DIPG tumor microenvironment is fundamentally different than adult GBM. The low intrinsic inflammatory signature of DIPG cells may contribute to the lack of lymphocytes and non-inflammatory phenotype of DIPG-associated microglia/macrophages. Understanding the glioma subtype-specific inflammatory milieu may inform the design and application of immunotherapy-based treatments.
Collapse
Affiliation(s)
- Grant L Lin
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | - Surya Nagaraja
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA, USA
| | - Mario L Suvà
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of Harvard and Massachussetts Institute of Technology (MIT), Cambridge, MA, 02142, USA
| | - Hannes Vogel
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA.
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA.
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|