1
|
Al-Hawary SIS, Abdalkareem Jasim S, Altalbawy FMA, Kumar A, Kaur H, Pramanik A, Jawad MA, Alsaad SB, Mohmmed KH, Zwamel AH. miRNAs in radiotherapy resistance of cancer; a comprehensive review. Cell Biochem Biophys 2024; 82:1665-1679. [PMID: 38805114 DOI: 10.1007/s12013-024-01329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
While intensity-modulated radiation therapy-based comprehensive therapy increases outcomes, cancer patients still have a low five-year survival rate and a high recurrence rate. The primary factor contributing to cancer patients' poor prognoses is radiation resistance. A class of endogenous non-coding RNAs, known as microRNAs (miRNAs), controls various biological processes in eukaryotes. These miRNAs influence tumor cell growth, death, migration, invasion, and metastasis, which controls how human carcinoma develops and spreads. The correlation between the unbalanced expression of miRNAs and the prognosis and sensitivity to radiation therapy is well-established. MiRNAs have a significant impact on the regulation of DNA repair, the epithelial-to-mesenchymal transition (EMT), and stemness in the tumor radiation response. But because radio resistance is a complicated phenomena, further research is required to fully comprehend these mechanisms. Radiation response rates vary depending on the modality used, which includes the method of delivery, radiation dosage, tumor stage and grade, confounding medical co-morbidities, and intrinsic tumor microenvironment. Here, we summarize the possible mechanisms through which miRNAs contribute to human tumors' resistance to radiation.
Collapse
Affiliation(s)
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - Salim Basim Alsaad
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, 10011, Iraq
| | | | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Srinivasan D, Subbarayan R, Srivastava N, Radhakrishnan A, Adtani PN, Chauhan A, Krishnamoorthy L. A comprehensive overview of radiation therapy impacts of various cancer treatments and pivotal role in the immune system. Cell Biochem Funct 2024; 42:e4103. [PMID: 39073207 DOI: 10.1002/cbf.4103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
The cancer treatment landscape is significantly evolving, focusing on advanced radiation therapy methods to maximize effectiveness and minimize the adverse effects. Recognized as a pivotal component in cancer and disease treatment, radiation therapy (RT) has drawn attention in recent research that delves into its intricate interplay with inflammation and the immune response. This exploration unveils the underlying processes that significantly influence treatment outcomes. In this context, the potential advantages of combining bronchoscopy with RT across diverse clinical scenarios, alongside the targeted impact of brachytherapy, are explored. Concurrently, radiation treatments serve multifaceted roles such as DNA repair, cell elimination, and generating immune stress signaling molecules known as damage-associated molecular patterns, elucidating their effectiveness in treating various diseases. External beam RT introduces versatility by utilizing particles such as photons, electrons, protons, or carbon ions, each offering distinct advantages. Advanced RT techniques contribute to the evolving landscape, with emerging technologies like FLASH, spatially fractionated RT, and others poised to revolutionize the field. The comprehension of RT, striving for improved treatment outcomes, reduced side effects, and facilitating personalized and innovative treatments for cancer and noncancer patients. After navigating these advancements, the goal is fixed to usher in a new era in which RT is a cornerstone of precision and effectiveness in medical interventions. In summarizing the myriad findings, the review underscores the significance of understanding the differential impacts of radiation approaches on inflammation and immune modulation, offering valuable insights for developing innovative therapeutic interventions that harness the immune system in conjunction with RT.
Collapse
Affiliation(s)
- Dhasarathdev Srinivasan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Rajasekaran Subbarayan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Arunkumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Pooja Narain Adtani
- Department of Basic Medical and Dental Sciences, College of Dentistry, Gulf Medical University, Ajman, United Arab Emirates
| | - Ankush Chauhan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Loganathan Krishnamoorthy
- Department of Allied Health Sciences-FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| |
Collapse
|
3
|
Hung SK, Yang HJ, Lee MS, Liu DW, Chen LC, Chew CH, Lin CH, Lee CH, Li SC, Hong CL, Yu CC, Yu BH, Hsu FC, Chiou WY, Lin HY. Molecular subtypes of breast cancer predicting clinical benefits of radiotherapy after breast-conserving surgery: a propensity-score-matched cohort study. Breast Cancer Res 2023; 25:149. [PMID: 38066611 PMCID: PMC10709935 DOI: 10.1186/s13058-023-01747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Based on the molecular expression of cancer cells, molecular subtypes of breast cancer have been applied to classify patients for predicting clinical outcomes and prognosis. However, further evidence is needed regarding the influence of molecular subtypes on the efficacy of radiotherapy (RT) after breast-conserving surgery (BCS), particularly in a population-based context. Hence, the present study employed a propensity-score-matched cohort design to investigate the potential role of molecular subtypes in stratifying patient outcomes for post-BCS RT and to identify the specific clinical benefits that may emerge. METHODS From 2006 to 2019, the present study included 59,502 breast cancer patients who underwent BCS from the Taiwan National Health Insurance Research Database. Propensity scores were utilized to match confounding variables between patients with and without RT within each subtype of breast cancer, namely luminal A, luminal B/HER2-negative, luminal B/HER2-positive, basal-like, and HER2-enriched ones. Several clinical outcomes were assessed, in terms of local recurrence (LR), regional recurrence (RR), distant metastasis (DM), disease-free survival (DFS), and overall survival (OS). RESULTS After post-BCS RT, patients with luminal A and luminal B/HER2-positive breast cancers exhibited a decrease in LR (adjusted hazard ratio [aHR] = 0.18, p < 0.0001; and, 0.24, p = 0.0049, respectively). Furthermore, reduced RR and improved DFS were observed in patients with luminal A (aHR = 0.15, p = 0.0004; and 0.29, p < 0.0001), luminal B/HER2-negative (aHR = 0.06, p = 0.0093; and, 0.46, p = 0.028), and luminal B/HER2-positive (aHR = 0.14, p = 0.01; and, 0.38, p < 0.0001) breast cancers. Notably, OS benefits were found in patients with luminal A (aHR = 0.62, p = 0.002), luminal B/HER2-negative (aHR = 0.30, p < 0.0001), basal-like (aHR = 0.40, p < 0.0001), and HER2-enriched (aHR = 0.50, p = 0.03), but not luminal B/HER2-positive diseases. Remarkably, when considering DM, luminal A patients who received RT demonstrated a lower cumulative incidence of DM than those without RT (p = 0.02). CONCLUSION In patients with luminal A breast cancer who undergo BCS, RT could decrease the likelihood of tumor metastasis. After RT, the tumor's hormone receptor status may predict tumor control regarding LR, RR, and DFS. Besides, the HER2 status of luminal breast cancer patients may serve as an additional predictor of OS after post-BCS RT. However, further prospective studies are required to validate these findings.
Collapse
Affiliation(s)
- Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hsuan-Ju Yang
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Dai-Wei Liu
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Departments of Radiation Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Liang-Cheng Chen
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Hui Chew
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Chun-Hung Lin
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of General Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Cheng-Hung Lee
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of General Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Szu-Chin Li
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Chung-Lin Hong
- Division of Hematology-Oncology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Chih-Chia Yu
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Ben-Hui Yu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Feng-Chun Hsu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.
- School of Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.
- School of Medicine, Tzu Chi University, Hualien, Taiwan.
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chiayi, Taiwan.
| |
Collapse
|
4
|
Scheper J, Hildebrand LS, Faulhaber EM, Deloch L, Gaipl US, Symank J, Fietkau R, Distel LV, Hecht M, Jost T. Tumor-specific radiosensitizing effect of the ATM inhibitor AZD0156 in melanoma cells with low toxicity to healthy fibroblasts. Strahlenther Onkol 2023; 199:1128-1139. [PMID: 36229655 PMCID: PMC10673781 DOI: 10.1007/s00066-022-02009-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Despite new treatment options, melanoma continues to have an unfavorable prognosis. DNA damage response (DDR) inhibitors are a promising drug class, especially in combination with chemotherapy (CT) or radiotherapy (RT). Manipulating DNA damage repair during RT is an opportunity to exploit the genomic instability of cancer cells and may lead to radiosensitizing effects in tumors that could improve cancer therapy. METHODS A panel of melanoma-derived cell lines of different origin were used to investigate toxicity-related clonogenic survival, cell death, and cell cycle distribution after treatment with a kinase inhibitor (KI) against ATM (AZD0156) or ATR (VE-822, berzosertib), irradiation with 2 Gy, or a combination of KI plus ionizing radiation (IR). Two fibroblast cell lines generated from healthy skin tissue were used as controls. RESULTS Clonogenic survival indicated a clear radiosensitizing effect of the ATM inhibitor (ATMi) AZD0156 in all melanoma cells in a synergistic manner, but not in healthy tissue fibroblasts. In contrast, the ATR inhibitor (ATRi) VE-822 led to additive enhancement of IR-related toxicity in most of the melanoma cells. Both inhibitors mainly increased cell death induction in combination with IR. In healthy fibroblasts, VE-822 plus IR led to higher cell death rates compared to AZD0156. A significant G2/M block was particularly induced in cancer cells when combining AZD0156 with IR. CONCLUSION ATMi, in contrast to ATRi, resulted in synergistic radiosensitization regarding colony formation in melanoma cancer cells, while healthy tissue fibroblasts were merely affected with respect to cell death induction. In connection with an increased number of melanoma cells in the G2/M phase after ATMi plus IR treatment, ATMi seems to be superior to ATRi in melanoma cancer cell treatments when combined with RT.
Collapse
Affiliation(s)
- Julian Scheper
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
| | - Laura S Hildebrand
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
| | - Eva-Maria Faulhaber
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
| | - Lisa Deloch
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
- Translational Radiobiology, Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
- Translational Radiobiology, Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Julia Symank
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
| | - Luitpold V Distel
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
| | - Markus Hecht
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
| | - Tina Jost
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany.
- Translational Radiobiology, Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.
| |
Collapse
|
5
|
Li HL, Deng NH, He XS, Li YH. Small biomarkers with massive impacts: PI3K/AKT/mTOR signalling and microRNA crosstalk regulate nasopharyngeal carcinoma. Biomark Res 2022; 10:52. [PMID: 35883139 PMCID: PMC9327212 DOI: 10.1186/s40364-022-00397-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumours of the head and neck in Southeast Asia and southern China. The Phosphatidylinositol 3-kinase/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathway is involved in processes related to tumour initiation/progression, such as proliferation, apoptosis, metastasis, and drug resistance, and is closely related to the clinicopathological features of NPC. In addition, key genes involved in the PI3K/AKT/mTOR signalling pathway undergo many changes in NPC. More interestingly, a growing body of evidence suggests an interaction between this signalling pathway and microRNAs (miRNAs), a class of small noncoding RNAs. Therefore, in this review, we discuss the interactions between key components of the PI3K/AKT/mTOR signalling pathway and various miRNAs and their importance in NPC pathology and explore potential diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hai-Long Li
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Medical College, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P.R. China
| | - Nian-Hua Deng
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P.R. China
| | - Xiu-Sheng He
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Medical College, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P.R. China.
| | - Yue-Hua Li
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, P.R. China.
| |
Collapse
|
6
|
Li Z, Fei H, Lei S, Hao F, Yang L, Li W, Zhang L, Fei R. Identification of HMMR as a prognostic biomarker for patients with lung adenocarcinoma via integrated bioinformatics analysis. PeerJ 2022; 9:e12624. [PMID: 35036134 PMCID: PMC8710063 DOI: 10.7717/peerj.12624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most prevalent tumor in lung carcinoma cases and threatens human life seriously worldwide. Here we attempt to identify a prognostic biomarker and potential therapeutic target for LUAD patients. Methods Differentially expressed genes (DEGs) shared by GSE18842, GSE75037, GSE101929 and GSE19188 profiles were determined and used for protein-protein interaction analysis, enrichment analysis and clinical correlation analysis to search for the core gene, whose expression was further validated in multiple databases and LUAD cells (A549 and PC-9) by quantitative real-time PCR (qRT-PCR) and western blot analyses. Its prognostic value was estimated using the Kaplan-Meier method, meta-analysis and Cox regression analysis based on the Cancer Genome Atlas (TCGA) dataset and co-expression analysis was conducted using the Oncomine database. Gene Set Enrichment Analysis (GSEA) was performed to illuminate the potential functions of the core gene. Results A total of 115 shared DEGs were found, of which 24 DEGs were identified as candidate hub genes with potential functions associated with cell cycle and FOXM1 transcription factor network. Among these candidates, HMMR was identified as the core gene, which was highly expressed in LUAD as verified by multiple datasets and cell samples. Besides, high HMMR expression was found to independently predict poor survival in patients with LUAD. Co-expression analysis showed that HMMR was closely related to FOXM1 and was mainly involved in cell cycle as suggested by GSEA. Conclusion HMMR might be served as an independent prognostic biomarker for LUAD patients, which needs further validation in subsequent studies.
Collapse
Affiliation(s)
- Zhaodong Li
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Hongtian Fei
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Siyu Lei
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Fengtong Hao
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Lijie Yang
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Wanze Li
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Laney Zhang
- The College of Arts and Sciences, Cornell University, New York, USA
| | - Rui Fei
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.,Key Laboratory of Lymphatic Surgery Jilin Province, Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
De Mattia E, Canzonieri V, Polesel J, Mezzalira S, Dalle Fratte C, Dreussi E, Roncato R, Bignucolo A, Innocente R, Belluco C, Pucciarelli S, De Paoli A, Palazzari E, Toffoli G, Cecchin E. SMAD3 Host and Tumor Profiling to Identify Locally Advanced Rectal Cancer Patients at High Risk of Poor Response to Neoadjuvant Chemoradiotherapy. Front Pharmacol 2022; 12:778781. [PMID: 35002714 PMCID: PMC8740633 DOI: 10.3389/fphar.2021.778781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Identifying patients at risk of poor response to neoadjuvant chemoradiotherapy (nCRT) is an emerging clinical need in locally advanced rectal cancer (LARC). SMAD3 is a key player in the chemoradio-resistance phenotype and its expression is both constitutive and locally induced. The aim was to investigate both host (genetic polymorphisms) and tumor SMAD3 profiling to predict response to nCRT. In a group of 76 LARC patients, SMAD3 and phosphorylated-SMAD3 expression was assessed by immunohistochemistry in preoperative tumor tissue. In an expanded study group (n = 378), a set of SMAD3 polymorphisms (rs35874463, rs1065080, rs1061427, rs17228212, rs744910, and rs745103) was analyzed. Association with tumor regression grade (TRG) and patient prognosis (progression-free survival [PFS] and overall survival [OS]) was assessed. Patients with high tumor expression of SMAD3 had a significantly increased risk of poor response (TRG≥2) [cellularity >55% (OR:10.36, p = 0.0004), or moderate/high intensity (OR:5.20, p = 0.0038), or an H-score≥1 (OR:9.84, p = 0.0004)]. Patients carrying the variant SMAD3 rs745103-G allele had a poorer response (OR:0.48, p = 0.0093), a longer OS (HR:0.65, p = 0.0307), and a trend for longer PFS (HR:0.75, p = 0.0944). Patients who carried both high SMAD3 tumor expression and the wild-type rs745103-A allele had an extremely high risk of not achieving a complete response (OR:13.45, p = 0.0005). Host and tumor SMAD3 status might be considered to improve risk stratification of LARC patients to facilitate selection for alternative personalized neoadjuvant strategies including intensified regimens.
Collapse
Affiliation(s)
- Elena De Mattia
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Vincenzo Canzonieri
- Pathology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Silvia Mezzalira
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Chiara Dalle Fratte
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Eva Dreussi
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Rossana Roncato
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Alessia Bignucolo
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Roberto Innocente
- Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Claudio Belluco
- Surgical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | | | - Antonino De Paoli
- Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Elisa Palazzari
- Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| |
Collapse
|
8
|
Chen TW, Chang KP, Cheng CC, Chen CY, Hong SW, Sie ZL, Cheng HW, Yen WC, Huang Y, Liu SC, Wang CI. Characterization of Recurrent Relevant Genes Reveals a Novel Role of RPL36A in Radioresistant Oral Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13225623. [PMID: 34830778 PMCID: PMC8616119 DOI: 10.3390/cancers13225623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Radioresistance is one of the major factors contributing to radiotherapy failure in OSCC. By systematically comparing the prognostic values of all genes in TCGA-OSCC patients with and without radiotherapy, radioresistance-associated genes were identified. Higher RPL36A transcript levels were found to be associated with a poor prognosis only in OSCC patients with radiotherapy in the cohort of TCGA and another independent Taiwanese cohort. RPL36A was then shown to be involved in the regulation of DNA damage, cell cycle and apoptosis, leading to radioresistance. Thus, such integrated studies are expected to be greatly beneficial for the development of new therapeutic interventions for radioresistant OSCC in the future. Abstract Radioresistance is one of the major factors that contributes to radiotherapy failure in oral cavity squamous cell carcinoma (OSCC). By comparing the prognostic values of 20,502 genes expressed in patients in The Cancer Genome Atlas (TCGA)-OSCC cohort with (n = 162) and without radiotherapy (n = 118), herein identified 297 genes positively correlated with poor disease-free survival in OSCC patients with radiotherapy as the potential radioresistance-associated genes. Among the potential radioresistance-associated genes, 36 genes were upregulated in cancerous tissues relative to normal tissues. The bioinformatics analysis revealed that 60S ribosomal protein L36a (RPL36A) was the most frequently detected gene involved in radioresistance-associated gene-mediated biological pathways. Then, two independent cohorts (n = 162 and n = 136) were assessed to confirm that higher RPL36A transcript levels were significantly associated with a poor prognosis only in OSCC patients with radiotherapy. Mechanistically, we found that knockdown of RPL36A increased radiosensitivity via sensitizing cells to DNA damage and promoted G2/M cell cycle arrest followed by augmenting the irradiation-induced apoptosis pathway in OSCC cells. Taken together, our study supports the use of large-scale genomic data for identifying specific radioresistance-associated genes and suggests a regulatory role for RPL36A in the development of radioresistance in OSCC.
Collapse
Affiliation(s)
- Ting-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Kai-Ping Chang
- Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (K.-P.C.); (H.-W.C.); (W.-C.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Chun-Chia Cheng
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan 333, Taiwan; (C.-C.C.); (S.-W.H.); (Z.-L.S.)
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Shu-Wen Hong
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan 333, Taiwan; (C.-C.C.); (S.-W.H.); (Z.-L.S.)
| | - Zong-Lin Sie
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan 333, Taiwan; (C.-C.C.); (S.-W.H.); (Z.-L.S.)
| | - Hsing-Wen Cheng
- Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (K.-P.C.); (H.-W.C.); (W.-C.Y.)
| | - Wei-Chen Yen
- Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (K.-P.C.); (H.-W.C.); (W.-C.Y.)
| | - Yenlin Huang
- Department of Pathology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Shu-Chen Liu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 333, Taiwan
- Correspondence: (S.-C.L.); (C.-I.W.); Tel.: +886-3-4227151 (ext. 27754) (S.-C.L.); +886-3-2118800 (ext. 3032) (C.-I.W.)
| | - Chun-I Wang
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan 333, Taiwan; (C.-C.C.); (S.-W.H.); (Z.-L.S.)
- Correspondence: (S.-C.L.); (C.-I.W.); Tel.: +886-3-4227151 (ext. 27754) (S.-C.L.); +886-3-2118800 (ext. 3032) (C.-I.W.)
| |
Collapse
|
9
|
Sun Y, Wang J, Ma Y, Li J, Sun X, Zhao X, Shi X, Hu Y, Qu F, Zhang X. Radiation induces NORAD expression to promote ESCC radiotherapy resistance via EEPD1/ATR/Chk1 signalling and by inhibiting pri-miR-199a1 processing and the exosomal transfer of miR-199a-5p. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:306. [PMID: 34587992 PMCID: PMC8479908 DOI: 10.1186/s13046-021-02084-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Radioresistance, a poorly understood phenomenon, results in the failure of radiotherapy and subsequent local recurrence, threatening a large proportion of patients with ESCC. To date, lncRNAs have been reported to be involved in diverse biological processes, including radioresistance. METHODS FISH and qRT-PCR were adopted to examine the expression and localization of lncRNA-NORAD, pri-miR-199a1 and miR-199a-5p. Electron microscopy and nanoparticle tracking analysis (NTA) were conducted to observe and identify exosomes. High-throughput microRNAs sequencing and TMT mass spectrometry were performed to identify the functional miRNA and proteins. A series of in vitro and in vivo experiments were performed to investigate the biological effect of NORAD. ChIP, RIP-qPCR, co-IP and dual-luciferase reporter assays were conducted to explore the interaction of related RNAs and proteins. RESULTS We show here that DNA damage activates the noncoding RNA NORAD, which is critical for ESCC radioresistance. NORAD was expressed at high levels in radioresistant ESCC cells. Radiation treatment promotes NORAD expression by enhancing H3K4me2 enrichment in its sequence. NORAD knockdown cells exhibit significant hypersensitivity to radiation in vivo and in vitro. NORAD is required to initiate the repair and restart of stalled forks, G2 cycle arrest and homologous recombination repair upon radiation treatment. Mechanistically, NORAD inhibits miR-199a-5p expression by competitively binding PUM1 from pri-miR-199a1, inhibiting the processing of pri-miR-199a1. Mature miR-199a-5p in NORAD knockdown cells is packaged into exosomes; miR-199a-5p restores the radiosensitivity of radioresistant cells by targeting EEPD1 and then inhibiting the ATR/Chk1 signalling pathway. Simultaneously, NORAD knockdown inhibits the ubiquitination of PD-L1, leading to a better response to radiation and anti-PD-1 treatment in a mouse model. CONCLUSIONS Based on the findings of this study, lncRNA-NORAD represents a potential treatment target for improving the efficiency of immunotherapy in combination with radiation in ESCC.
Collapse
Affiliation(s)
- Yuchen Sun
- The Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jizhao Wang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yuan Ma
- The Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jing Li
- The Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xuanzi Sun
- The Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xu Zhao
- The Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xiaobo Shi
- The Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 XiWu Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Yunfeng Hu
- The Department of Radiation Oncology, Yanan University Affiliated Hospital, 157 Beida Road, Yanan, Shannxi, 716099, People's Republic of China
| | - Fengyi Qu
- The Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xiaozhi Zhang
- The Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
10
|
Cell Proliferation and Apoptosis-Related Genes Affect the Development of Human Nasopharyngeal Carcinoma Through PI3K/AKT Signaling Pathway. Mol Biotechnol 2021; 63:1081-1091. [PMID: 34236626 DOI: 10.1007/s12033-021-00357-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/13/2021] [Indexed: 12/08/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the common malignant tumors in China, which occurs on the top and sidewalls of the nasopharyngeal cavity. The incidence of malignant tumors of the ear, nose and throat is the highest. However, little is known about the growth of the cells. Therefore, this study constructed a multi-regulator-driven NPC cell growth-related module, aiming to explore the mechanism of functional pathways regulating the proliferation of NPC cells in an all-round way. Firstly, differential expression analysis, co-expression analysis, enrichment analysis and connectivity analysis were synthesized to identify the intrinsic genes of expression disorder module. Subsequently, we analyzed the module by crosstalk, and observed the interaction between modules intuitively. Finally, based on hypergeometric test, the significance of multi-regulators on the regulation of potential modules is calculated. We obtained 17 cell growth-related expression disorder modules by 2148 gene modules focusing. These modules are mainly involved in the growth cycle of NPC cells, including cell proliferation, migration and apoptosis. At the same time, they mainly affect the proliferation and apoptosis of NPC cells through PI3K-AKT signaling pathway, NF-kappa B signaling pathway and Wnt signaling pathway. Based on the growth-related modules of NPC cells, we have obtained a series of non-coding RNAs (ncRNAs) including microRNA-92a-3p, microRNA-19a-3p and microRNA-130a-3p, play an important role in regulating the growth of NPC cells. Similarly, we also predicted transcription factors (involving E2F1, NFKB1, SP1, etc.) that may play a key role in cell growth-related modules. This study is based on cell growth-related expression disorder module to explore the regulatory role of its functional pathway on cell proliferation mechanism, which will help researchers to have a deeper understanding of the potential pathogenesis of NPC.
Collapse
|
11
|
Activation of DNA damage response signaling in mammalian cells by ionizing radiation. Free Radic Res 2021; 55:581-594. [PMID: 33455476 DOI: 10.1080/10715762.2021.1876853] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cellular responses to DNA damage are fundamental to preserve genomic integrity during various endogenous and exogenous stresses. Following radiation therapy and chemotherapy, this DNA damage response (DDR) also determines development of carcinogenesis and therapeutic outcome. In humans, DNA damage activates a robust network of signal transduction cascades, driven primarily through phosphorylation events. These responses primarily involve two key non-redundant signal transducing proteins of phosphatidylinositol 3-kinase-like (PIKK) family - ATR and ATM, and their downstream kinases (hChk1 and hChk2). They further phosphorylate effectors proteins such as p53, Cdc25A and Cdc25C which function either to activate the DNA damage checkpoints and cell death mechanisms, or DNA repair pathways. Identification of molecular pathways that determine signaling after DNA damage and trigger DNA repair in response to differing types of DNA lesions allows for a far better understanding of the consequences of radiation and chemotherapy on normal and tumor cells. Here we highlight the network of DNA damage response pathways that are activated after treatment with different types of radiation. Further, we discuss regulation of cell cycle checkpoint and DNA repair processes in the context of DDR in response to radiation.
Collapse
|
12
|
Zhao Y, Liu S, Wen Y, Zhong L. Effect of MicroRNA-210 on the Growth of Ovarian Cancer Cells and the Efficacy of Radiotherapy. Gynecol Obstet Invest 2020; 86:71-80. [PMID: 33260174 DOI: 10.1159/000511771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/21/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The objective of this study is to explore the role of miR-210 in the growth of ovarian cancer cells and the correlation with radiotherapy and to elucidate underlying molecular mechanisms. METHODS Human ovarian cancer cell lines OVCAR3 and SKOV3 were cultured in vitro, and miR-210 over-expression and low-expression ovarian cancer cell models were established by cell transfection. MTT assay was used to detect the proliferation activity. Transwell was used to detect the migration and invasion abilities. Western blot measured the expression of proteins related to cell proliferation, migration, and invasion. The cells were treated with different doses of ionizing radiation, and then the cell proliferation activity was detected by MTT. The expression of apoptosis-related proteins was detected by Western blot. The Caspase-Glo® Kit was used to detect the activity of cellular caspase 3/7 enzymes. RESULTS The proliferation, migration, and invasion abilities of miR-210 over-expression ovarian cancer cells were increased (p < 0.05), the expressions of PTEN and E-cadherin were decreased, and the expression of p-Protein kinase B (AKT), N-cadherin, Snail, and Vimentin were elevated. After ionizing radiation, the sensitivity of miR-210 over-expression cells to radiotherapy was decreased, the expression of apoptosis-related protein Bax was decreased, the expression of Bcl-2 was increased, and the activity of cellular caspase 3/7 enzyme was reduced (p < 0.05). CONCLUSION miR-210 can promote the proliferation, migration, and invasion of ovarian cancer cells by activating the AKT signaling pathway and regulating the expression of Epithelial-mesenchymal transition-related proteins. miR-210 can reduce the sensitivity of ovarian cancer cells to radiotherapy by inhibiting apoptosis, which might serve as a potential target for the treatment of ovarian tumors.
Collapse
Affiliation(s)
- Yinlong Zhao
- Department of Nuclear Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Shirui Liu
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, China
| | - Yu Wen
- Purchasing Center, The Second Hospital of Jilin University, Changchun Jilin, China
| | - Lili Zhong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China,
| |
Collapse
|
13
|
Farhood B, Khodamoradi E, Hoseini-Ghahfarokhi M, Motevaseli E, Mirtavoos-Mahyari H, Eleojo Musa A, Najafi M. TGF-β in radiotherapy: Mechanisms of tumor resistance and normal tissues injury. Pharmacol Res 2020; 155:104745. [PMID: 32145401 DOI: 10.1016/j.phrs.2020.104745] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/20/2022]
Abstract
Emerging evidences show that changes in tumor stroma can adapt cancer cells to radiotherapy, thereby leading to a reduction in tumor response to treatment. On the other hand, radiotherapy is associated with severe reactions in normal tissues which limit the amount radiation dose received by tumor. These challenges open a window in radiobiology and radiation oncology to explore mechanisms for improving tumor response and also alleviate side effects of radiotherapy. Transforming growth factor beta (TGF-β) is a well-known and multitasking cytokine that regulates a wide range of reactions and interactions within tumor and normal tissues. Within tumor microenvironment (TME), TGF-β is the most potent suppressor of immune system activity against cancer cells. This effect is mediated through stimulation of CD4+ which differentiates to T regulatory cells (Tregs), infiltration of fibroblasts and differentiation into cancer associated fibroblasts (CAFs), and also polarization of macrophages to M2 cells. These changes lead to suppression of cytotoxic CD8 + T lymphocytes (CTLs) and natural killer (NK) cells to kill cancer cells. TGF-β also plays a key role in the angiogenesis, invasion and DNA damage responses (DDR) in cancer cells. In normal tissues, TGF-β triggers the expression of a wide range of pro-oxidant and pro-fibrosis genes, leading to fibrosis, genomic instability and some other side effects. These properties of TGF-β make it a potential target to preserve normal tissues and sensitize tumor via its inhibition. In the current review, we aim to explain the mechanisms of upregulation of TGF-β and its consequences in both tumor and normal tissues.
Collapse
Affiliation(s)
- Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojtaba Hoseini-Ghahfarokhi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanifeh Mirtavoos-Mahyari
- Lung Transplantation Research Center (LTRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
14
|
Niu H, Huang Y, Yan L, Zhang L, Zhao M, Lu T, Yang X, Chen Z, Zhan C, Shi Y, Wang Q. Knockdown of SMAD3 inhibits the growth and enhances the radiosensitivity of lung adenocarcinoma via p21 in vitro and in vivo. Int J Biol Sci 2020; 16:1010-1022. [PMID: 32140069 PMCID: PMC7053338 DOI: 10.7150/ijbs.40173] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/26/2019] [Indexed: 01/09/2023] Open
Abstract
Radiotherapy is an effective approach for the treatment of lung adenocarcinoma. However, evidence suggests that lung adenocarcinoma can easily develop tolerance to radiotherapy. The purpose of this study was to investigate the effect and mechanism of SMAD3 on the radiosensitivity of lung adenocarcinoma in vitro and in vivo. We found that knockdown of SMAD3 using two short hairpin RNAs in lentivirus vectors significantly inhibited cell growth and increased radiosensitivity of the lung adenocarcinoma cell lines A549, H1299, and H1975. Using RNA sequencing and bioinformatics analyses, we found that the significantly differentially expressed genes in SMAD3 knockdown cells were mainly enriched in the cell cycle process. We then showed that knockdown of SMAD3 significantly reduced expression of cyclin-dependent kinase inhibitor 1 (p21) and increased the proportion of G2/M phase cells and the radiosensitivity of lung adenocarcinoma. Chromatin immunoprecipitation results in the Gene Expression Omnibus (GEO) database and our luciferase assay verified that SMAD3 directly bound the p21 promoter. A series of rescue experiments showed that overexpression of p21 partly reversed the effect of SMAD3 on proliferation and radioresistance in vitro and in vivo. Moreover, we found that the expression levels of SMAD3 and p21 were highly correlated, and both correlated with the patients' survival in online databases and clinical specimens. Expression of SMAD3 and p21 was also significantly different between radioresistant and radiosensitive patients in our hospital. Our results indicate that SMAD3 is a potential prognosis and radiosensitivity indicator as well as a target for radiotherapy and other treatments of patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Hao Niu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Yan
- Department of Radiation Oncology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Li Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengnan Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaodong Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhengcong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Li S, Zhao B, Zhao H, Shang C, Zhang M, Xiong X, Pu J, Kuang B, Deng G. Silencing of Long Non-coding RNA SMAD5-AS1 Reverses Epithelial Mesenchymal Transition in Nasopharyngeal Carcinoma via microRNA-195-Dependent Inhibition of SMAD5. Front Oncol 2019; 9:1246. [PMID: 31921616 PMCID: PMC6923203 DOI: 10.3389/fonc.2019.01246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/29/2019] [Indexed: 12/25/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have gained widespread attention in recent years as a key regulator of diverse biological processes, but the knowledge of the mechanisms by which they act is still very limited. Differentially expressed lncRNA SMAD5 antisense RNA 1 (SMAD5-AS1) in nasopharyngeal carcinoma (NPC) and normal samples shown by in silico analyses were selected as the main subject, and then microRNA-195 (miR-195) was suggested to bind to SMAD5-AS1 and SMAD5. Therefore, the purpose of the present study was to investigate the effects of SMAD5-AS1/miR-195/SMAD5 on epithelial-mesenchymal transition (EMT) in NPC cells. High expression of SMAD5-AS1 and SMAD5 but low miR-195 expression was determined in NPC tissues and NPC cell lines by RT-qPCR and western blot analysis. SMAD5-AS1 could upregulate SMAD5 expression by competitively binding to miR-195 in NPC cells. Loss- and gain-of-function investigations were subsequently conducted in NPC cells (CNE-2 and CNE-1) to explore the role of SMAD5-AS, miR-195 and SMAD5 in NPC progression by assessing cellular biological functions and tumorigenic ability in vivo as well as determining the expression of EMT markers. Downregulation of SMAD5-AS1 or SMAD5 or overexpression of miR-195 led to inhibited NPC cell proliferation, invasion and migration and reversed EMT, enhanced apoptosis in vitro as well as restrained tumor growth in vivo. In conclusion, our findings indicate that silencing of lncRNA SMAD5-AS1 induces the downregulation of SMAD5 by miR-195, eventually repressing EMT in NPC. Hence, SMAD5-AS1 may represent a potential therapeutic target for NPC intervention.
Collapse
Affiliation(s)
- Siwei Li
- Department of Oncology, Tongji Huangzhou Hospital, Huazhong University of Science and Technology, Huanggang, China.,Department of Radiation Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Bo Zhao
- Department of Radiation Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Haiying Zhao
- Graduate School, Guillin Medical University, Guilin, China
| | - Cui Shang
- Department of Oncology, Tongji Huangzhou Hospital, Huazhong University of Science and Technology, Huanggang, China
| | - Man Zhang
- Department of Oncology, Tongji Huangzhou Hospital, Huazhong University of Science and Technology, Huanggang, China
| | - Xiaoxia Xiong
- Department of Oncology, Tongji Huangzhou Hospital, Huazhong University of Science and Technology, Huanggang, China
| | - Jinjin Pu
- Graduate School, Guillin Medical University, Guilin, China
| | - Bohua Kuang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Oncology in South China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Guangrui Deng
- Department of Oncology, Tongji Huangzhou Hospital, Huazhong University of Science and Technology, Huanggang, China
| |
Collapse
|
16
|
CD98hc (SLC3A2) sustains amino acid and nucleotide availability for cell cycle progression. Sci Rep 2019; 9:14065. [PMID: 31575908 PMCID: PMC6773781 DOI: 10.1038/s41598-019-50547-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
CD98 heavy chain (CD98hc) forms heteromeric amino acid (AA) transporters by interacting with different light chains. Cancer cells overexpress CD98hc-transporters in order to meet their increased nutritional and antioxidant demands, since they provide branched-chain AA (BCAA) and aromatic AA (AAA) availability while protecting cells from oxidative stress. Here we show that BCAA and AAA shortage phenocopies the inhibition of mTORC1 signalling, protein synthesis and cell proliferation caused by CD98hc ablation. Furthermore, our data indicate that CD98hc sustains glucose uptake and glycolysis, and, as a consequence, the pentose phosphate pathway (PPP). Thus, loss of CD98hc triggers a dramatic reduction in the nucleotide pool, which leads to replicative stress in these cells, as evidenced by the enhanced DNA Damage Response (DDR), S-phase delay and diminished rate of mitosis, all recovered by nucleoside supplementation. In addition, proper BCAA and AAA availability sustains the expression of the enzyme ribonucleotide reductase. In this regard, BCAA and AAA shortage results in decreased content of deoxynucleotides that triggers replicative stress, also recovered by nucleoside supplementation. On the basis of our findings, we conclude that CD98hc plays a central role in AA and glucose cellular nutrition, redox homeostasis and nucleotide availability, all key for cell proliferation.
Collapse
|
17
|
Peng Y, Fu S, Hu W, Qiu Y, Zhang L, Tan R, Sun LQ. Glutamine synthetase facilitates cancer cells to recover from irradiation-induced G2/M arrest. Cancer Biol Ther 2019; 21:43-51. [PMID: 31526079 DOI: 10.1080/15384047.2019.1665394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Resistance to radiation of cancer cells can be either intrinsic or acquired, leading to treatment failure. In response to DNA damage caused by IR, cancer cells are arrested in cell cycle showing limited proliferation and increased apoptosis. However, radiation-resistant cells are able to overcome the cell cycle block and proceed to proliferation, for which the detailed mechanism remains to be elucidated. In the present study, we showed that radioresistant cells exhibited a recoverable G2/M phase during prolonged cell cycle and manifested lower apoptosis rate and more colony formation. RNA-seq analysis revealed that glutamine synthetase (GS, GLUL) gene was highly expressed in radioresistant cancer cells in comparison with the parental cells, which was in accordance with the G2/M arrest after ionizing radiation. Knocking out of GS in radioresistant cells resulted in a delayed G2/M recovery and lowered proliferation rate after ionizing radiation treatment, which was accompanied with increased inhibitory phosphorylation of CDK1 at Y15 and downregulated Cdc25B, a dual specific phosphatase of CDK1. Moreover, there was an enhanced complex formation of CDK1 and Cyclin B1 when the cells were rescued by re-introducing GS. In vivo, knocking down of GS significantly sensitized CNE2-R xenografts to RT in mice. In this study, we demonstrate a novel role of glutamine synthetase independent of metabolic function in promoting recovery from G2/M arrest caused by ionizing radiation, thus, causing cancer cell resistance to radiotherapy.
Collapse
Affiliation(s)
- Yanni Peng
- Departmen of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Shujun Fu
- Departmen of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of MolecularRadiation Oncology Hunan Province, Changsha, China
| | - Wenfeng Hu
- Departmen of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of MolecularRadiation Oncology Hunan Province, Changsha, China
| | - Yanfang Qiu
- Departmen of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhang
- Departmen of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of MolecularRadiation Oncology Hunan Province, Changsha, China
| | - Rong Tan
- Departmen of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of MolecularRadiation Oncology Hunan Province, Changsha, China.,Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, China
| | - Lun-Quan Sun
- Departmen of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of MolecularRadiation Oncology Hunan Province, Changsha, China.,Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, China.,National Clinical Research Center for Gerontology, Changsha, China
| |
Collapse
|
18
|
Wang Y, Tan X, Li S, Yang S. The total flavonoid of Eucommia ulmoides sensitizes human glioblastoma cells to radiotherapy via HIF-α/MMP-2 pathway and activates intrinsic apoptosis pathway. Onco Targets Ther 2019; 12:5515-5524. [PMID: 31371989 PMCID: PMC6633463 DOI: 10.2147/ott.s210497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/21/2019] [Indexed: 01/27/2023] Open
Abstract
Background: As one of the most common and lethal malignant primary brain tumors, glioblastomas (GBMs) are identified as grade IV neoplasms, the most severe grade, according to WHO classification systems. The outcome of surgery against GBMs is limited since its frequent relapse. Radiotherapy is a crucial and widely used treatment after surgery, while the strong radioresistance of GBM cells still becomes a severe problem of radiotherapy. Eucommia ulmoides Oliv. is used for the treatment of various diseases, such as lower blood pressure and inflammation. Purpose: To explore the anti-tumor effect of Eucommia ulmoides Oliv. against GBMs. Methods: Dose-viability assays were performed to examine the anti-tumor effect. Would-healing and transwell assays were carried out to evaluate the migration and invasion ability of GBMs. Cell apoptosis was detected by 33, 258 staining, and the expressions of key proteins were examined by western blot. Results: In this study, we confirmed that the inhibitory effect of the total flavonoid of Eucommia ulmoides on proliferation, migration and invasion of human GBM cells. Its favorable effects inspired us to explore the potential ability in enhancing radiosensitivity of GBM cells. The results demonstrated that it could further induce apoptosis during radiotherapy via intrinsic apoptosis pathway. Besides, it could significantly reduce the malondialdehyde level after radiotherapy, which suggested it inhibited tumor cell and protected normal neuronal cells. By examining the expression of important genes of radioresistant pathway, we found a significant decrease of HIF-α/MMP-2 when using the total flavonoid of Eucommia ulmoides during radiotherapy. Conclusion: This result suggests that the enhancement of radiotherapy may be mediated by modulating glucose metabolism of GBMs in HIF-α/MMP-2 pathway.
Collapse
Affiliation(s)
- Yongsheng Wang
- Department of Neurosurgery, Caoxian People's Hospital of Shandong Province, Heze, Shandong 274400, People's Republic of China
| | - Xiangru Tan
- Department of Neurology, Caoxian People's Hospital of Shandong Province, Heze, Shandong 274400, People's Republic of China
| | - Song Li
- Department of Neurosurgery, Caoxian People's Hospital of Shandong Province, Heze, Shandong 274400, People's Republic of China
| | - Shuilu Yang
- Department of Neurosurgery, Caoxian People's Hospital of Shandong Province, Heze, Shandong 274400, People's Republic of China
| |
Collapse
|
19
|
Mortezaee K, Najafi M, Farhood B, Ahmadi A, Potes Y, Shabeeb D, Musa AE. Modulation of apoptosis by melatonin for improving cancer treatment efficiency: An updated review. Life Sci 2019; 228:228-241. [DOI: 10.1016/j.lfs.2019.05.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022]
|
20
|
Qiu ZH, Zhang WW, Zhang HH, Jiao GH. Brucea javanica oil emulsion improves the effect of radiotherapy on esophageal cancer cells by inhibiting cyclin D1-CDK4/6 axis. World J Gastroenterol 2019; 25:2463-2472. [PMID: 31171890 PMCID: PMC6543247 DOI: 10.3748/wjg.v25.i20.2463] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/12/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Esophageal cancer is one of the most common cancers around the world, and it has high incidence and mortality rates. The conventional therapy for esophageal cancer is radiotherapy, although its effect is highly limited by the resistance of esophageal cancer cells. Thus, strong radiosensitizers can be very crucial during radiotherapy against esophageal cancer. Brucea javanica oil emulsion (BJOE) is a widely used drug against various cancers, such as liver, colon, and ovarian cancer. However, its anti-cancer effect and mechanism and the use of BJOE as a radiosensitizer have not been explored in esophageal cancer.
AIM To evaluate the anti-cancer effect and mechanism of BJOE and explore the potential use of BJOE as a radiosensitizer during radiotherapy.
METHODS The inhibitory effect of BJOE and its enhancement function with radiation on cell viability were examined with the calculated half-maximal effective concentration and half-maximal lethal concentration. The influence of BJOE on cell migration and invasion were measured with EC109 and JAR cells by wound-healing and transwell assay. Clonogenesis and apoptotic rate, which was measured by Hoechst staining, were investigated to confirm its enhancement function with radiation. To investigate the molecular pathway underlying the effect of BJOE, the expressions of several apoptosis- and cycle-related proteins was detected by western blotting.
RESULTS Our results demonstrated that BJOE inhibited the growth of esophageal cancer cell lines more than normal cell lines, and it markedly reduced migration and invasion in esophageal cancer cells (EC109 and JAR). Moreover, it promoted cell apoptosis and enhanced the effect of radiotherapy against esophageal cancerous cells. In the viability test, the values of half-maximal effective concentration and half-maximal lethal concentration were reduced. Compared to the control, only around 1/5 colonies formed when using BJOE and radiation together in the clonogenic assay. The apoptotic rate in EC109 was obviously promoted when BJOE was added during radiotherapy. Our study suggests that the expression of the apoptosis-proteins Bax and p21 were increased, while the expression of Bcl-2 was stable. Further detection of downstream proteins revealed that the expression of cyclin D1 and cyclin-dependent kinase 4/6 were significantly decreased.
CONCLUSION BJOE has a strong anti-cancer effect on esophageal cancer and can be used as a radiosensitizer to promote apoptosis in cancerous esophageal cells via the cyclin D1-cyclin-dependent kinase 4/6 axis.
Collapse
Affiliation(s)
- Zhong-Hua Qiu
- Department of Interventional Therapy, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong Province, China
| | - Wei-Wei Zhang
- Department of Interventional Therapy, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong Province, China
| | - Hong-Hua Zhang
- Department of Neurology, Liangshan County People's Hospital, Jining, 272600, Shandong Province, China
| | - Gui-Hua Jiao
- Department of Interventional Therapy, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong Province, China
| |
Collapse
|
21
|
Ge Y, He Z, Xiang Y, Wang D, Yang Y, Qiu J, Zhou Y. The identification of key genes in nasopharyngeal carcinoma by bioinformatics analysis of high-throughput data. Mol Biol Rep 2019; 46:2829-2840. [PMID: 30830589 DOI: 10.1007/s11033-019-04729-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/28/2019] [Indexed: 12/12/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a common pattern of regional malignancy in the south of China, especially in Guangdong province. The development of computerized tomography (CT) technology and the improvement of radiotherapy scheme can improve the survival rate of NPC patients. However, the prevalence and recurrence rate of NPC are increasing every year. It is urgent for us to uncover the molecular mechanism of NPC. In this study, we used scientific information retrieval from the GEO (gene expression omnibus) database to download the GSE12452, which contained 41 samples, including 31 nasopharyngeal carcinoma samples and 10 control samples. With the help of GO (gene ontology) analysis, KEGG (kyoto encyclopedia of genes and genomes) analysis, PPI (protein-protein interaction) network model construction, and WGCNA (weighted gene co-expression network analysis), we found 6896 differentially expressed genes, which affected the biological processes included cell cycle process, DNA metabolic process, DNA repairing, immune response, cell activation, regulation of immune system process, inflammatory response. The 20 hub genes present in front of us are SYK, PIK3CG, FYN, ACACB, LRRK2, RIPK4, RAC2, PIK3CD, PTPRC, LCR, RAD51, MAD2L1, CDK1, PCNA, GMPS, CCNB1, GAPDH, CCNA2, RFC4, TOP2A. In the future, these are the areas where we need to focus on the molecular mechanism of NPC.
Collapse
Affiliation(s)
- Yanshan Ge
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,Basic School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China
| | - Zhengxi He
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,Basic School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China
| | - Yanqi Xiang
- Department of Nursing, the Second Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Dawei Wang
- Department of Gastrointestinal Surgery, Tengzhou City Center People's Hospital, Zaozhuang, 277599, Shandong, China
| | - Yuping Yang
- Department of Emergency, Tengzhou City Center People's Hospital, Zaozhuang, 277599, Shandong, China
| | - Jian Qiu
- Department of Emergency, Tancheng City Center People's Hospital, Linyi, 276100, Shandong, China
| | - Yanhong Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China. .,Basic School of Medicine, Central South University, Changsha, 410078, Hunan, China. .,Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China. .,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
22
|
Yang S, Xing L, Gu L, Cheng H, Feng Y, Zhang Y. Combination of RIZ1 Overexpression and Radiotherapy Contributes to Apoptosis and DNA Damage of HeLa and SiHa Cervical Cancer Cells. Basic Clin Pharmacol Toxicol 2018; 123:137-146. [PMID: 29575614 DOI: 10.1111/bcpt.13008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/07/2018] [Indexed: 12/15/2022]
Abstract
Although radiotherapy has been widely applied to treating cervical cancer in the clinic, its therapeutic efficacy is often restricted to the radioresistance of cancer cells. Retinoblastoma protein-interacting zinc finger gene 1 (RIZ1) has been suggested as a tumour suppressor gene, whereas its role in cervical cancer with or without radiotherapy has been unclear. In this study, two cervical cancer cell lines, HeLa and SiHa cells, stably transfected with RIZ1 overexpression plasmid were subjected to ionizing radiation, and their survival fractions were calculated by assessing their clonogenic abilities. Our results showed that the forced overexpression of RIZ1 significantly reduced the clonogenic survival rates of both HeLa and SiHa cells exposed to ionizing radiation. By analysing the cell apoptotic status, we found that the RIZ1-overexpressed cervical cancer cells under ionizing radiation were more vulnerable to damage, and more γ-H2AX foci were found in these cells. Furthermore, the volumes of tumour xenografts formed by the RIZ1-overexpressed cells in nude mice under ionizing radiation were smaller than those generated by the control cells. There were more morphological changes, apoptosis cells and lower expression of PCNA in RIZ1-overexpressed tumour tissues of mice after exposure to ionizing radiation. Taken together, our study demonstrates that the overexpression of RIZ1 combined with radiotherapy facilitates apoptosis and DNA damage of cervical cancer cells.
Collapse
Affiliation(s)
- Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Linan Xing
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lina Gu
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Haiyan Cheng
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yue Feng
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yunyan Zhang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|