1
|
Li H, Cheng Z, Jiang B, Shao X, Xu M. Prognosis value and positive association of Rab1A/IL4Rα aberrant expression in gastric cancer. Sci Rep 2023; 13:6964. [PMID: 37117331 PMCID: PMC10147632 DOI: 10.1038/s41598-023-33955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/21/2023] [Indexed: 04/30/2023] Open
Abstract
Gastric cancer (GC) is the most common gastrointestinal cancer and the leading cause of worldwide cancer-associated mortality. Several GC patients are diagnosed at the advanced stage with an unsatisfactory 5-year survival rate. Rab1A was significantly associated with IL4Rα expression in non-small cell lung cancer. However, their potential correlation in expression and prognosis remains largely unknown in GC. In this study, Rab1A/IL-4Rα was significantly increased in GC than in para-cancerous tissues, and Rab1A/IL-4Rα overexpression caused poor prognosis among GC patients. Rab1A expression was significantly correlated with IL-4Rα expression in GC tissues, as determined by IHC analysis. In addition, the mRNA expression of Rab1A was closely linked with the IL-4Rα mRNA expression in GC tissue expressed by qPCR. Furthermore, the Kaplan-Meier analysis demonstrated that the group with negative Rab1A and IL-4Rα expression had longer 5-year survival rates than the other group. Besides, the group with positive Rab1A and IL-4Rα expression had a worse prognosis than the other group. Finally, nomograms revealed the overall 3 and 5-year survival determined crucial roles of Rab1A/IL-4Rα expression in predicting the prognosis of GC patients. Therefore, Rab1A/IL-4Rα is vital in GC, providing a novel perspective on targeted GC therapy.
Collapse
Affiliation(s)
- Haoran Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Zhengwu Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Bin Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Xinyu Shao
- Department of Gastroenterology, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, No. 242 Guangji Road, Suzhou, 215006, Jiangsu, China.
| | - Menglin Xu
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, No. 2 Zheshan West Road, Jinghu District, Wuhu, 241000, Anhui, China.
| |
Collapse
|
2
|
Sun Q, Wang H, Xiao B, Xue D, Wang G. Development and Validation of a 6-Gene Hypoxia-Related Prognostic Signature For Cholangiocarcinoma. Front Oncol 2022; 12:954366. [PMID: 35924146 PMCID: PMC9339701 DOI: 10.3389/fonc.2022.954366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022] Open
Abstract
Cholangiocarcinoma (CHOL) is highly malignant and has a poor prognosis. This study is committed to creating a new prognostic model based on hypoxia related genes. Here, we established a novel tumor hypoxia-related prognostic model consisting of 6 hypoxia-related genes by univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) algorithm to predict CHOL prognosis and then the risk score for each patient was calculated. The results showed that the patients with high-risk scores had poor prognosis compared with those with low-risk scores, which was verified as an independent predictor by multivariate analysis. The hypoxia-related prognostic model was validated in both TCGA and GEO cohorts and exhibited excellent performance in predicting overall survival in CHOL. The PPI results suggested that hypoxia-related genes involved in the model may play a central role in regulating the hypoxic state. In addition, the presence of IDH1 mutations in the high-risk group was high, and GSEA results showed that some metabolic pathways were upregulated, but immune response processes were generally downregulated. These factors may be potential reasons for the high-risk group with worse prognosis. The analysis of different immune regulation-related processes in the high- and low-risk groups revealed that the expression of genes related to immune checkpoints would show differences between these two groups. We further verified the expression of the oncogene PPFIA4 in the model, and found that compared with normal samples, CHOL patients were generally highly expressed, and the patients with high-expression of PPFIA4 had a poor prognosis. In summary, the present study may provide a valid prognostic model for bile duct cancer to inform better clinical management of patients.
Collapse
Affiliation(s)
- Qi Sun
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huxia Wang
- Mammary Department, Shaanxi Provincial Cancer Hospital, Xi’an, China
| | - Baoan Xiao
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dong Xue
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Guanghui Wang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Guanghui Wang,
| |
Collapse
|
3
|
Tang J, Wang R, Tang R, Gu P, Han J, Huang W. CircRTN4IP1 regulates the malignant progression of intrahepatic cholangiocarcinoma by sponging miR-541-5p to induce HIF1A production. Pathol Res Pract 2022; 230:153732. [PMID: 34974242 DOI: 10.1016/j.prp.2021.153732] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Recent studies indicate that circular RNA (circRNA) serves important roles in the development of intrahepatic cholangiocarcinoma (ICC). However, the role of circRNA reticulon 4 interacting protein 1 (circRTN4IP1) in ICC progression remains unknown. METHODS Expression of circRTN4IP1, microRNA-541-5p (miR-541-5p), hypoxia inducible factor 1 subunit alpha (HIF1A) and other indicated protein markers was detected by quantitative real-time polymerase chain reaction or Western blot. The functional effects of circRTN4IP1 knockdown in ICC cells were analyzed by cell counting kit-8, cell colony formation, flow cytometry analysis, Western blot, glucose and lactate kit assays. The positive expression rate of HIF1A was detected by immunohistochemistry assay. The interaction between miR-541-5p and circRTN4IP1 or HIF1A was identified by dual-luciferase reporter, RNA immunoprecipitation or RNA pull-down assays. Xenograft mouse model assay was performed to determine the effect of circRTN4IP1 depletion on tumor formation. RESULTS In contrast, ICC tissues and cells showed high expression of circRTN4IP1 and HIF1A, but low expression of miR-541-5p. Knockdown of circRTN4IP1 led to repression of cell proliferation and glucose metabolism, but promotion of cell apoptosis; however, circRTN4IP1 overexpression had opposite effects. In mechanism, circRTN4IP1 acted as a sponge for miR-541-5p, which was found to target HIF1A. MiR-541-5p inhibitors could remit circRTN4IP1 knockdown-mediated action. Also, HIF1A participated in the regulation of miR-541-5p in ICC progression. In support, circRTN4IP1 depletion impeded tumor formation in vivo. CONCLUSION CircRTN4IP1 knockdown inhibited ICC cell malignancy by miR-541-5p/HIF1A axis, providing us with a reliable target for the therapy of ICC.
Collapse
Affiliation(s)
- Jintian Tang
- Department of Hepatopancreatobiliary, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ruibin Wang
- Department of Hepatopancreatobiliary, The Third Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Runjuan Tang
- Department of Rehabilitation, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Peng Gu
- Department of Interventional, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jing Han
- Office of drug clinical trial institutions, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wukui Huang
- Department of Interventional, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
4
|
Inhibition of GARS1-DT Protects Against Hypoxic Injury in H9C2 Cardiomyocytes via Sponging miR-212-5p. J Cardiovasc Pharmacol 2021; 78:e714-e721. [PMID: 34483291 DOI: 10.1097/fjc.0000000000001129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/19/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT The present study aimed to elucidate the function of long noncoding RNA GARS1-DT in hypoxia-induced injury in ex-vivo cardiomyocytes and explore its underlying mechanism. Hypoxic injury was confirmed in H9C2 cells by the determination of cell viability, migration, invasion, and apoptosis. GARS1-DT expression was estimated in H9C2 cells after hypoxia. We then measured the effects of GARS1-DT knockdown on hypoxia-induced H9C2 cells. The interaction between GARS1-DT and miR-212-5p was also investigated. Hypoxia treatment led to cell damage in H9C2 cardiomyocytes, accompanied with the upregulation of GARS1-DT expression. Transfection of GARS1-DT small interfering RNA remarkably attenuated hypoxia-induced injury by enhancing cell viability, migration, and invasion, and reducing apoptosis. Furthermore, GARS1-DT served as an endogenous sponge for miR-212-5p, and its expression was negatively regulated by GARS1-DT. The effects of GARS1-DT knockdown on hypoxia-induced injury were significantly abrogated by miR-212-5p silence. Besides, suppression of GARS1-DT activated PI3K/AKT pathway in hypoxia-treated H9C2 cells, which were reversed by inhibition of miR-212-5p. Our findings demonstrated the novel molecular mechanism of GARS1-DT/miR-212-5p/PI3K/AKT axis on the regulation of hypoxia-induced myocardial injury in H9C2 cells, which may provide potential therapeutic targets for acute myocardial infarction treatment.
Collapse
|
5
|
Tian Y, Wang L, Zhang Y, Li L, Fei Y, Zhang X, Lin G. Association between miR-212-3p and SOX11, and the effects of miR-212-3p on cell proliferation and migration in mantle cell lymphoma. Oncol Lett 2021; 22:709. [PMID: 34457064 PMCID: PMC8358606 DOI: 10.3892/ol.2021.12970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 05/21/2021] [Indexed: 01/01/2023] Open
Abstract
To the best of our knowledge, the effect of miR-212-3p on sex-determining region Y-box 11 (SOX11) expression has not been previously investigated and how this effect affects cell proliferation and migration in lymphoma remains unclear. The present study aimed to assess the association between microRNA-212-3p (miR-212-3p) and SOX11, and the effects of miR-212-3p on cell proliferation and migration in mantle cell lymphoma. Cancer tissue and corresponding paracancerous tissue samples were collected from 65 patients with mantle cell lymphoma. The mRNA expression levels of miR-212-3p and SOX11 were analyzed using quantitative PCR, and SOX11 protein expression was determined using western blotting. Following transfection, the miR-212-3p mimic group exhibited a significantly lower SOX11 mRNA and protein expression than the miR-NC group. After 48–72 h of transfection, cell proliferation in the miR-212-3p mimic group was significantly lower than that in the miR-NC group. Furthermore, the miR-212-3p mimic group exhibited significantly lower cell invasion and significantly higher apoptosis than the miR-NC group. The current results suggested that miR-212-3p inhibited lymphoma cell proliferation and migration, and promoted their apoptosis by specifically regulating SOX11. Therefore, miR-212-3p may serve as a novel therapeutic target and marker for lymphoma.
Collapse
Affiliation(s)
- Yuyang Tian
- Department of Hematology, Hainan Cancer Hospital, Haikou, Hainan 571000, P.R. China
| | - Li Wang
- Department of Hematology, Huai'an Hospital Affiliated to Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, Jiangsu 223002, P.R. China
| | - Yanming Zhang
- Department of Hematology, Huai'an Hospital Affiliated to Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, Jiangsu 223002, P.R. China
| | - Lianqiao Li
- Department of Hematology, Hainan Cancer Hospital, Haikou, Hainan 571000, P.R. China
| | - Yingying Fei
- Department of Radiotherapy, Huai'an Hospital Affiliated to Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, Jiangsu 223002, P.R. China
| | - Xingxia Zhang
- Department of Hematology, Huai'an Hospital Affiliated to Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, Jiangsu 223002, P.R. China
| | - Guoqiang Lin
- Department of Hematology, Huai'an Hospital Affiliated to Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, Jiangsu 223002, P.R. China
| |
Collapse
|
6
|
Ren B, Wang L, Nan Y, Liu T, Zhao L, Ma H, Li J, Zhang Y, Ren X. RAB1A regulates glioma cellular proliferation and invasion via the mTOR signaling pathway and epithelial-mesenchymal transition. Future Oncol 2021; 17:3203-3216. [PMID: 33947216 DOI: 10.2217/fon-2021-0116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aim: We aimed at investigating the mechanism of RAB1A proliferation and invasion in gliomas. Materials & methods: Genome-wide expression profile data and immunohistochemistry were analyzed to assess RAB1A expression in gliomas. The Transwell assay, wound healing assay, brain slice coculture model, cellular fluorescence and intracranial xenograft model of nude mice were used to determine the proliferation and invasion of glioma cells. Results & conclusion: RAB1A was highly expressed in gliomas compared with normal brain tissue. The overall survival time of glioma patients with high RAB1A expression was significantly shortened. RAB1A regulated the activity of RAC1 by inhibiting the mTOR signaling pathway, affecting actin polymerization, cell morphology and cell polarity. RAB1A downregulation inhibited the epithelial-mesenchymal transition, proliferation and invasion of glioma cells.
Collapse
Affiliation(s)
- Bingcheng Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, 300308, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Le Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, 300308, China
| | - Yang Nan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, 300308, China
| | - Tong Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, 300308, China
| | - Liwen Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, 300308, China
| | - Haiwen Ma
- Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, 300308, China
| | - Jiabo Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Yiming Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Xiao Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China
| |
Collapse
|
7
|
Xiong B, Huang J, Liu Y, Zou M, Zhao Z, Gong J, Wu X, Qiu C. Ubiquitin-specific protease 2a promotes hepatocellular carcinoma progression via deubiquitination and stabilization of RAB1A. Cell Oncol (Dordr) 2021; 44:329-343. [PMID: 33074477 DOI: 10.1007/s13402-020-00568-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2020] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Deubiquitination, the inverse process of ubiquitination, is catalyzed by deubiquitinases (DUBs) that remove ubiquitin from target proteins and subsequently prevent their degradation by proteasomes. Previously, deubiquitination has been found to be involved in hepatocellular carcinoma (HCC) progression. As yet, however, little is known about the exact role of deubiquitination in the development and/or progression of this type of cancer. METHODS HCC tissues and tissue microarrays were used to detect expression of the DUB ubiquitin-specific protease 2a (USP2a). The critical role of USP2a in HCC development and progression was assessed in both in vitro cell and in vivo animal models. LC-MS/MS analyses were performed to identify potential targets of USP2a in HCC cells, after which regulation of target protein stability and ubiquitin status by USP2a were investigated. RESULTS We found that USP2a was significantly upregulated in HCC tissues, and that a high expression was positively associated with a poor prognosis. Subsequently, we found that USP2a silencing resulted in inhibition of HCC cell proliferation, migration and invasion, whereas exogenous USP2a overexpression resulted in the opposite effects, both in vitro and in vivo. Mechanistically, LC-MS/MS analysis revealed that RAB1A, a key regulator of the ER and Golgi vesicular transport system, serves as a potential target of USP2a in HCC cells. In addition, we found that USP2a can deubiquitinate and stabilize RAB1A and prevent its degradation, and that this process is required for inducing HCC progression by USP2a. CONCLUSIONS Our data indicate that USP2a can promote HCC progression via deubiquitination and stabilization of RAB1A. This observation indicates that DUB targeting may serve as a novel approach to improve the treatment of HCC.
Collapse
Affiliation(s)
- Bin Xiong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Junwei Huang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yan Liu
- Department of Gastroenterology, The Fifth people's Hospital of Chengdu, Chengdu, Sichuan, 611130, People's Republic of China
| | - Min Zou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Zhibo Zhao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Xiaoling Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Chan Qiu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
8
|
Mi Y, Li Y, He Z, Chen D, Hong Q, You J. Upregulation of Linc-ROR Promotes the Proliferation, Migration, and Invasion of Gastric Cancer Cells Through miR-212-3p/FGF7 Axis. Cancer Manag Res 2021; 13:899-912. [PMID: 33564265 PMCID: PMC7867499 DOI: 10.2147/cmar.s287775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
Background Linc-ROR is a long non-coding RNA, that is found aberrantly expressed in various human cancers. We aim here to unveil the role of Linc-ROR in gastric cancer (GC) progression. Methods qPCR was used to determine gene expression. Cell viability was measured by CCK-8 assay. Transwell assays were performed to evaluate the GC cells’ migratory and invasive abilities. Xenograft mouse model was conducted to measure tumor growth. Results We found that Linc-ROR were overexpressed in GC tissues compared to the adjacent tissues. High Linc-ROR predicts poor prognosis of GC patients. The prediction of bioinformatics online revealed that Linc-ROR could bind to miR-212-3p. Further, dual-luciferase reporter assay confirmed a direct interaction between Linc-ROR and miR-212-3p. Overexpression of miR-212-3p facilitated GC cells’ migration and invasion, while the silencing of miR-212-3p attenuated GC cell migratory and invasive abilities. Moreover, Linc-ROR knockdown significantly suppressed the proliferation, migration, and invasion of GC cells, whereas miR-212-3p antagomir partially reversed Linc-ROR knockdown-induced phenotypes. Fibroblast growth factor 7 (FGF7), a downstream molecule of miR-212-3p, was overexpressed in GC cells. The recovery of FGF7 expression partially reversed the phenotypes caused by Linc-ROR silencing. Mechanistically, silencing of Linc-ROR contributed to the downregulation of CDK4, CDK6, Cyclin D1, N-Cadherin, Vimentin, MMP-9, MMP-2, but caused the upregulation of P21, P27, E-Cadherin, CK-19 in MGC-803 cells; however, FGF7 treatment could reverse the results induced by Linc-ROR silencing. Results in vivo further suggested that Linc-ROR knockdown repressed GC tumor growth, where the expression of miR-212-3p was up-regulated and FGF7 expression was downregulated in tumor tissues of mice. Conclusion These findings indicated that Linc-ROR/miR-212-3p/FGF7 axis played an important role in gastric cancer progression. Linc-ROR expression level was associated with the prognosis of GC patients.
Collapse
Affiliation(s)
- Yanjun Mi
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian Province, 361003, People's Republic of China
| | - Yongwen Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian Province, 361003, People's Republic of China
| | - Zhuo He
- Department of Gastropancreatoduodenal Surgery, Hunan Cancer Hospital, Changsha, Hunan Province, 410013, People's Republic of China
| | - Donghan Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian Province, 361003, People's Republic of China
| | - Qingqi Hong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian Province, 361003, People's Republic of China
| | - Jun You
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian Province, 361003, People's Republic of China
| |
Collapse
|
9
|
Yang J, Cui R, Liu Y. MicroRNA-212-3p inhibits paclitaxel resistance through regulating epithelial-mesenchymal transition, migration and invasion by targeting ZEB2 in human hepatocellular carcinoma. Oncol Lett 2020; 20:23. [PMID: 32774496 PMCID: PMC7406882 DOI: 10.3892/ol.2020.11884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/01/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common tumor malignances with poor chemotherapeutic efficiency due to chemoresistance. MicroRNAs (miRNAs) have essential roles in regulating chemoresistance. However, the mechanism underlying the involvement of miR-212-3p in paclitaxel (PTX) resistance in HCC remains unclear. PTX resistance was investigated in the present study by assessing cell viability, the half maximal inhibitory concentration of PTX, resistance-associated protein levels and apoptosis. The expression levels of miR-212-3p and zinc finger E-box binding homeobox 2 (ZEB2) were detected by reverse transcription-quantitative PCR and western blotting. The epithelial-mesenchymal transition (EMT), migration and invasion were evaluated by western blotting and transwell assay. The association between miR-212-3p and ZEB2 was investigating by the luciferase activity. The results showed that treatment of HCC cells with PTX inhibited cell viability and miR-212-3p level. Moreover, miR-212-3p was reduced and its overexpression resulted in decreased cell viability, half maximal inhibitory concentration (IC50) of PTX and levels of P-glycoprotein and glutathione S-transferase π, but increased cell apoptosis, in Huh7/PTX cells. However, miR-212-3p knockdown induced opposite effects in Huh7 cells. Furthermore, EMT, migration and invasion were induced in Huh7/PTX cells and the addition of miR-212-3p inhibited EMT, migration and invasion. Meanwhile, miR-212-3p abrogation caused the opposite effects in Huh7 cells. Additionally, ZEB2 was directly targeted by miR-212-3p and its restoration or silencing abated the effect of miR-221-3p overexpression or knockdown in Huh7/PTX or Huh7 cells, respectively. The data from the present study suggest that miR-212-3p attenuates PTX resistance, by regulating EMT, migration and invasion via targeting ZEB2 in HCC cells, indicating a novel target for HCC chemotherapy.
Collapse
Affiliation(s)
- Jianyu Yang
- Workshop of National TCM Master, Sun Guangrong, The Harmonizing School of TCM, Beijing University of Chinese Medicine, Haikou, Hainan 570208, P.R. China.,Inheritance Workshop in Beijing Hepingli Hospital for National TCM Master, Sun Guangrong, Haikou, Hainan 570208, P.R. China
| | - Ronghua Cui
- Department of Oncology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan 570208, P.R. China
| | - Yingke Liu
- Department of Pediatrics, Beijing Hepingli Hospital, Beijing 100013, P.R. China
| |
Collapse
|
10
|
MiR-19b-3p facilitates the proliferation and epithelial-mesenchymal transition, and inhibits the apoptosis of intrahepatic cholangiocarcinoma by suppressing coiled-coil domain containing 6. Arch Biochem Biophys 2020; 686:108367. [PMID: 32315652 DOI: 10.1016/j.abb.2020.108367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/26/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is the second most common primary hepatocellular carcinoma, and microRNAs (miRNAs) play a vital role in its development. This study aimed to explore the molecular mechanism and clinical value of miR-19b-3p in ICC. METHODS From March 2014 to October 2016, 94 pairs of specimens of ICC tissues and adjacent tissues were collected. Moreover, 5 ml of peripheral blood of 342 ICC patients who underwent ICC resection were collected before and one week after surgery. Luciferase activity assay was performed to confirm the regulation of miR-19b-3p on coiled-coil domain containing 6 (CCDC6). BALB/c nude mice were injected with CCLP-1 cells which were transfected with NC, miR-19b-3p mimic, miR-19b-3p inhibitor, pcDNA-CCDC6, si-CCDC6 or miR-19b-3p mimic + pcDNA-CCDC6. RESULTS Results showed that miR-19b-3p levels were significantly higher in ICC tissues compared with adjacent tissues. Moreover, serum miR-19b-3p levels of ICC patients tended to decline after surgery, and were correlated with lymph node metastasis and histological grading of ICC. CCDC6, a new target gene of miR-19b-3p, was identified by four prediction databases. We confirmed that miR-19b-3p promoted cell proliferation and epithelial-mesenchymal transition (EMT), and inhibited apoptosis in ICC, while knockdown of CCDC6 reversed these effects. We also observed that miR-19b-3p/CCDC6 axis regulated the nuclear translocation of β-catenin. Furthermore, in vivo study also demonstrated that the miR-19b-3p/CCDC6 axis regulated EMT to promote ICC progression. CONCLUSION These results indicate that serum miR-19b-3p level is a crucial biomarker for ICC diagnosis and targeting miR-19b-3p-CCDC6 axis might be a promising strategy in ICC therapy.
Collapse
|
11
|
Shao X, Cheng Z, Xu M, Mao J, Wang J, Zhou C. Prognosis, Significance and Positive Correlation of Rab1A and p-S6K/Gli1 Expression in Gastric Cancer. Anticancer Agents Med Chem 2020; 19:1359-1367. [PMID: 31038077 DOI: 10.2174/1871520619666190416110851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/23/2018] [Accepted: 04/03/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Gastric Cancer (GC) is a frequently common malignancy. Recent studies have reported Rab1A as an activator of mTORC1, and the mTOR1 pathway is involved in regulating Gli1 expression in several cancers. Only a few studies have been performed to explore the relationship between Rab1A and p-S6K/Gli1in GC. METHODS Immunohistochemistry (IHC) was performed to explore the association of Rab1A/p-S6K/Gli1 expression and prognosis in 117 GC tissue samples and adjacent normal tissues. RESULTS Our results indicated that Rab1A/p-S6K/Gli1 was significantly overexpressed in GC tissues. High expression of Rab1A was closely related to the tumor size and the depth of tumor invasion. In addition, Rab1A expression was closely related with p-S6K/Gli1 expression in GC, and high level of Rab1A/p-S6K/Gli1 caused worse prognosis of GC patients. The univariate and multivariate analysis indicated that the expression of Rab1A was an independent prognostic factor. Moreover, both high Rab1A and p-S6K expression led to a worse prognosis when compared to a single positive expression as well as both high Rab1A/Gli1 expression also led to a worse prognosis than the single positive expression of Rab1A/Gli1. Strikingly, the overexpression of p-S6K also led to a worse prognosis in Rab1A positive patients, as did Gli1. CONCLUSION Our results indicate that Rab1A/mTOR/S6K/Gli1 axis played a crucial role in GC, which may provide a novel field on targeted therapy of GC, especially for mTORC1-targeted therapy-resistant cancers.
Collapse
Affiliation(s)
- Xinyu Shao
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215006, China
| | - Zhengwu Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
| | - Menglin Xu
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
| | - Jiading Mao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
| | - Junfeng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
| | - Chunli Zhou
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215006, China
| |
Collapse
|
12
|
Zhang L, Zhang Y, Wang S, Tao L, Pang L, Fu R, Fu Y, Liang W, Li F, Jia W. MiR-212-3p suppresses high-grade serous ovarian cancer progression by directly targeting MAP3K3. Am J Transl Res 2020; 12:875-888. [PMID: 32269720 PMCID: PMC7137041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 02/09/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are small regulatory non-coding RNAs that have been reported to play an important role in the tumorigenesis of many cancers. In addition, miRNAs might serve as new promising biomarkers for diagnosis and prognosis and as effective therapeutic targets for patients with such malignancies. Accordingly, the dysregulation of miR-212-3p has been reported in a variety of human cancers. However, its biological functions and molecular mechanisms high-grade serous ovarian cancer (HGSOG) remain unknown. In this study, we demonstrated that miR-212-3p interacts with MAP3K3 based on bioinformatics-based predictions. Further, MAP3K3 was identified as a direct target gene of miR-212-3p in HGSOC. In addition, overexpression of miR-212-3p in HGSOC inhibited cell proliferation, colony formation, invasion, and migration. In contrast MAP3K3 mitigated the suppressive effects of miR-212-3p on HGSOC cell proliferation, invasion, and migration. Furthermore, miR-212-3p was significantly downregulated in HGSOC tissues compared to expression in normal fallopian tube tissues and was inversely associated with MAP3K3 levels. Accordingly, low miR-212-3p expression was also correlated with poor prognosis for HGSOC patients. In conclusion, miR-212-3p might act as a suppressor of HGSOC carcinogenesis by directly targeting MAP3K3. Therefore, this miRNA could be a novel and effective target for the treatment of patients with HGSOC.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi, China
| | - Ying Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi, China
| | - Shasha Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi, China
| | - Lin Tao
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi, China
| | - Lijuan Pang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi, China
| | - Ruiting Fu
- Department of Obestetrics and Gynecology, The First Affiliated Hospital School of Medicine, Shihezi UniversityShihezi, China
| | - Yu Fu
- Department of Obestetrics and Gynecology, The First Affiliated Hospital School of Medicine, Shihezi UniversityShihezi, China
| | - Weihua Liang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi, China
| | - Feng Li
- Department of Pathology, Beijing Chaoyang HospitalBeijing, China
| | - Wei Jia
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi, China
| |
Collapse
|
13
|
Multifaceted Aspects of Metabolic Plasticity in Human Cholangiocarcinoma: An Overview of Current Perspectives. Cells 2020; 9:cells9030596. [PMID: 32138158 PMCID: PMC7140515 DOI: 10.3390/cells9030596] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a deadly tumor without an effective therapy. Unique metabolic and bioenergetics features are important hallmarks of tumor cells. Metabolic plasticity allows cancer cells to survive in poor nutrient environments and maximize cell growth by sustaining survival, proliferation, and metastasis. In recent years, an increasing number of studies have shown that specific signaling networks contribute to malignant tumor onset by reprogramming metabolic traits. Several evidences demonstrate that numerous metabolic mediators represent key-players of CCA progression by regulating many signaling pathways. Besides the well-known Warburg effect, several other different pathways involving carbohydrates, proteins, lipids, and nucleic acids metabolism are altered in CCA. The goal of this review is to highlight the main metabolic processes involved in the cholangio-carcinogeneis that might be considered as potential novel druggable candidates for this disease.
Collapse
|
14
|
Li Y, Zhang X, Fu Z, Zhou Q. MicroRNA-212-3p Attenuates Neuropathic Pain via Targeting Sodium Voltage-gated Channel Alpha Subunit 3 (NaV 1.3). Curr Neurovasc Res 2020; 16:465-472. [PMID: 31713483 DOI: 10.2174/1567202616666191111104145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022]
Abstract
Purpose:
To explore the role and potential mechanism of miR-212-3p in neuropathic
pain regulation.
Methods:
Adult male rats were used to establish chronic constriction injury (CCI) model to mimic
the neuropathic pain. Then, paw withdrawal threshold (PWT) and paw withdrawal thermal latency
(PWL) were determined. The concentrations of interleukin 1 beta (IL-1β), interleukin 6 (IL-6) and
tumor necrosis factor-alpha (TNF-α) were measured with enzyme-linked immune sorbent assay
(ELISA) kit and the expression of miR-212-3p was measured by real time quantitative PCR (RTqPCR).
Besides, miR-212-3p agomir was intrathecally injected into CCI rats and the expression of
key apoptotic proteins was determined by western blot. Furthermore, dual-luciferase reporter assay
was used to determine the binding of miR-212-3p and 3’ untranslated regions (3’UTR) of NaV1.3
and the expression levels of NaV1.3 were measured by western blot and RT-qPCR.
Results:
In the CCI group, the PWT and PWL were significantly decreased and IL-1β, IL-6 and
TNF-α were increased. miR-212-3p was decreased in response to CCI. The intrathecal injection of
miR-212-3p agomir into CCI rats improved the PWT and PWL, decreased the IL-1β, IL-6 and
TNF-α, decreased the expression levels of BCL2 associated X, apoptosis regulator (Bax), cleaved
caspase-3 and increased the expression levels of BCL2 apoptosis regulator (Bcl-2). The results of
dual--luciferase reporter assay showed that miR-212-3p could directly bind with 3’UTR of NaV1.3.
The expression of NaV1.3 was up-regulated in CCI rats who were intrathecally injected with miRctrl,
whereas it decreased in CCI rats intrathecally injected with miR-212-3p agomir.
Conclusion:
The expression of miR-212a-3p attenuates neuropathic pain by targeting NaV1.3.
Collapse
Affiliation(s)
- Yingda Li
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng City, Inner Mongolia Autonomous Region, 024000, China
| | - Xizhe Zhang
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng City, Inner Mongolia Autonomous Region, 024000, China
| | - Zhimei Fu
- Department of Anesthesiology, Tongde Hospital of Zhejiang Province, Hangzhou City, Zhejiang Province, 310012, China
| | - Qi Zhou
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng City, Inner Mongolia Autonomous Region, 024000, China
| |
Collapse
|
15
|
HIF-1-miR-219-SMC4 Regulatory Pathway Promoting Proliferation and Migration of HCC under Hypoxic Condition. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8983704. [PMID: 31828143 PMCID: PMC6885181 DOI: 10.1155/2019/8983704] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 01/09/2023]
Abstract
This paper aims to investigate the function of structural maintenance of chromosome 4 (SMC4) in the progression of hepatocellular carcinoma (HCC) under hypoxic condition. In this study, we found that suppression of SMC4 could inhibit proliferation and migration of HCC cells through inducing G1 phase arrest and affecting process of epithelial-mesenchymal transition (EMT) under hypoxic condition. Moreover, we demonstrated that SMC4 was transcriptionally regulated by hypoxia-inducible factor-1 (HIF-1) under hypoxic condition. As SMC has been shown to be a target gene of miR-219, we observed that miR-219 was downregulated under hypoxic condition and suppression of HIF-1a could lead to the upregulation of miR-219. We also proved that miR-219 could affect the proliferation and migration of HCC cells under hypoxic condition. In conclusion, our study demonstrated a novel HIF-1-miR-219-SMC4 regulatory pathway under hypoxic condition in HCC cells.
Collapse
|
16
|
Expression analysis and implication of Rab1A in gastrointestinal relevant tumor. Sci Rep 2019; 9:13384. [PMID: 31527621 PMCID: PMC6746845 DOI: 10.1038/s41598-019-49786-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/31/2019] [Indexed: 12/20/2022] Open
Abstract
Gastrointestinal cancers have become increasingly prevalent worldwide. Previous studies have reported an oncogenic function of Rab1A in colorectal cancer and hepatocellular carcinomas via the mTOR pathway. However, the exact role of Rab1A in gastrointestinal cancers remains elusive. We detected significantly higher expression of Rab1A in the gastrointestinal tumor tissues compared to that in other cancer types following an in silico analysis of TGCA and GTEX databases. Furthermore, Rab1A was overexpressed in the gastrointestinal tumor tissues compared to the para-tumor tissues. Although Rab1A expression levels were not associated with the tumor-lymph node-metastasis (TNM) stage, Rab1A overexpression in the tumor tissues of a gastric cancer (GC) cohort was strongly correlated with poor prognosis in the patients. In addition, Rab1A knockdown significantly inhibited the in vitro proliferation and migration abilities of GC cells, as well as the growth of GC xenografts in vivo. Furthermore, a positive correlation was observed between Rab1A expression levels and that of different upstream/downstream mTOR targets. Taken together, Rab1A regulates the PI3K-AKT-mTORC1 pathway through the mTORC1 complex consisting of mTORC1, Rheb and Rab1A, and is a promising therapeutic target in GC.
Collapse
|
17
|
Wu X, Chen H, Zhang G, Wu J, Zhu W, Gu Y, He YI. MiR-212-3p inhibits cell proliferation and promotes apoptosis by targeting nuclear factor IA in bladder cancer. J Biosci 2019; 44:80. [PMID: 31502558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Accumulating evidence suggest that microRNAs play crucial roles in the development and progression of bladder cancer (BC). Here, we found that miR-212-3p was significantly down-regulated and negatively correlated with nuclear factor IA (NFIA) in human BC tissues. Bioinformatics analysis predicted that NFIA was a target gene of miR-212-3p. Then BC cell lines, T24 and J82 cells were transfected with miR-212-3p mimics or siNFIA to obtain miR-212-3p overexpression or NFIA knockdown cell lines, respectively. Quantitative real-time PCR was used to determine the expression of miR-212-3p and NFIA. Western blot analysis was utilized to detect NFIA expression. MTT assay showed either miR-212-3 overexpression or NFIA knockdown significantly inhibited the BC cell proliferation. Double staining with Annexin V-APC and 7-AAD showed the total number of apoptotic BC cells were remarkably increased after miR-212-3p overexpression or NFIA knockdown. Collectively, our results indicated that miR-212-3p targeting NFIA might serve as a promising target for BC.
Collapse
Affiliation(s)
- Xiaoming Wu
- Department of Urology, the First Hospital of Jiaxing, Jiaxing, Zhejiang Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
18
|
Wu X, Chen H, Zhang G, Wu J, Zhu W, Gu Y, He Y. MiR-212-3p inhibits cell proliferation and promotes apoptosis by targeting nuclear factor IA in bladder cancer. J Biosci 2019. [DOI: 10.1007/s12038-019-9903-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|