1
|
Huang Y, Ge MX, Li YH, Li JL, Yu Q, Xiao FH, Ao HS, Yang LQ, Li J, He Y, Kong QP. Longevity-Associated Transcription Factor ATF7 Promotes Healthspan by Suppressing Cellular Senescence and Systematic Inflammation. Aging Dis 2023:AD.2022.1217. [PMID: 37163432 PMCID: PMC10389835 DOI: 10.14336/ad.2022.1217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/17/2022] [Indexed: 05/12/2023] Open
Abstract
Aging is characterized by persistent low-grade systematic inflammation, which is largely responsible for the occurrence of various age-associated diseases. We and others have previously reported that long-lived people (such as centenarians) can delay the onset of or even escape certain major age-related diseases. Here, by screening blood transcriptome and inflammatory profiles, we found that long-lived individuals had a relatively lower inflammation level (IL6, TNFα), accompanied by up-regulation of activating transcription factor 7 (ATF7). Interestingly, ATF7 expression was gradually reduced during cellular senescence. Loss of ATF7 induced cellular senescence, while overexpression delayed senescence progress and senescence-associated secretory phenotype (SASP) secretion. We showed that the anti-senescence effects of ATF7 were achieved by inhibiting nuclear factor kappa B (NF-κB) signaling and increasing histone H3K9 dimethylation (H3K9me2). In Caenorhabditis elegans, ATF7 overexpression significantly suppressed aging biomarkers and extended lifespan. Our findings suggest that ATF7 is a longevity-promoting factor that lowers cellular senescence and inflammation in long-lived individuals.
Collapse
Affiliation(s)
- Yaqun Huang
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Department of Dermatology/National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Xia Ge
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Hong Li
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jing-Lin Li
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Department of Dermatology/National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Yu
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hong-Shun Ao
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Li-Qin Yang
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ji Li
- Department of Dermatology/National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Yonghan He
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
2
|
Lin YJ, Cheng CF, Wang CH, Liang WM, Tang CH, Tsai LP, Chen CH, Wu JY, Hsieh AR, Lee MTM, Lin TH, Liao CC, Huang SM, Zhang Y, Tsai CH, Tsai FJ. Genetic Architecture Associated With Familial Short Stature. J Clin Endocrinol Metab 2020; 105:5805154. [PMID: 32170311 DOI: 10.1210/clinem/dgaa131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/10/2020] [Indexed: 12/21/2022]
Abstract
CONTEXT Human height is an inheritable, polygenic trait under complex and multilocus genetic regulation. Familial short stature (FSS; also called genetic short stature) is the most common type of short stature and is insufficiently known. OBJECTIVE To investigate the FSS genetic profile and develop a polygenic risk predisposition score for FSS risk prediction. DESIGN AND SETTING The FSS participant group of Han Chinese ancestry was diagnosed by pediatric endocrinologists in Taiwan. PATIENTS AND INTERVENTIONS The genetic profiles of 1163 participants with FSS were identified by using a bootstrapping subsampling and genome-wide association studies (GWAS) method. MAIN OUTCOME MEASURES Genetic profile, polygenic risk predisposition score for risk prediction. RESULTS Ten novel genetic single nucleotide polymorphisms (SNPs) and 9 reported GWAS human height-related SNPs were identified for FSS risk. These 10 novel SNPs served as a polygenic risk predisposition score for FSS risk prediction (area under the curve: 0.940 in the testing group). This FSS polygenic risk predisposition score was also associated with the height reduction regression tendency in the general population. CONCLUSION A polygenic risk predisposition score composed of 10 genetic SNPs is useful for FSS risk prediction and the height reduction tendency. Thus, it might contribute to FSS risk in the Han Chinese population from Taiwan.
Collapse
Affiliation(s)
- Ying-Ju Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chi-Fung Cheng
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Chung-Hsing Wang
- Children's Hospital of China Medical University, Taichung, Taiwan
| | - Wen-Miin Liang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Li-Ping Tsai
- Department of Pediatrics, Taipei Tzu Chi Hospital, New Taipei City, Taiwan
| | - Chien-Hsiun Chen
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jer-Yuarn Wu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ai-Ru Hsieh
- Department of Statistics, Tamkang University, New Taipei City, Taiwan
| | | | - Ting-Hsu Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yanfei Zhang
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania, USA
| | - Chang-Hai Tsai
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Children's Hospital of China Medical University, Taichung, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| |
Collapse
|
3
|
Vigneron M, Dietsch F, Bianchetti L, Dejaegere A, Nominé Y, Cordonnier A, Zuber G, Chatton B, Donzeau M. Self-Associating Peptides for Modular Bifunctional Conjugation of Tetramer Macromolecules in Living Cells. Bioconjug Chem 2019; 30:1734-1744. [PMID: 31091078 DOI: 10.1021/acs.bioconjchem.9b00276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Monitoring the assembly of macromolecules to design entities with novel properties can be achieved either chemically creating covalent bonds or by noncovalent connections using appropriate structural motifs. In this report, two self-associating peptides (named K3 and E3) that originate from p53 tetramerization domain were developed as tools for highly specific and noncovalent heterotetramerization of two biomolecules. The pairing/coupling preferences of K3 and E3 were first evaluated by molecular modeling data and confirmed using circular dichroism spectroscopy, size-exclusion chromatography, and biological assays. Regardless of the moieties fused to K3 and E3, these two peptides self-assembled into dimers of dimers to form bivalent heterotetrameric complexes that proved to be extremely stable inside living cells. The benefits of the multivalency in terms of avidity, specificity, and expanded functional activity were strikingly revealed when the proliferating cell nuclear antigen (PCNA), which is essential for DNA replication, was targeted using a heterotetramer presenting both an antibody fragment against PCNA and a specific PCNA binder peptide. In vitro heterotetramerization of these two known PCNA ligands increased their binding efficiencies to PCNA up to 80-fold compared to the best homotetramer counterpart. In cellulo, the heterotetramers were able to efficiently inhibit DNA replication and to trigger cell death. Altogether, we demonstrate that these two biselective self-assembling peptidic domains offer a versatile noncovalent conjugation method that can be easily implemented for protein engineering.
Collapse
Affiliation(s)
- Marc Vigneron
- UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie Strasbourg , Université de Strasbourg , F-67412 Illkirch , France
| | - Frank Dietsch
- UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie Strasbourg , Université de Strasbourg , F-67412 Illkirch , France
| | - Laurent Bianchetti
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) , INSERM U1258, CNRS UMR 7104, Université de Strasbourg , 1 Rue Laurent Fries, BP 10142 , 67404 Illkirch , France
| | - Annick Dejaegere
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) , INSERM U1258, CNRS UMR 7104, Université de Strasbourg , 1 Rue Laurent Fries, BP 10142 , 67404 Illkirch , France
| | - Yves Nominé
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) , INSERM U1258, CNRS UMR 7104, Université de Strasbourg , 1 Rue Laurent Fries, BP 10142 , 67404 Illkirch , France
| | - Agnès Cordonnier
- UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie Strasbourg , Université de Strasbourg , F-67412 Illkirch , France
| | - Guy Zuber
- UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie Strasbourg , Université de Strasbourg , F-67412 Illkirch , France
| | - Bruno Chatton
- UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie Strasbourg , Université de Strasbourg , F-67412 Illkirch , France
| | - Mariel Donzeau
- UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie Strasbourg , Université de Strasbourg , F-67412 Illkirch , France
| |
Collapse
|
4
|
Song F, Wei M, Wang J, Liu Y, Guo M, Li X, Luo J, Zhou J, Wang M, Guo D, Chen L, Sun G. Hepatitis B virus-regulated growth of liver cancer cells occurs through the microRNA-340-5p-activating transcription factor 7-heat shock protein A member 1B axis. Cancer Sci 2019; 110:1633-1643. [PMID: 30891870 PMCID: PMC6501011 DOI: 10.1111/cas.14004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cancer with poor prognosis. Hepatitis B virus (HBV) is one of the leading causes of HCC, but the precise mechanisms by which this infection promotes cancer development are not fully understood. Recently, miR‐340‐5p, a microRNA (miRNA) that has been identified as a cancer suppressor gene, was found to inhibit the migration and invasion of liver cancer cells. However, the effect of miR‐340‐5p on cell proliferation and apoptosis in HBV‐associated HCC remains unknown. In our study, we show that miR‐340‐5p plays an important role during HBV infection and hepatocellular carcinoma development. Specifically, this miRNA directly binds to the mRNA encoding activating transcription factor 7 (ATF7), a protein that both promotes cell proliferation and suppresses apoptosis through its interaction with heat shock protein A member 1B (HSPA1B). We further found that miR‐340‐5p is downregulated by HBV, which enhances ATF7 expression, leading to enhanced cell proliferation and inhibition of apoptosis. Notably, ATF7 is upregulated in HCC tissue, suggesting that HBV may target miR‐340‐5p in vivo to promote ATF7/HSPA1B‐mediated proliferation and apoptosis and regulate liver cancer progression. This work helps to elucidate the complex interactions between HBV and host miRNAs and further suggests that miR‐340‐5p may represent a promising candidate for the development of improved therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Feifei Song
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Mingcong Wei
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jingwen Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yang Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Mingxiong Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaolu Li
- Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan, China
| | - Jun Luo
- Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junying Zhou
- Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Deyin Guo
- School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Lang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Guihong Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan, China
| |
Collapse
|
5
|
Tao W, Zhang Y, Ma L, Deng C, Duan H, Liang X, Liao R, Lin S, Nie T, Chen W, Wang C, Birchmeier C, Jia S. Haploinsufficiency of Insm1 Impairs Postnatal Baseline β-Cell Mass. Diabetes 2018; 67:2615-2625. [PMID: 30257979 DOI: 10.2337/db17-1330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 09/21/2018] [Indexed: 11/13/2022]
Abstract
Baseline β-cell mass is established during the early postnatal period when β-cells expand. In this study, we show that heterozygous ablation of Insm1 decreases baseline β-cell mass and subsequently impairs glucose tolerance. When exposed to a high-fat diet or on an ob/ob background, glucose intolerance was more severe in Insm1+/lacZ mice compared with Insm1+/+ mice, although no further decrease in the β-cell mass was detected. In islets of early postnatal Insm1+/lacZ mice, the cell cycle was prolonged in β-cells due to downregulation of the cell cycle gene Ccnd1 Although Insm1 had a low affinity for the Ccnd1 promoter compared with other binding sites, binding affinity was strongly dependent on Insm1 levels. We observed dramatically decreased binding of Insm1 to the Ccnd1 promoter after downregulation of Insm1 expression. Furthermore, downregulation of Ccnd1 resulted in a prolonged cell cycle, and overexpression of Ccnd1 rescued cell cycle abnormalities observed in Insm1-deficient β-cells. We conclude that decreases in Insm1 interfere with β-cell specification during the early postnatal period and impair glucose homeostasis during metabolic stress in adults. Insm1 levels are therefore a factor that can influence the development of diabetes.
Collapse
Affiliation(s)
- Weihua Tao
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yao Zhang
- Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Lijuan Ma
- The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Jinan University, Guangzhou, China
| | - Chujun Deng
- The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Jinan University, Guangzhou, China
| | - Hualin Duan
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xuehua Liang
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Rui Liao
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shaoqiang Lin
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Tao Nie
- The First Affiliated Hospital, Jinan University, Guangzhou, China
- Institute of Clinical Medicine, Jinan University, Guangzhou, China
| | - Wanqun Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Jinan University, Guangzhou, China
| | - Cunchuan Wang
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Shiqi Jia
- The First Affiliated Hospital, Jinan University, Guangzhou, China
- Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute of Clinical Medicine, Jinan University, Guangzhou, China
| |
Collapse
|