1
|
Conti BA, Ruiz PD, Broton C, Blobel NJ, Kottemann MC, Sridhar S, Lach FP, Wiley TF, Sasi NK, Carroll T, Smogorzewska A. RTF2 controls replication repriming and ribonucleotide excision at the replisome. Nat Commun 2024; 15:1943. [PMID: 38431617 PMCID: PMC10908796 DOI: 10.1038/s41467-024-45947-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
DNA replication through a challenging genomic landscape is coordinated by the replisome, which must adjust to local conditions to provide appropriate replication speed and respond to lesions that hinder its progression. We have previously shown that proteasome shuttle proteins, DNA Damage Inducible 1 and 2 (DDI1/2), regulate Replication Termination Factor 2 (RTF2) levels at stalled replisomes, allowing fork stabilization and restart. Here, we show that during unperturbed replication, RTF2 regulates replisome localization of RNase H2, a heterotrimeric enzyme that removes RNA from RNA-DNA heteroduplexes. RTF2, like RNase H2, is essential for mammalian development and maintains normal replication speed. However, persistent RTF2 and RNase H2 at stalled replication forks prevent efficient replication restart, which is dependent on PRIM1, the primase component of DNA polymerase α-primase. Our data show a fundamental need for RTF2-dependent regulation of replication-coupled ribonucleotide removal and reveal the existence of PRIM1-mediated direct replication restart in mammalian cells.
Collapse
Affiliation(s)
- Brooke A Conti
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA
| | - Penelope D Ruiz
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA
| | - Cayla Broton
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA
| | - Nicolas J Blobel
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA
| | - Molly C Kottemann
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA
| | - Sunandini Sridhar
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA
| | - Francis P Lach
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA
| | - Tom F Wiley
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA
| | - Nanda K Sasi
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY, 10065, USA
| | - Thomas Carroll
- Bioinformatics, The Rockefeller University, New York, NY, 10065, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
2
|
Conti BA, Ruiz PD, Broton C, Blobel NJ, Kottemann MC, Sridhar S, Lach FP, Wiley T, Sasi NK, Carroll T, Smogorzewska A. RTF2 controls replication repriming and ribonucleotide excision at the replisome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532415. [PMID: 36993543 PMCID: PMC10054921 DOI: 10.1101/2023.03.13.532415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Genetic information is duplicated via the highly regulated process of DNA replication. The machinery coordinating this process, the replisome, encounters many challenges, including replication fork-stalling lesions that threaten the accurate and timely transmission of genetic information. Cells have multiple mechanisms to repair or bypass lesions that would otherwise compromise DNA replication1,2. We have previously shown that proteasome shuttle proteins, DNA Damage Inducible 1 and 2 (DDI1/2) function to regulate Replication Termination Factor 2 (RTF2) at the stalled replisome, allowing for replication fork stabilization and restart3. Here we show that RTF2 regulates replisome localization of RNase H2, a heterotrimeric enzyme responsible for removing RNA in the context of RNA-DNA heteroduplexes4-6. We show that during unperturbed DNA replication, RTF2, like RNase H2, is required to maintain normal replication fork speeds. However, persistent RTF2 and RNase H2 at stalled replication forks compromises the replication stress response, preventing efficient replication restart. Such restart is dependent on PRIM1, the primase component of DNA polymerase α-primase. Our data show a fundamental need for regulation of replication-coupled ribonucleotide incorporation during normal replication and the replication stress response that is achieved through RTF2. We also provide evidence for PRIM1 function in direct replication restart following replication stress in mammalian cells.
Collapse
Affiliation(s)
- Brooke A Conti
- Laboratory of Genome Maintenance, The Rockefeller University
| | - Penelope D Ruiz
- Laboratory of Genome Maintenance, The Rockefeller University
| | - Cayla Broton
- Laboratory of Genome Maintenance, The Rockefeller University
| | | | | | | | - Francis P Lach
- Laboratory of Genome Maintenance, The Rockefeller University
| | - Tom Wiley
- Laboratory of Genome Maintenance, The Rockefeller University
| | - Nanda K Sasi
- Laboratory for Cell Biology and Genetics, The Rockefeller University
| | | | | |
Collapse
|
3
|
Apn2 resolves blocked 3' ends and suppresses Top1-induced mutagenesis at genomic rNMP sites. Nat Struct Mol Biol 2019; 26:155-163. [PMID: 30778235 PMCID: PMC6515903 DOI: 10.1038/s41594-019-0186-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/04/2019] [Indexed: 11/25/2022]
Abstract
Ribonucleotides (rNMPs) mis-incorporated during DNA replication are removed by RNase H2 dependent excision repair or by Topoisomerase I – catalyzed cleavage. Top1 cleavage of rNMPs produces 3’ ends harboring terminal adducts, such as 2’, 3’ cyclic phosphate or Top1 cleavage complex (Top1cc), and leads to frequent mutagenesis and DNA damage checkpoint induction. We surveyed a range of candidate enzymes from Saccharomyces cerevisiae for potential roles in Top1 dependent genomic rNMP removal. Genetic and biochemical analyses reveal that Apn2 resolves phosphotyrosine-DNA conjugates, terminal 2’, 3’ cyclic phosphates and their hydrolyzed products. APN2 also suppresses 2-bp slippage mutagenesis in RNH201-deficient cells. Our results define additional activities of Apn2 in resolving a wide range of 3’- end blocks and identify a role of Apn2 in maintaining genome integrity during rNMP repair.
Collapse
|
4
|
Abstract
Topoisomerase I (Top1) resolves torsional stress that accumulates during transcription, replication and chromatin remodeling by introducing a transient single-strand break in DNA. The cleavage activity of Top1 has opposing roles, either promoting or destabilizing genome integrity depending on the context. Resolution of transcription-associated negative supercoils, for example, prevents pairing of the nascent RNA with the DNA template (R-loops) as well as DNA secondary structure formation. Reduced Top1 levels thus enhance CAG repeat contraction, somatic hypermutation, and class switch recombination. Actively transcribed ribosomal DNA is also destabilized in the absence of Top1, reflecting the importance of Top1 in ensuring efficient transcription. In terms of promoting genome instability, an aborted Top1 catalytic cycle stimulates deletions at short tandem repeats and the enzyme's transesterification activity supports illegitimate recombination. Finally, Top1 incision at ribonucleotides embedded in DNA generates deletions in tandem repeats, and induces gross chromosomal rearrangements and mitotic recombination.
Collapse
Affiliation(s)
- Jang-Eun Cho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, CARL 384, Durham, NC, 27710, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, CARL 384, Durham, NC, 27710, USA.
| |
Collapse
|
5
|
Takiuchi Y, Kobayashi M, Tada K, Iwai F, Sakurada M, Hirabayashi S, Nagata K, Shirakawa K, Shindo K, Yasunaga JI, Murakawa Y, Rajapakse V, Pommier Y, Matsuoka M, Takaori-Kondo A. HTLV-1 bZIP factor suppresses TDP1 expression through inhibition of NRF-1 in adult T-cell leukemia. Sci Rep 2017; 7:12849. [PMID: 28993637 PMCID: PMC5634466 DOI: 10.1038/s41598-017-12924-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/20/2017] [Indexed: 11/09/2022] Open
Abstract
Adult T-cell leukemia (ATL) is an aggressive T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1). We recently reported that abacavir, an anti-HIV-1 drug, potently and selectively kills ATL cells. This effect was attributed to the reduced expression of tyrosyl-DNA-phosphodiesterase 1 (TDP1), a DNA repair enzyme, in ATL cells. However, the molecular mechanism underlying the downregulation of TDP1 in ATL cells remains elusive. Here we identified the core promoter of the TDP1 gene, which contains a conserved nuclear respiratory factor 1 (NRF-1) binding site. Overexpression of NRF-1 increased TDP1-promoter activity, whereas the introduction of dominant-negative NRF-1 repressed such activity. Overexpression of NRF-1 also upregulated endogenous TDP-1 expression, while introduction of shNRF-1 suppressed TDP1 in Jurkat T cells, making them susceptible to abacavir. These results indicate that NRF-1 is a positive transcriptional regulator of TDP1-gene expression. Importantly, we revealed that HTLV-1 bZIP factor (HBZ) protein which is expressed in all ATL cases physically interacts with NRF-1 and inhibits the DNA-binding ability of NRF-1. Taken together, HBZ suppresses TDP1 expression by inhibiting NRF-1 function in ATL cells. The HBZ/NRF-1/TDP1 axis provides new therapeutic targets against ATL and might explain genomic instability leading to the pathogenesis of ATL.
Collapse
Affiliation(s)
- Yoko Takiuchi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawaracho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masayuki Kobayashi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawaracho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Kohei Tada
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawaracho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Fumie Iwai
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawaracho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Maki Sakurada
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawaracho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shigeki Hirabayashi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawaracho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kayoko Nagata
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawaracho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kotaro Shirakawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawaracho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Keisuke Shindo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawaracho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Jun-Ichirou Yasunaga
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-kawaracho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yasuhiro Murakawa
- RIKEN Preventive Medicine and Diagnosis Innovation Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Vinodh Rajapakse
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 5068, Bethesda, MD, 20892-4255, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 5068, Bethesda, MD, 20892-4255, USA
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Disease, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawaracho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
6
|
The role of RNase H2 in processing ribonucleotides incorporated during DNA replication. DNA Repair (Amst) 2017; 53:52-58. [PMID: 28325498 DOI: 10.1016/j.dnarep.2017.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 12/17/2022]
Abstract
Saccharomyces cerevisiae RNase H2 resolves RNA-DNA hybrids formed during transcription and it incises DNA at single ribonucleotides incorporated during nuclear DNA replication. To distinguish between the roles of these two activities in maintenance of genome stability, here we investigate the phenotypes of a mutant of yeast RNase H2 (rnh201-RED; ribonucleotide excision defective) that retains activity on RNA-DNA hybrids but is unable to cleave single ribonucleotides that are stably incorporated into the genome. The rnh201-RED mutant was expressed in wild type yeast or in a strain that also encodes a mutant allele of DNA polymerase ε (pol2-M644G) that enhances ribonucleotide incorporation during DNA replication. Similar to a strain that completely lacks RNase H2 (rnh201Δ), the pol2-M644G rnh201-RED strain exhibits replication stress and checkpoint activation. Moreover, like its null mutant counterpart, the double mutant pol2-M644G rnh201-RED strain and the single mutant rnh201-RED strain delete 2-5 base pairs in repetitive sequences at a high rate that is topoisomerase 1-dependent. The results highlight an important role for RNase H2 in maintaining genome integrity by removing single ribonucleotides incorporated during DNA replication.
Collapse
|
7
|
Allam WR, Ashour ME, Waly AA, El-Khamisy S. Role of Protein Linked DNA Breaks in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:41-58. [PMID: 28840551 DOI: 10.1007/978-3-319-60733-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Topoisomerases are a group of specialized enzymes that function to maintain DNA topology by introducing transient DNA breaks during transcription and replication. As a result of abortive topoisomerases activity, topoisomerases catalytic intermediates may be trapped on the DNA forming topoisomerase cleavage complexes (Topcc). Topoisomerases trapping on the DNA is the mode of action of several anticancer drugs, it lead to formation of protein linked DAN breaks (PDBs). PDBs are now considered as one of the most dangerous forms of endogenous DNA damage and a major threat to genomic stability. The repair of PDBs involves both the sensing and repair pathways. Unsuccessful repair of PDBs leads to different signs of genomic instabilities such as chromosomal rearrangements and cancer predisposition. In this chapter we will summarize the role of topoisomerases induced PDBs, identification and signaling, repair, role in transcription. We will also discuss the role of PDBs in cancer with a special focus on prostate cancer.
Collapse
Affiliation(s)
- Walaa R Allam
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.
| | - Mohamed E Ashour
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Amr A Waly
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Sherif El-Khamisy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt. .,Krebs Institute and Sheffield Institute for Nucleic Acids, Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
8
|
Cho JE, Jinks-Robertson S. Ribonucleotides and Transcription-Associated Mutagenesis in Yeast. J Mol Biol 2016; 429:3156-3167. [PMID: 27511624 DOI: 10.1016/j.jmb.2016.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 12/26/2022]
Abstract
High levels of transcription stimulate mutation rates in microorganisms, and this occurs primarily through an enhanced accumulation of DNA damage. The major source of transcription-associated damage in yeast is Topoisomerase I (Top1), an enzyme that removes torsional stress that accumulates when DNA strands are separated. Top1 relieves torsional stress by nicking and resealing one DNA strand, and some Top1-dependent mutations are due to trapping and processing of the covalent cleavage intermediate. Most, however, reflect enzyme incision at ribonucleotides, which are the most abundant noncanonical component of DNA. In either case, Top1 generates a distinctive mutation signature composed of short deletions in tandem repeats; in the specific case of ribonucleotide-initiated events, mutations reflect sequential cleavage by the enzyme. Top1-dependent mutations do not require highly activated transcription, but their levels are greatly increased by transcription, which partially reflects an interaction of Top1 with RNA polymerase. Recent studies have demonstrated that Top1-dependent mutations exhibit a strand bias, with the nature of the bias differing depending on the transcriptional status of the underlying DNA. Under low-transcription conditions, most Top1-dependent mutations arise in the context of replication and reflect incision at ribonucleotides incorporated during leading-strand synthesis. Under high-transcription conditions, most Top1-dependent events arise when the enzyme cleaves the non-transcribed strand of DNA. In addition to increasing genetic instability in growing cells, Top1 activity in transcriptionally active regions may be a source of mutations in quiescent cells.
Collapse
Affiliation(s)
- Jang-Eun Cho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|