1
|
Liu J, Zhang B, Zhang G, Shang D. Reprogramming of regulatory T cells in inflammatory tumor microenvironment: can it become immunotherapy turning point? Front Immunol 2024; 15:1345838. [PMID: 38449875 PMCID: PMC10915070 DOI: 10.3389/fimmu.2024.1345838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Overcoming the immunosuppressive tumor microenvironment and identifying widely used immunosuppressants with minimal side effects are two major challenges currently hampering cancer immunotherapy. Regulatory T cells (Tregs) are present in almost all cancer tissues and play an important role in preserving autoimmune tolerance and tissue homeostasis. The tumor inflammatory microenvironment causes the reprogramming of Tregs, resulting in the conversion of Tregs to immunosuppressive phenotypes. This process ultimately facilitates tumor immune escape or tumor progression. However, current systemic Treg depletion therapies may lead to severe autoimmune toxicity. Therefore, it is crucial to understand the mechanism of Treg reprogramming and develop immunotherapies that selectively target Tregs within tumors. This article provides a comprehensive review of the potential mechanisms involved in Treg cell reprogramming and explores the application of Treg cell immunotherapy. The interference with reprogramming pathways has shown promise in reducing the number of tumor-associated Tregs or impairing their function during immunotherapy, thereby improving anti-tumor immune responses. Furthermore, a deeper understanding of the mechanisms that drive Treg cell reprogramming could reveal new molecular targets for future treatments.
Collapse
Affiliation(s)
- Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guolin Zhang
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Lagal DJ, López-Grueso MJ, Pedrajas JR, Leto TL, Bárcena JA, Requejo-Aguilar R, Padilla CA. Loss of PRDX6 Aborts Proliferative and Migratory Signaling in Hepatocarcinoma Cell Lines. Antioxidants (Basel) 2023; 12:1153. [PMID: 37371884 DOI: 10.3390/antiox12061153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Peroxiredoxin 6 (PRDX6), the only mammalian 1-Cys member of the peroxiredoxin family, has peroxidase, phospholipase A2 (PLA2), and lysophosphatidylcholine (LPC) acyltransferase (LPCAT) activities. It has been associated with tumor progression and cancer metastasis, but the mechanisms involved are not clear. We constructed an SNU475 hepatocarcinoma cell line knockout for PRDX6 to study the processes of migration and invasiveness in these mesenchymal cells. They showed lipid peroxidation but inhibition of the NRF2 transcriptional regulator, mitochondrial dysfunction, metabolic reprogramming, an altered cytoskeleton, down-regulation of PCNA, and a diminished growth rate. LPC regulatory action was inhibited, indicating that loss of both the peroxidase and PLA2 activities of PRDX6 are involved. Upstream regulators MYC, ATF4, HNF4A, and HNF4G were activated. Despite AKT activation and GSK3β inhibition, the prosurvival pathway and the SNAI1-induced EMT program were aborted in the absence of PRDX6, as indicated by diminished migration and invasiveness, down-regulation of bottom-line markers of the EMT program, MMP2, cytoskeletal proteins, and triggering of the "cadherin switch". These changes point to a role for PRDX6 in tumor development and metastasis, so it can be considered a candidate for antitumoral therapies.
Collapse
Affiliation(s)
- Daniel J Lagal
- Department Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain
| | - María J López-Grueso
- Department Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain
| | - José R Pedrajas
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Institute of Research in Olive Groves and Olive Oils, University of Jaén, 23071 Jaén, Spain
| | - Thomas L Leto
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - J Antonio Bárcena
- Department Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - Raquel Requejo-Aguilar
- Department Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - C Alicia Padilla
- Department Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
| |
Collapse
|
3
|
Deng L, Huo PC, Feng MT, Wang RL, Jing R, Luo LJ. miR-27a-5p alleviates periodontal inflammation by targeting phosphatase and tensin homolog deleted on chromosome ten. Mol Oral Microbiol 2023. [PMID: 37216657 DOI: 10.1111/omi.12416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/05/2023] [Accepted: 04/04/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION MicroRNAs (miRNAs), a type of non-coding RNA, have been demonstrated to be essential posttranscriptional modulators in oral diseases and inflammatory responses. However, the specific role of miR-27a-5p in periodontitis requires further investigation. In this study, we used both cellular and animal models to determine how miR-27a-5p affects the pathogenesis of periodontitis and its associated biological functions. METHODS Quantitative real-time polymerase chain reaction and western blotting were used to analyze the expression of cytokines, phosphatase and tensin homolog deleted on chromosome ten (PTEN), and miR-27a-5p transcription. Investigation of alveolar bone resorption and inflammation of the periodontium in ligature-induced periodontitis in mice was performed using micro-computed tomography (micro-CT), hematoxylin-eosin (HE) staining, and tartrate-resistant acid phosphatase (TRAP) staining. The binding of miR-27a-5p and PTEN was predicted using the TargetScan database and experimentally confirmed using dual luciferase reporter gene assays. RESULTS The inflamed gingiva showed lower levels of miR-27a-5p. Macrophages from miR-27a-5p-/- mice produced much higher quantities of pro-inflammatory cytokines owing to the stimulation of Porphyromonas gingivalis lipopolysaccharide, and miR-27a-5p-/- mice with ligature-induced periodontitis also exhibited more severe alveolar bone resorption and damage to the periodontium. Target validation assays identified PTEN as a direct target of bona. Blocking PTEN expression partially reduced inflammation, both in vitro and in vivo. CONCLUSIONS miR-27a-5p alleviated the inflammatory response in periodontitis by targeting PTEN.
Collapse
Affiliation(s)
- Li Deng
- Department of Periodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Peng-Cheng Huo
- Department of Periodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Mei-Ting Feng
- Department of Periodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Rui-Ling Wang
- Department of Periodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Rui Jing
- Department of Periodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Li-Jun Luo
- Department of Periodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
4
|
Zhao B, Wu B, Feng N, Zhang X, Zhang X, Wei Y, Zhang W. Aging microenvironment and antitumor immunity for geriatric oncology: the landscape and future implications. J Hematol Oncol 2023; 16:28. [PMID: 36945046 PMCID: PMC10032017 DOI: 10.1186/s13045-023-01426-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
The tumor microenvironment (TME) has been extensively investigated; however, it is complex and remains unclear, especially in elderly patients. Senescence is a cellular response to a variety of stress signals, which is characterized by stable arrest of the cell cycle and major changes in cell morphology and physiology. To the best of our knowledge, senescence leads to consistent arrest of tumor cells and remodeling of the tumor-immune microenvironment (TIME) by activating a set of pleiotropic cytokines, chemokines, growth factors, and proteinases, which constitute the senescence-associated secretory phenotype (SASP). On the one hand, the SASP promotes antitumor immunity, which enhances treatment efficacy; on the other hand, the SASP increases immunosuppressive cell infiltration, including myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), M2 macrophages, and N2 neutrophils, contributing to TIME suppression. Therefore, a deeper understanding of the regulation of the SASP and components contributing to robust antitumor immunity in elderly individuals with different cancer types and the available therapies is necessary to control tumor cell senescence and provide greater clinical benefits to patients. In this review, we summarize the key biological functions mediated by cytokines and intercellular interactions and significant components of the TME landscape, which influence the immunotherapy response in geriatric oncology. Furthermore, we summarize recent advances in clinical practices targeting TME components and discuss potential senescent TME targets.
Collapse
Affiliation(s)
- Binghao Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100032, China
| | - Bo Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Nan Feng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiang Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xin Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiping Wei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
5
|
Nowwarote N, Osathanon T, Fournier BPJ, Theerapanon T, Yodsanga S, Kamolratanakul P, Porntaveetus T, Shotelersuk V. PTEN regulates proliferation and osteogenesis of dental pulp cells and adipogenesis of human adipose-derived stem cells. Oral Dis 2023; 29:735-746. [PMID: 34558757 DOI: 10.1111/odi.14030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the role of phosphatase and tensin homolog (PTEN) in dental pulp cells (hDPs) and adipose-derived mesenchymal stem cells (hADSCs). MATERIALS AND METHODS Genetic variant was identified with exome sequencing. The hDPs isolated from a patient with Cowden syndrome were investigated for their proliferation, osteogenesis, adipogenesis, and gene expression compared with controls. The normal hDPs and hADSCs were treated with the PTEN inhibitor, VO-OHpic trihydrate (VOT), to investigate the effect of PTEN inhibition. RESULTS A heterozygous nonsense PTEN variant, c.289C>T (p.Gln97*), was identified in the Cowden patient's blood and intraoral lipomas. The mutated hDPs showed significantly decreased proliferation, but significantly upregulated RUNX2 and OSX expression and mineralization, indicating enhanced osteogenic ability in mutated cells. The normal hDPs treated with VOT showed the decreases in proliferation, colony formation, osteogenic marker genes, alkaline phosphatase activity, and mineral deposition, suggesting that PTEN inhibition diminishes proliferation and osteogenic potential of hDPs. Regarding adipogenesis, the VOT-treated hADSCs showed a reduced number of cells containing lipid droplets, suggesting that PTEN inhibition might compromise adipogenic ability of hADSCs. CONCLUSIONS PTEN regulates proliferation, enhances osteogenesis of hDPs, and induces adipogenesis of hADSCs. The gain-of-function PTEN variant, p.Gln97*, enhances osteogenic ability of PTEN in hDPs.
Collapse
Affiliation(s)
- Nunthawan Nowwarote
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Centre de Recherche des Cordeliers, Universite de Paris, Sorbonne Universite, Paris, France.,Dental Faculty Garanciere, Oral Biology Department, Universite de Paris, Paris, France
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Benjamin P J Fournier
- Centre de Recherche des Cordeliers, Universite de Paris, Sorbonne Universite, Paris, France.,Dental Faculty Garanciere, Oral Biology Department, Universite de Paris, Paris, France
| | - Thanakorn Theerapanon
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Somchai Yodsanga
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Paksinee Kamolratanakul
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
6
|
He Y, Su Y, Duan C, Wang S, He W, Zhang Y, An X, He M. Emerging role of aging in the progression of NAFLD to HCC. Ageing Res Rev 2023; 84:101833. [PMID: 36565959 DOI: 10.1016/j.arr.2022.101833] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
With the aging of global population, the incidence of nonalcoholic fatty liver disease (NAFLD) has surged in recent decades. NAFLD is a multifactorial disease that follows a progressive course, ranging from simple fatty liver, nonalcoholic steatohepatitis (NASH) to liver cirrhosis and hepatocellular carcinoma (HCC). It is well established that aging induces pathological changes in liver and potentiates the occurrence and progression of NAFLD, HCC and other age-related liver diseases. Studies of senescent cells also indicate a pivotal engagement in the development of NAFLD via diverse mechanisms. Moreover, nicotinamide adenine dinucleotide (NAD+), silence information regulator protein family (sirtuins), and mechanistic target of rapamycin (mTOR) are three vital and broadly studied targets involved in aging process and NAFLD. Nevertheless, the crucial role of these aging-associated factors in aging-related NAFLD remains underestimated. Here, we reviewed the current research on the roles of aging, cellular senescence and three aging-related factors in the evolution of NAFLD to HCC, aiming at inspiring promising therapeutic targets for aging-related NAFLD and its progression.
Collapse
Affiliation(s)
- Yongyuan He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghong Su
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengcheng Duan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyuan Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Basic Medicine, Kunming Medical University, China
| | - Yingting Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofei An
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ming He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
7
|
Cellular Senescence in Hepatocellular Carcinoma: The Passenger or the Driver? Cells 2022; 12:cells12010132. [PMID: 36611926 PMCID: PMC9818733 DOI: 10.3390/cells12010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
With the high morbidity and mortality, hepatocellular carcinoma (HCC) represents a major yet growing burden for our global community. The relapse-prone nature and drug resistance of HCC are regarded as the consequence of varying intracellular processes and extracellular interplay, which actively participate in tumor microenvironment remodeling. Amongst them, cellular senescence is regarded as a fail-safe program, leading to double-sword effects of both cell growth inhibition and tissue repair promotion. Particularly, cellular senescence serves a pivotal role in the progression of chronic inflammatory liver diseases, ultimately leading to carcinogenesis. Given the current challenges in improving the clinical management and outcome of HCC, senescence may exert striking potential in affecting anti-cancer strategies. In recent years, an increasing number of studies have emerged to investigate senescence-associated hepatocarcinogenesis and its derived therapies. In this review, we intend to provide an up-to-date understanding of liver cell senescence and its impacts on treatment modalities of HCC.
Collapse
|
8
|
Small Molecule Inhibitors for Hepatocellular Carcinoma: Advances and Challenges. Molecules 2022; 27:molecules27175537. [PMID: 36080304 PMCID: PMC9457820 DOI: 10.3390/molecules27175537] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
According to data provided by World Health Organization, hepatocellular carcinoma (HCC) is the sixth most common cause of deaths due to cancer worldwide. Tremendous progress has been achieved over the last 10 years developing novel agents for HCC treatment, including small-molecule kinase inhibitors. Several small molecule inhibitors currently form the core of HCC treatment due to their versatility since they would be more easily absorbed and have higher oral bioavailability, thus easier to formulate and administer to patients. In addition, they can be altered structurally to have greater volumes of distribution, allowing them to block extravascular molecular targets and to accumulate in a high concentration in the tumor microenvironment. Moreover, they can be designed to have shortened half-lives to control for immune-related adverse events. Most importantly, they would spare patients, healthcare institutions, and society as a whole from the burden of high drug costs. The present review provides an overview of the pharmaceutical compounds that are licensed for HCC treatment and other emerging compounds that are still investigated in preclinical and clinical trials. These molecules are targeting different molecular targets and pathways that are proven to be involved in the pathogenesis of the disease.
Collapse
|
9
|
Abstract
Senescence is a cellular response to a variety of stress signals that is characterized by a stable withdrawal from the cell cycle and major changes in cell morphology and physiology. While most research on senescence has been performed on non-cancer cells, it is evident that cancer cells can also mount a senescence response. In this Review, we discuss how senescence can be induced in cancer cells. We describe the distinctive features of senescent cancer cells and how these changes in cellular physiology might be exploited for the selective eradication of these cells (senolysis). We discuss activation of the host immune system as a particularly attractive way to clear senescent cancer cells. Finally, we consider the challenges and opportunities provided by a 'one-two punch' sequential treatment of cancer with pro-senescence therapy followed by senolytic therapy.
Collapse
Affiliation(s)
- Liqin Wang
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lina Lankhorst
- Cancer, Stem Cells & Developmental Biology programme, Utrecht University, Utrecht, The Netherlands
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Zhuang C, Guo Z, Zhu J, Wang W, Sun R, Qi M, Wang Q, Fan X, Ma R, Yu J. PTEN inhibitor attenuates cardiac fibrosis by regulating the M2 macrophage phenotype via the PI3K/AKT/TGF-β/Smad 2/3 signaling pathway. Int J Cardiol 2022; 356:88-96. [PMID: 35395283 DOI: 10.1016/j.ijcard.2022.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 11/05/2022]
Abstract
Cardiac fibrosis is a key feature of hypertensive cardiac remodeling. In response to microenvironmental stimuli, phenotypic and functional changes in macrophages are considered important determinants of cardiac fibrosis attenuation. VO-OHpic, a phosphatase and tension homolog of chromosome 10 (PTEN) inhibitor, has been demonstrated to be cardioprotective in cardiac remodeling. However, whether VO-OHpic can improve cardiac fibrosis and macrophage polarization remains elusive. The interaction between VO-OHpic and the macrophage phenotype to attenuate cardiac fibrosis was studied in both spontaneously hypertensive rats in vivo and an Ang II-induced hypertension model in vitro. In vitro experiments showed that VO-OHpic promoted M2 macrophage polarization and markedly inhibited proinflammatory M1 macrophages, while VO-OHpic treatment of protein kinase B (AKT)-knockdown/LY294002 (a PI3K inhibitor) macrophages exerted a reduced effect. In a coculture system, culturing cardiac fibroblasts with VO-OHpic-treated macrophages led to significant suppression of proliferation, fibrotic marker expression, and transforming growth factor (TGF)-β and Smad 2/3 protein expression. Taken together, VO-OHpic mediated a fibro-protective effect and increased M2 macrophage polarization via the phosphatidylinositol 3-kinase (PI3K)/AKT/TGF-β/Smad2/3 pathway.
Collapse
Affiliation(s)
- Chenchen Zhuang
- Hypertension center, Lanzhou University, Second Hospital, Lanzhou University, Lanzhou, China
| | - Ziyi Guo
- School of Chemical Engineering, The University of New South Wales, Sydney, Australia
| | - Jumo Zhu
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjuan Wang
- Hypertension center, Lanzhou University, Second Hospital, Lanzhou University, Lanzhou, China
| | - Runmin Sun
- Hypertension center, Lanzhou University, Second Hospital, Lanzhou University, Lanzhou, China
| | - Miaomiao Qi
- Hypertension center, Lanzhou University, Second Hospital, Lanzhou University, Lanzhou, China
| | - Qiongying Wang
- Hypertension center, Lanzhou University, Second Hospital, Lanzhou University, Lanzhou, China
| | - Xin Fan
- Hypertension center, Lanzhou University, Second Hospital, Lanzhou University, Lanzhou, China
| | - Runxin Ma
- Hypertension center, Lanzhou University, Second Hospital, Lanzhou University, Lanzhou, China
| | - Jing Yu
- Hypertension center, Lanzhou University, Second Hospital, Lanzhou University, Lanzhou, China.
| |
Collapse
|
11
|
Shin JW, Kim SH, Yoon JY. PTEN downregulation induces apoptosis and cell cycle arrest in uterine cervical cancer cells. Exp Ther Med 2021; 22:1100. [PMID: 34504554 PMCID: PMC8383748 DOI: 10.3892/etm.2021.10534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/18/2021] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressors PTEN and p53 are often downregulated in various human cancer types, which has been associated with a poor prognosis. Recent evidence implies that PTEN downregulation may induce growth arrest of kidney cells and cancer cells. In the present study, the role of PTEN in the proliferation and survival of cervical cancer cells was investigated. It was found that PTEN silencing promoted apoptosis and cell-cycle arrest, accompanied by a significant decrease in the proportion of cells in the S1 phase of the cell cycle. Moreover, PTEN silencing in cervical cancer cells increased levels of p53, p27, p21, phospho-ERK and cleaved caspase-3, and decreased levels of cyclin A2 and cyclin D1. Furthermore, PTEN knockdown significantly impacted the viability of cervical cancer cells. P53 silencing did not affect the ability of PTEN knockdown to induce apoptosis in cervical cancer cells. Taken together, the present study results imply that PTEN silencing induces apoptosis and decreases proliferation in cervical cancer cells; hence, PTEN inhibition may represent a promising strategy for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Jin Woo Shin
- Department of Obstetrics and Gynecology, Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea
| | - Se-Hee Kim
- Gachon Medical Research Institute, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Jin Young Yoon
- Gachon Medical Research Institute, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| |
Collapse
|
12
|
Liang T, Gao F, Chen J. Role of PTEN-less in cardiac injury, hypertrophy and regeneration. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:25. [PMID: 34337686 PMCID: PMC8326232 DOI: 10.1186/s13619-021-00087-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. Cardiomyocytes are capable of coordinated contractions, which are mainly responsible for pumping blood. When cardiac stress occurs, cardiomyocytes undergo transition from physiological homeostasis to hypertrophic growth, proliferation, or apoptosis. During these processes, many cellular factors and signaling pathways participate. PTEN is a ubiquitous dual-specificity phosphatase and functions by dephosphorylating target proteins or lipids, such as PIP3, a second messenger in the PI3K/AKT signaling pathway. Downregulation of PTEN expression or inhibiting its biologic activity improves heart function, promotes cardiomyocytes proliferation, reduces cardiac fibrosis as well as dilation, and inhibits apoptosis following ischemic stress such as myocardial infarction. Inactivation of PTEN exhibits a potentially beneficial therapeutic effects against cardiac diseases. In this review, we summarize various strategies for PTEN inactivation and highlight the roles of PTEN-less in regulating cardiomyocytes during cardiac development and stress responses.
Collapse
Affiliation(s)
- Tian Liang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Feng Gao
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jinghai Chen
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China. .,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
13
|
Xu T, Rao T, Yu WM, Ning JZ, Yu X, Zhu SM, Yang K, Bai T, Cheng F. Upregulation of NFKBIZ affects bladder cancer progression via the PTEN/PI3K/Akt signaling pathway. Int J Mol Med 2021; 47:109. [PMID: 33907827 PMCID: PMC8057294 DOI: 10.3892/ijmm.2021.4942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
NF‑κB inhibitor ζ (NFKBIZ), a member of the IκB family that interacts with NF‑κB, has been reported to be an important regulator of inflammation, cell proliferation and survival. However, the role of NFKBIZ in bladder cancer (BC) remains unknown. The present study aimed to investigate the functions of NFKBIZ in BC. First, the expression levels of NFKBIZ and the associations between NFKBIZ expression and the clinical survival of patients were determined using BC tissue samples, BC cell lines and datasets from different databases. Two BC cell lines (T24 and 5637) were selected to overexpress NFKBIZ, and the proliferative, migratory and invasive abilities of cells were determined; additionally, tumor growth following transplantation in in vivo mouse models was analyzed using T24 cells overexpressing NFKBIZ. Subsequently, the association between NFKBIZ and PTEN was determined using data from databases and immunohistochemistry analysis of clinical and nude mice tumor tissues. Finally, the interactions between NFKBIZ, PTEN and the downstream PI3K/AKT/mTOR signaling pathway were evaluated using western blotting. In conclusion, the present results indicated that NFKBIZ expression was low in BC, and NFKBIZ inhibited the proliferation of BC cells through the PTEN/PI3K/Akt signaling pathway, suggesting that NFKBIZ may represent a novel prognostic biomarker in BC and may provide a potential therapeutic tumor‑associated antigen for BC.
Collapse
Affiliation(s)
- Tao Xu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei-Ming Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jin-Zhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xi Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shao-Ming Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Kang Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Tao Bai
- Department of Urology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430060, P.R. China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
14
|
Synthesis and biological evaluation of novel isoxazole-piperazine hybrids as potential anti-cancer agents with inhibitory effect on liver cancer stem cells. Eur J Med Chem 2021; 221:113489. [PMID: 33951549 DOI: 10.1016/j.ejmech.2021.113489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
In our effort for the development of novel anticancer therapeutics, a series of isoxazole-piperazine analogues were prepared, and primarily screened for their antiproliferative potential against hepatocellular carcinoma (HCC; Huh7/Mahlavu) and breast (MCF-7) cancer cells. All compounds demonstrated potent to moderate cytotoxicity on all cell lines with IC50 values in the range of 0.09-11.7 μM. Further biological studies with 6a and 13d in HCC cells have shown that both compounds induced G1 or G2/M arrests resulting in apoptotic cell death. Subsequent analysis of proteins involved in cell cycle progression as well as proliferation of HCC cells revealed that 6a and 13d may affect cellular survival pathways differently depending on the mutation profiles of cells (p53 and PTEN), epidermal/mesenchymal characteristics, and activation of cell mechanisms through p53 dependent/independent pathways. Lastly, we have demonstrated the potential anti-stemness properties of these compounds in which the proportion of liver CSCs in Huh7 cells (CD133+/EpCAM+) were significantly reduced by 6a and 13d. Furthermore, both compounds caused a significant reduction in expression of stemness markers, NANOG or OCT4 proteins, in Mahlavu and Huh7 cells, as well as resulted in a decreased sphere formation capacity in Huh7 cells. Together, these novel isoxazole-piperazine derivatives may possess potential as leads for development of effective anti-cancer drugs against HCC cells with stem cell-like properties.
Collapse
|
15
|
PTEN in prefrontal cortex is essential in regulating depression-like behaviors in mice. Transl Psychiatry 2021; 11:185. [PMID: 33771972 PMCID: PMC7998021 DOI: 10.1038/s41398-021-01312-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/24/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic stress is an environmental risk factor for depression and causes neuronal atrophy in the prefrontal cortex (PFC) and other brain regions. It is still unclear about the molecular mechanism underlying the behavioral alterations and neuronal atrophy induced by chronic stress. We here report that phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a mediator for chronic stress-induced depression-like behaviors and neuronal atrophy in mice. One-month chronic restraint stress (CRS) up-regulated PTEN signaling pathway in the PFC of mice as indicated by increasing levels of PTEN, p-MEK, and p-ERK but decreasing levels of p-AKT. Over-expression of Pten in the PFC led to an increase of depression-like behaviors, whereas genetic inactivation or knockdown of Pten in the PFC prevented the CRS-induced depression-like behaviors. In addition, systemic administration of PTEN inhibitor was also able to prevent these behaviors. Cellular examination showed that Pten over-expression or the CRS treatment resulted in PFC neuron atrophy, and this atrophy was blocked by genetic inactivation of Pten or systemic administration of PTEN inhibitor. Furthermore, possible causal link between Pten and glucocorticoids was examined. In chronic dexamethasone (Dex, a glucocorticoid agonist) treatment-induced depression model, increased PTEN levels were observed, and depression-like behaviors and PFC neuron atrophy were attenuated by the administration of PTEN inhibitor. Our results indicate that PTEN serves as a key mediator in chronic stress-induced neuron atrophy as well as depression-like behaviors, providing molecular evidence supporting the synaptic plasticity theory of depression.
Collapse
|
16
|
Feng Q, Li X, Qin X, Yu C, Jin Y, Qian X. PTEN inhibitor improves vascular remodeling and cardiac function after myocardial infarction through PI3k/Akt/VEGF signaling pathway. Mol Med 2020; 26:111. [PMID: 33213359 PMCID: PMC7678076 DOI: 10.1186/s10020-020-00241-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/11/2020] [Indexed: 01/14/2023] Open
Abstract
Background Myocardial infarction (MI) is the leading cause of death from cardiovascular disease (CVD). Currently, the efficacy for MI treatment remains unsatisfactory. Therefore, it is urgent to develop a novel therapeutic strategy. Methods Left anterior descending arteries (LAD) of mice were ligated to induce MI. Another set of mice were intravenously injected with PTEN inhibitor BPV (1 mg/kg) 1 h after LAD ligation and continued to receive BPV injection daily for the following 6 days. Mice were performed echocardiography 14 days after surgery. Results Mice in MI group displayed an increased expression of PTEN with impaired cardiac function, enhanced cardiomyocyte apoptosis and decreased angiogenesis. BPV treatment significantly improved cardiac function, with reduced cardiomyocyte apoptosis, promoted angiogenesis, and activated PI3K/Akt/vascular endothelial growth factor (VEGF) signaling pathway. Conclusion PTEN inhibitor BPV could effectively prevent myocardial infarction in mice, highlighting its potential as a candidate therapeutic drug.
Collapse
Affiliation(s)
- Qiuting Feng
- Department of Cardiovascular, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No.68, Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Xing Li
- Department of Cardiovascular, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No.68, Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Xian Qin
- Department of Cardiovascular, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No.68, Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Cheng Yu
- Department of Cardiovascular, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No.68, Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Yan Jin
- Department of Cardiovascular, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No.68, Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Xiaojun Qian
- Department of Respiratory, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No.68, Zhongshan Road, Wuxi, 214002, Jiangsu, China.
| |
Collapse
|
17
|
Wen X, Li H, Sun H, Zeng A, Lin R, Zhao J, Zhang Z. MiR-455-3p reduces apoptosis and alleviates degeneration of chondrocyte through regulating PI3K/AKT pathway. Life Sci 2020; 253:117718. [PMID: 32343998 DOI: 10.1016/j.lfs.2020.117718] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
AIMS This study aimed to explore the functions of miR-455-3p, PTEN, and PI3K/AKT pathway in osteoarthritis. MATERIALS AND METHODS We used the human bone marrow stem cell (BMSC), healthy chondrocytes, osteoarthritis chondrocytes (OA), and the IL-1β/TNF-α-treated chondrocyte model to explore the relationship between miR-455-3p and PTEN. Mimic or inhibitor was used to transfect chondrocytes to determine whether miR-455-3p can regulate PTEN and influence COL2A1 and MMP13. Apoptosis was detected by flow cytometry. A luciferase report was applied to verify the targeted binding. KO mice were applied to investigate PTEN and pAKT expression and the effect on chondrocytes in vivo. KEY FINDINGS MiR-455-3p and PTEN were reverse in chondrogenesis and healthy cartilage versus OA cartilage. Similar trends were noted in IL-1β model. PTEN and MMP13 decreased and COL2A1 increased after overexpressing miR-455-3p, whereas the inhibition showed opposite results. Flow cytometry showed that miR-455-3p could reduce the apoptosis of chondrocytes. The results of luciferase revealed that miR-455-3p could affect fluorescence activity of PTEN by targeting its 3'-UTR. Finally, we found a marked increased in the expression of PTEN in KO mice relative to WT mice, while pAKT levels decreased. SIGNIFICANCE It can be supported that miR-455-3p can reduce the apoptosis of chondrocytes and alleviate OA through regulating PI3K/AKT pathway, which may be expected to be a target for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Xingzhao Wen
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Hongyi Li
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Hao Sun
- Department of Joint Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anyu Zeng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Ruifu Lin
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Jing Zhao
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.
| | - Zhiqi Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China.
| |
Collapse
|
18
|
Cervello M, Emma MR, Augello G, Cusimano A, Giannitrapani L, Soresi M, Akula SM, Abrams SL, Steelman LS, Gulino A, Belmonte B, Montalto G, McCubrey JA. New landscapes and horizons in hepatocellular carcinoma therapy. Aging (Albany NY) 2020; 12:3053-3094. [PMID: 32018226 PMCID: PMC7041742 DOI: 10.18632/aging.102777] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/12/2020] [Indexed: 04/12/2023]
Abstract
Hepatocellular carcinoma (HCC), is the sixth most frequent form of cancer and leads to the fourth highest number of deaths each year. HCC results from a combination of environmental factors and aging as there are driver mutations at oncogenes which occur during aging. Most of HCCs are diagnosed at advanced stage preventing curative therapies. Treatment in advanced stage is a challenging and pressing problem, and novel and well-tolerated therapies are urgently needed. We will discuss further advances beyond sorafenib that target additional signaling pathways and immune checkpoint proteins. The scenario of possible systemic therapies for patients with advanced HCC has changed dramatically in recent years. Personalized genomics and various other omics approaches may identify actionable biochemical targets, which are activated in individual patients, which may enhance therapeutic outcomes. Further studies are needed to identify predictive biomarkers and aberrantly activated signaling pathways capable of guiding the clinician in choosing the most appropriate therapy for the individual patient.
Collapse
Affiliation(s)
- Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Maria R. Emma
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Lydia Giannitrapani
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Maurizio Soresi
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Shaw M. Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Stephen L. Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Linda S. Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Alessandro Gulino
- Tumour Immunology Unit, Human Pathology Section, Department of Health Science, University of Palermo, Palermo, Italy
| | - Beatrice Belmonte
- Tumour Immunology Unit, Human Pathology Section, Department of Health Science, University of Palermo, Palermo, Italy
| | - Giuseppe Montalto
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
19
|
Zou L, Chen C, Yan X, Lin Q, Fang J, Li P, Han X, Wang Q, Guo S, Li H, Zhang Y. Resveratrol Attenuates Pressure Overload‐Induced Cardiac Fibrosis and Diastolic Dysfunction via PTEN/AKT/Smad2/3 and NF‐κB Signaling Pathways. Mol Nutr Food Res 2019; 63:e1900418. [PMID: 31655498 DOI: 10.1002/mnfr.201900418] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/28/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Lei‐Xin Zou
- Department of CardiologyInstitute of Cardiovascular DiseasesFirst Affiliated Hospital of Dalian Medical University Dalian 116011 China
| | - Chen Chen
- Department of CardiologyInstitute of Cardiovascular DiseasesFirst Affiliated Hospital of Dalian Medical University Dalian 116011 China
| | - Xiao Yan
- Department of CardiologyInstitute of Cardiovascular DiseasesFirst Affiliated Hospital of Dalian Medical University Dalian 116011 China
| | - Qiu‐Yue Lin
- Department of CardiologyInstitute of Cardiovascular DiseasesFirst Affiliated Hospital of Dalian Medical University Dalian 116011 China
| | - Jiao Fang
- Department of CardiologyInstitute of Cardiovascular DiseasesFirst Affiliated Hospital of Dalian Medical University Dalian 116011 China
| | - Pang‐Bo Li
- Department of Emergency MedicineBeijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang HospitalCapital Medical University Beijing 100020 China
| | - Xiao Han
- Department of CardiologyInstitute of Cardiovascular DiseasesFirst Affiliated Hospital of Dalian Medical University Dalian 116011 China
| | - Qing‐Shan Wang
- School of Public HealthDalian Medical University Dalian 116044 China
| | - Shu‐Bin Guo
- Department of Emergency MedicineBeijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang HospitalCapital Medical University Beijing 100020 China
| | - Hui‐Hua Li
- Department of CardiologyInstitute of Cardiovascular DiseasesFirst Affiliated Hospital of Dalian Medical University Dalian 116011 China
| | - Yun‐Long Zhang
- Department of Emergency MedicineBeijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang HospitalCapital Medical University Beijing 100020 China
| |
Collapse
|
20
|
Chen Y, Zhu D, Gao J, Xu Z, Tao S, Yin W, Zhang Y, Gao Y, Zhang C. Diminished membrane recruitment of Akt is instrumental in alcohol‐associated osteopenia via thePTEN/Akt/GSK‐3β/β‐catenin axis. FEBS J 2019; 286:1101-1119. [PMID: 30656849 DOI: 10.1111/febs.14754] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/23/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Yi‐Xuan Chen
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Dao‐Yu Zhu
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Junjie Gao
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
- Centre for Orthopaedic Translational Research School of Biomedical Sciences University of Western Australia Nedlands Perth Australia
| | - Zheng‐Liang Xu
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Shi‐Cong Tao
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Wen‐Jing Yin
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Yue‐Lei Zhang
- Department of Orthopedics The First Affiliated Hospital of Anhui Medical University Hefei China
| | - You‐Shui Gao
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
- Centre for Orthopaedic Translational Research School of Biomedical Sciences University of Western Australia Nedlands Perth Australia
| | - Chang‐Qing Zhang
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
- Institute of Microsurgery on Extremities Shanghai China
| |
Collapse
|
21
|
Zhou L, Yi Y, Yuan Q, Zhang J, Li Y, Wang P, Xu M, Xie S. VAOS, a novel vanadyl complexes of alginate saccharides, inducing apoptosis via activation of AKT-dependent ROS production in NSCLC. Free Radic Biol Med 2018; 129:177-185. [PMID: 30223019 DOI: 10.1016/j.freeradbiomed.2018.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/05/2018] [Accepted: 09/14/2018] [Indexed: 02/04/2023]
Abstract
Previous studies have confirmed that protein tyrosine phosphatase 1B (PTP1B) can promote tumour progression in non-small cell lung cancer (NSCLC). Vanadyl alginate oligosaccharides (VAOS) is a new coordination compounds that possesses a good PTP1B inhibitory activity. However, the potent anticancer efficacy of VAOS in human NSCLC requires further study. In this study, VAOS exhibited effective inhibitory effects in NSCLC both in cultured cells and in a xenograft mouse model. VAOS was further identified to induce NSCLC cell apoptosis through activating protein kinase B (AKT) to elevate intracellular reactive oxygen species (ROS) levels by increasing in oxygen consumption and impairing the ROS-scavenging system. Neither silencing of PTP1B by siRNA nor transient overexpression of PTP1B had an effect on the AKT phosphorylation triggered by VAOS, indicating that PTP1B inhibition was not involved in VAOS-induced apoptosis. Through phosphorus colorimetric assay, we demonstrated that VAOS notably inhibited phosphatase and tensin homologue deleted on chromosome 10 (PTEN) dephosphorylation activity, another member of the protein tyrosine phosphatases (PTPases)-upstream factor of AKT. Interestingly, PTEN knockdown sensitized cells to VAOS, whereas ectopic expression of PTEN markedly rescued VAOS-mediated lethality. In vivo, VAOS treatment markedly reduced PTEN activity and tumour cell burden with low systemic toxicity. Thus, our data not only provided a new therapeutic drug candidate for NSCLC, but presented new understanding into the pharmacological research of VAOS.
Collapse
MESH Headings
- A549 Cells
- Alginates/chemical synthesis
- Alginates/pharmacology
- Animals
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Survival/drug effects
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- PTEN Phosphohydrolase/antagonists & inhibitors
- PTEN Phosphohydrolase/genetics
- PTEN Phosphohydrolase/metabolism
- Phosphorylation
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Reactive Oxygen Species/agonists
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Tumor Burden/drug effects
- Vanadates/chemical synthesis
- Vanadates/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ling Zhou
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China; The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Yuetao Yi
- Yantai Institute of Coastal Zone Research Chinese Academy of Sciences, Yantai 264003, PR China
| | - Qing Yuan
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Jing Zhang
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Youjie Li
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Pingyu Wang
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Maolei Xu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, YanTai, ShanDong 264003, PR China.
| | - Shuyang Xie
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China.
| |
Collapse
|
22
|
Wang L, Yu Z, Ren S, Song J, Wang J, Du G. Metabolic reprogramming in colon cancer reversed by DHTS through regulating PTEN/AKT/HIF1α mediated signal pathway. Biochim Biophys Acta Gen Subj 2018; 1862:2281-2292. [PMID: 30036603 DOI: 10.1016/j.bbagen.2018.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Metabolic reprogramming and hypoxia contribute to the resistance of conventional chemotherapeutic drugs in kinds of cancers. In this study, we investigated the effect of dihydrotanshinone I (DHTS) on reversing dysregulated metabolism of glucose and fatty acid in colon cancer and elucidated its mechanism of action. METHODS Cell viability was determined by MTT assay. Oxidative phosphorylation, glycolysis, and mitochondrial fuel oxidation were assessed by Mito stress test, glycolysis stress test, and mito fuel flex test, respectively. Anti-cancer activity of DHTS in vivo was evaluated in Colon cancer xenograft. Hexokinase activity and free fatty acid (FFA) content were assessed using respective Commercial kits. Gene expression patterns were determined by performing DNA microarray analysis and real-time PCR. Protein expression was assessed using immunoblotting and immunohistochemistry. RESULTS DHTS showed similar cytotoxicity against colon cancer cells under hypoxia and normoxia. DHTS decreased the efficiency of glucose and FA as mitochondrial fuels in HCT116 cells, which efficiently reversed by VO-OHpic trihydrate. DHTS reduced hexokinase activity and free fatty acid (FFA) content in tumor tissue of xenograft model of colon cancer. Gene expression patterns in metabolic pathways were dramatically differential between model and treatment group. Increases in PTEN and a substantial decrease in the expression of SIRT3, HIF1α, p-AKT, HKII, p-MTOR, RHEB, and p-ACC were detected. CONCLUSIONS DHTS reversed metabolic reprogramming in colon cancer through PTEN/AKT/HIF1α-mediated signal pathway. GENERAL SIGNIFICANCE The study is the first to report the reverse of metabolic reprogramming by DHTS in colon cancer. Meantime, SIRT3/PTEN/AKT/HIF1α mediated signal pathway plays a critical role during this process.
Collapse
Affiliation(s)
- Lin Wang
- Beijing Key Laboratory of Drug Targets Research and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian nongtan street, Beijing 100050, China.
| | - Ziru Yu
- Beijing Key Laboratory of Drug Targets Research and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian nongtan street, Beijing 100050, China.
| | - Shuyue Ren
- Beijing Key Laboratory of Drug Targets Research and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian nongtan street, Beijing 100050, China.
| | - Junke Song
- Beijing Key Laboratory of Drug Targets Research and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian nongtan street, Beijing 100050, China.
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Targets Research and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian nongtan street, Beijing 100050, China.
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Research and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian nongtan street, Beijing 100050, China.
| |
Collapse
|
23
|
Pulido R. PTEN Inhibition in Human Disease Therapy. Molecules 2018; 23:molecules23020285. [PMID: 29385737 PMCID: PMC6017825 DOI: 10.3390/molecules23020285] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/19/2022] Open
Abstract
The tumor suppressor PTEN is a major homeostatic regulator, by virtue of its lipid phosphatase activity against phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3], which downregulates the PI3K/AKT/mTOR prosurvival signaling, as well as by its protein phosphatase activity towards specific protein targets. PTEN catalytic activity is crucial to control cell growth under physiologic and pathologic situations, and it impacts not only in preventing tumor cell survival and proliferation, but also in restraining several cellular regeneration processes, such as those associated with nerve injury recovery, cardiac ischemia, or wound healing. In these conditions, inhibition of PTEN catalysis is being explored as a potentially beneficial therapeutic intervention. Here, an overview of human diseases and conditions in which PTEN inhibition could be beneficial is presented, together with an update on the current status of specific small molecule inhibitors of PTEN enzymatic activity, their use in experimental models, and their limitations as research or therapeutic drugs.
Collapse
Affiliation(s)
- Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
24
|
Preclinical evaluation of antitumor activity of the proteasome inhibitor MLN2238 (ixazomib) in hepatocellular carcinoma cells. Cell Death Dis 2018; 9:28. [PMID: 29348495 PMCID: PMC5833482 DOI: 10.1038/s41419-017-0195-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/17/2017] [Accepted: 11/30/2017] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the common malignancies and is an increasingly important cause of cancer death worldwide. Surgery, chemotherapy, and radiation therapy extend the 5-year survival limit in HCC patients by only 6%. Therefore, there is a need to develop new therapeutic approaches for the treatment of this disease. The orally bioavailable proteasome inhibitor MLN2238 (ixazomib) has been demonstrated to have anticancer activity. In the present study, we investigated the preclinical therapeutic efficacy of MLN2238 in HCC cells through in vitro and in vivo models, and examined its molecular mechanisms of action. MLN2238 inhibited cell viability in human HCC cells HepG2, Hep3B, and SNU475 in a time- and dose-dependent manner. Flow cytometry analysis demonstrated that MLN2238 induced G2/M cell cycle arrest and cellular apoptosis in HCC cells. Cell cycle arrest was associated with increased expression levels of p21 and p27. MLN2238-induced apoptosis was confirmed by caspase-3/7 activation, PARP cleavage and caspase-dependent β-catenin degradation. In addition, MLN2238 activated ER stress genes in HCC cells and increased the expression of the stress-inducible gene nuclear protein-1. Furthermore, MLN2238 treatment induced upregulation of myeloid cell leukemia-1 (Mcl-1) protein, and Mcl-1 knockdown sensitized HCC cells to MLN2238 treatment, suggesting the contribution of Mcl-1 expression to MLN2238 resistance. This result was also confirmed using the novel Mcl-1 small molecule inhibitor A1210477. Association of A1210477 and MLN2238 determined synergistic antitumor effects in HCC cells. Finally, in vivo orally administered MLN2238 suppressed tumor growth of Hep3B cells in xenograft models in nude mice. In conclusion, our results offer hope for a new therapeutic opportunity in the treatment of HCC patients.
Collapse
|
25
|
Abrams SL, Ruvolo PP, Ruvolo VR, Ligresti G, Martelli AM, Cocco L, Ratti S, Tafuri A, Steelman LS, Candido S, Libra M, McCubrey JA. Targeting signaling and apoptotic pathways involved in chemotherapeutic drug-resistance of hematopoietic cells. Oncotarget 2017; 8:76525-76557. [PMID: 29100331 PMCID: PMC5652725 DOI: 10.18632/oncotarget.20408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/15/2017] [Indexed: 12/29/2022] Open
Abstract
A critical problem in leukemia as well as other cancer therapies is the development of chemotherapeutic drug-resistance. We have developed models of hematopoietic drug resistance that are based on expression of dominant-negative TP53 [TP53 (DN)] or constitutively-active MEK1 [MEK1(CA)] oncogenes in the presence of chemotherapeutic drugs. In human cancer, functional TP53 activity is often lost in human cancers. Also, activation of the Raf/MEK/ERK pathway frequently occurs due to mutations/amplification of upstream components of this and other interacting pathways. FL5.12 is an interleukin-3 (IL−3) dependent hematopoietic cell line that is sensitive to doxorubicin (a.k.a Adriamycin). FL/Doxo is a derivative cell line that was isolated by culturing the parental FL5.12 cells in doxorubicin for prolonged periods of time. FL/Doxo + TP53 (DN) and FL/Doxo + MEK1 (CA) are FL/Doxo derivate cell lines that were infected with retrovirus encoding TP53 (DN) or MEK1 (CA) and are more resistant to doxorubicin than FL/Doxo cells. This panel of cell lines displayed differences in the sensitivity to inhibitors that suppress mTORC1, BCL2/BCLXL, MEK1 or MDM2 activities, as well as, the proteasomal inhibitor MG132. The expression of key genes involved in cell growth and drug-resistance (e.g., MDM2, MDR1, BAX) also varied in these cells. Thus, we can begin to understand some of the key genes that are involved in the resistance of hematopoietic cells to chemotherapeutic drugs and targeted therapeutics.
Collapse
Affiliation(s)
- Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Peter P Ruvolo
- Section of Signal Transduction and Apoptosis, Hormel Institute, University of Minnesota, Austin, MN, USA.,Current/Present address: Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Vivian R Ruvolo
- Section of Signal Transduction and Apoptosis, Hormel Institute, University of Minnesota, Austin, MN, USA.,Current/Present address: Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Giovanni Ligresti
- Department of Biomedical and Biotechnological Sciences, Pathology and Oncology Section, University of Catania, Catania, Italy.,Current/Present address: Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Agostino Tafuri
- Hematology, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Pathology and Oncology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Pathology and Oncology Section, University of Catania, Catania, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| |
Collapse
|
26
|
Fu X, Wen H, Jing L, Yang Y, Wang W, Liang X, Nan K, Yao Y, Tian T. MicroRNA-155-5p promotes hepatocellular carcinoma progression by suppressing PTEN through the PI3K/Akt pathway. Cancer Sci 2017; 108:620-631. [PMID: 28132399 PMCID: PMC5406601 DOI: 10.1111/cas.13177] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 12/12/2022] Open
Abstract
MicroRNA‐155‐5p (miR‐155‐5p) has been reported to play an oncogenic role in different human malignancies; however, its role in hepatocellular carcinoma (HCC) progression is not clearly understood. In this study, we used real‐time PCR in 20 rats with chemically‐induced HCC, 28 human HCC tissues, and the matched paracarcinoma tissues, and HCC cell lines to determine the expression patterns of miR‐155‐5p and PTEN mRNA. Algorithm‐based and experimental strategies, such as dual luciferase gene reporter assays, real‐time PCR and western blots were used to identify PTEN as a candidate miR‐155‐5p target. Gain‐ and loss‐of‐function experiments and administration of a PI3K/Akt pathway inhibitor (wortmannin) were used to identify the effects of miR‐155‐5p and PTEN in MTT assays, flow cytometric analysis, wound healing assays and transwell assays. The results showed that miR‐155‐5p was highly overexpressed; however, PTEN was underexpressed in the HCC rat models, human HCC tissues and cell lines. In addition, miR‐155‐5p upregulation and PTEN downregulation were significantly associated with TNM stage (P < 0.05). Through in vitro experiments, we found that miR‐155‐5p promoted proliferation, invasion and migration, but inhibited apoptosis in HCC by directly targeting the 3′‐UTR of PTEN. Western blots showed that miR‐155‐5p inactivated Bax and caspase‐9, but activated Bcl‐2 to inhibit apoptosis, and it activated MMP to promote migration and invasion via the PI3K/Akt pathway. A xenograft tumor model was used to demonstrate that miR‐155‐5p targets PTEN and activates the PI3K/Akt pathway in vivo as well. Our study highlighted the importance of miR‐155‐5p and PTEN associated with aggressive HCC both in vitro and in vivo.
Collapse
Affiliation(s)
- Xiao Fu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hongqing Wen
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Respiratory, Third Hospital of Xi'an, Xi'an, Shaanxi, China
| | - Li Jing
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yujuan Yang
- The third Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Wenjuan Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xuan Liang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kejun Nan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tao Tian
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
27
|
Szparecki G, Ilczuk T, Gabzdyl N, Górnicka B. Comparison of Subtypes of Hepatocellular Adenoma to Hepatocellular Carcinoma and Non-Neoplastic Liver Tissue in Terms of PTEN Expression. Folia Biol (Praha) 2017; 63:202-208. [PMID: 29687774 DOI: 10.14712/fb2017063050202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
PTEN is a tumour suppressor gene whose loss of function has been found to be present in a variety of neoplasms, both benign and malignant. In hepatocellular carcinoma (HCC), loss of PTEN is associated with poorly differentiated cancer, advanced clinical stage and tendency to recur. The extent and meaning of PTEN loss in hepatocellular adenoma (HA), one of the precursor lesions for HCC, has not yet been analysed. The aim of the present study was to evaluate the possible loss of PTEN expression in HA in the wider context of hepatocarcinogenesis. Immunohistochemical analysis of PTEN expression was performed in non-neoplastic liver tissue, HAs and HCCs. It has been found that the loss of PTEN was markedly present in poorly differentiated HCC, whereas well to moderately differentiated HCC showed similar levels of PTEN expression to nonneoplastic liver. HAs presented as a heterogeneous group, with loss of PTEN observed in the inflammatory and HNF1A-mutated subtype and relatively intact PTEN expression in HA with nuclear β-catenin overexpression. This suggests that the loss of PTEN might occur both in HA and HCC, constituting different outcomes of the same molecular lesion in the various contexts of malignant or benign neoplasms.
Collapse
Affiliation(s)
- G Szparecki
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| | - T Ilczuk
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| | - N Gabzdyl
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| | - B Górnicka
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
28
|
Niu ZS, Niu XJ, Wang WH. Genetic alterations in hepatocellular carcinoma: An update. World J Gastroenterol 2016; 22:9069-9095. [PMID: 27895396 PMCID: PMC5107590 DOI: 10.3748/wjg.v22.i41.9069] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/20/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Although recent advances in therapeutic approaches for treating HCC have improved the prognoses of patients with HCC, this cancer is still associated with a poor survival rate mainly due to late diagnosis. Therefore, a diagnosis must be made sufficiently early to perform curative and effective treatments. There is a need for a deeper understanding of the molecular mechanisms underlying the initiation and progression of HCC because these mechanisms are critical for making early diagnoses and developing novel therapeutic strategies. Over the past decade, much progress has been made in elucidating the molecular mechanisms underlying hepatocarcinogenesis. In particular, recent advances in next-generation sequencing technologies have revealed numerous genetic alterations, including recurrently mutated genes and dysregulated signaling pathways in HCC. A better understanding of the genetic alterations in HCC could contribute to identifying potential driver mutations and discovering novel therapeutic targets in the future. In this article, we summarize the current advances in research on the genetic alterations, including genomic instability, single-nucleotide polymorphisms, somatic mutations and deregulated signaling pathways, implicated in the initiation and progression of HCC. We also attempt to elucidate some of the genetic mechanisms that contribute to making early diagnoses of and developing molecularly targeted therapies for HCC.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Gene Expression Regulation, Neoplastic
- Genetic Predisposition to Disease
- Genomic Instability
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Molecular Diagnostic Techniques
- Molecular Targeted Therapy
- Mutation
- Patient Selection
- Phenotype
- Polymorphism, Single Nucleotide
- Precision Medicine
- Predictive Value of Tests
- Signal Transduction
Collapse
|
29
|
McCubrey JA, Lertpiriyapong K, Fitzgerald TL, Martelli AM, Cocco L, Rakus D, Gizak A, Libra M, Cervello M, Montalto G, Yang LV, Abrams SL, Steelman LS. Roles of TP53 in determining therapeutic sensitivity, growth, cellular senescence, invasion and metastasis. Adv Biol Regul 2016; 63:32-48. [PMID: 27776972 DOI: 10.1016/j.jbior.2016.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022]
Abstract
TP53 is a critical tumor suppressor gene that regulates cell cycle progression, apoptosis, cellular senescence and many other properties critical for control of normal cellular growth and death. Due to the pleiotropic effects that TP53 has on gene expression and cellular physiology, mutations at this tumor suppressor gene result in diverse physiological effects. T53 mutations are frequently detected in numerous cancers. The expression of TP53 can be induced by various agents used to treat cancer patients such as chemotherapeutic drugs and ionizing radiation. Radiation will induce Ataxia telangiectasia mutated (ATM) and other kinases that results in the phosphorylation and activation of TP53. TP53 is also negatively regulated by other mechanisms, such as ubiquitination by ligases such as MDM2. While TP53 has been documented to control the expression of many "classical" genes (e.g., p21Cip-1, PUMA, Bax) by transcriptional mechanisms for quite some time, more recently TP53 has been shown to regulate microRNA (miR) gene expression. Different miRs can promote oncogenesis (oncomiR) whereas others act to inhibit tumor progression (tumor suppressor miRs). Targeted therapies to stabilize TP53 have been developed by various approaches, MDM2/MDM4 inhibitors have been developed to stabilize TP53 in TP53-wild type (WT) tumors. In addition, small molecules have been isolated that will reactivate certain mutant TP53s. Both of these types of inhibitors are in clinical trials. Understanding the actions of TP53 may yield novel approaches to suppress cancer, aging and other health problems.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Massimo Libra
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Guiseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
30
|
McCubrey JA, Rakus D, Gizak A, Steelman LS, Abrams SL, Lertpiriyapong K, Fitzgerald TL, Yang LV, Montalto G, Cervello M, Libra M, Nicoletti F, Scalisi A, Torino F, Fenga C, Neri LM, Marmiroli S, Cocco L, Martelli AM. Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity-Diverse effects on cell growth, metabolism and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2942-2976. [PMID: 27612668 DOI: 10.1016/j.bbamcr.2016.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/14/2016] [Accepted: 09/02/2016] [Indexed: 02/07/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that participates in an array of critical cellular processes. GSK-3 was first characterized as an enzyme that phosphorylated and inactivated glycogen synthase. However, subsequent studies have revealed that this moon-lighting protein is involved in numerous signaling pathways that regulate not only metabolism but also have roles in: apoptosis, cell cycle progression, cell renewal, differentiation, embryogenesis, migration, regulation of gene transcription, stem cell biology and survival. In this review, we will discuss the roles that GSK-3 plays in various diseases as well as how this pivotal kinase interacts with multiple signaling pathways such as: PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK, Wnt/beta-catenin, hedgehog, Notch and TP53. Mutations that occur in these and other pathways can alter the effects that natural GSK-3 activity has on regulating these signaling circuits that can lead to cancer as well as other diseases. The novel roles that microRNAs play in regulation of the effects of GSK-3 will also be evaluated. Targeting GSK-3 and these other pathways may improve therapy and overcome therapeutic resistance.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA.
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine at East Carolina University, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, USA
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Massimo Libra
- Department of Bio-medical Sciences, University of Catania, Catania, Italy
| | | | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Francesco Torino
- Department of Systems Medicine, Chair of Medical Oncology, Tor Vergata University of Rome, Rome, Italy
| | - Concettina Fenga
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section - Policlinico "G. Martino" - University of Messina, Messina 98125, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Sandra Marmiroli
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
31
|
Chauhan R, Lahiri N. Tissue- and Serum-Associated Biomarkers of Hepatocellular Carcinoma. BIOMARKERS IN CANCER 2016; 8:37-55. [PMID: 27398029 PMCID: PMC4933537 DOI: 10.4137/bic.s34413] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/15/2016] [Accepted: 03/27/2016] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC), one of the leading causes of cancer deaths in the world, is offering a challenge to human beings, with the current modes of treatment being a palliative approach. Lack of proper curative or preventive treatment methods encouraged extensive research around the world with an aim to detect a vaccine or therapeutic target biomolecule that could lead to development of a drug or vaccine against HCC. Biomarkers or biological disease markers have emerged as a potential tool as drug/vaccine targets, as they can accurately diagnose, predict, and even prevent the diseases. Biomarker expression in tissue, serum, plasma, or urine can detect tumor in very early stages of its development and monitor the cancer progression and also the effect of therapeutic interventions. Biomarker discoveries are driven by advanced techniques, such as proteomics, transcriptomics, whole genome sequencing, micro- and micro-RNA arrays, and translational clinics. In this review, an overview of the potential of tissue- and serum-associated HCC biomarkers as diagnostic, prognostic, and therapeutic targets for drug development is presented. In addition, we highlight recently developed micro-RNA, long noncoding RNA biomarkers, and single-nucleotide changes, which may be used independently or as complementary biomarkers. These active investigations going on around the world aimed at conquering HCC might show a bright light in the near future.
Collapse
Affiliation(s)
- Ranjit Chauhan
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.; Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | | |
Collapse
|