1
|
D'Orso I. The HIV-1 Transcriptional Program: From Initiation to Elongation Control. J Mol Biol 2025; 437:168690. [PMID: 38936695 DOI: 10.1016/j.jmb.2024.168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
A large body of work in the last four decades has revealed the key pillars of HIV-1 transcription control at the initiation and elongation steps. Here, I provide a recount of this collective knowledge starting with the genomic elements (DNA and nascent TAR RNA stem-loop) and transcription factors (cellular and the viral transactivator Tat), and later transitioning to the assembly and regulation of transcription initiation and elongation complexes, and the role of chromatin structure. Compelling evidence support a core HIV-1 transcriptional program regulated by the sequential and concerted action of cellular transcription factors and Tat to promote initiation and sustain elongation, highlighting the efficiency of a small virus to take over its host to produce the high levels of transcription required for viral replication. I summarize new advances including the use of CRISPR-Cas9, genetic tools for acute factor depletion, and imaging to study transcriptional dynamics, bursting and the progression through the multiple phases of the transcriptional cycle. Finally, I describe current challenges to future major advances and discuss areas that deserve more attention to both bolster our basic knowledge of the core HIV-1 transcriptional program and open up new therapeutic opportunities.
Collapse
Affiliation(s)
- Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Khader TA, Ahmad W, Akhlaq S, Panicker NG, Gull B, Baby J, Rizvi TA, Mustafa F. Transactivation of the novel 5' cis-acting element of mouse mammary tumor virus (MMTV) by human retroviral transactivators Tat and Tax. Commun Biol 2024; 7:1521. [PMID: 39550519 PMCID: PMC11569226 DOI: 10.1038/s42003-024-07139-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 10/24/2024] [Indexed: 11/18/2024] Open
Abstract
The mouse mammary tumor virus (MMTV) encodes a 5' element crucial for transcription of its genome along with the Rem/Rem-responsive element (RmRE) responsible for nuclear export of this unspliced RNA. Whether the 5' element is Rem-responsive or has any functional interaction with host/viral factors to facilitate MMTV gene expression was tested in this study. Our results reveal that the 5' element is non-responsive to Rem, but can be transactivated by both HIV Tat and HTLV-1 Tax activators. Reciprocally, MMTV could transactivate not only HIV TAR (similar to HTLV Tax), but also its 5' element. Furthermore, we reveal involvement of pTEFb, a general elongation factor associated with transactivation by Tat/Tax. This makes MMTV the first betaretrovirus to encode both Rem/RRE and Tat/TAR-Tax/TRE-like transcription regulatory systems. This study should enhance not only our understanding of retrovirus replication and virally-induced cancers/immunodeficiency syndromes, but also development of improved retroviral vectors for human gene therapy.
Collapse
Affiliation(s)
- Thanumol Abdul Khader
- Department of Biochemistry and Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain, UAE
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, UAE
| | - Waqar Ahmad
- Department of Biochemistry and Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain, UAE
| | - Shaima Akhlaq
- Department of Biochemistry and Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain, UAE
| | - Neena Gopinathan Panicker
- Department of Biochemistry and Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain, UAE
| | - Bushra Gull
- Department of Biochemistry and Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain, UAE
| | - Jasmin Baby
- Department of Biochemistry and Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain, UAE
| | - Tahir A Rizvi
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, UAE.
- Department of Microbiology and Immunology, CMHS, UAE University, Al Ain, UAE.
- Zayed Center for Health Sciences (ZCHS), UAE University, Al Ain, UAE.
| | - Farah Mustafa
- Department of Biochemistry and Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain, UAE.
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, UAE.
- Zayed Center for Health Sciences (ZCHS), UAE University, Al Ain, UAE.
| |
Collapse
|
3
|
Mo C, Wei N, Li T, Ahmed Bhat M, Mohammadi M, Kuang C. CDK9 inhibitors for the treatment of solid tumors. Biochem Pharmacol 2024; 229:116470. [PMID: 39127153 DOI: 10.1016/j.bcp.2024.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Cyclin-dependent kinase 9 (CDK9) regulates mRNA transcription by promoting RNA Pol II elongation. CDK9 is now emerging as a potential therapeutic target for cancer, since its overexpression has been found to correlate with cancer development and worse clinical outcomes. While much work on CDK9 inhibition has focused on hematologic malignancies, the role of this cancer driver in solid tumors is starting to come into focus. Many solid cancers also overexpress CDK9 and depend on its activity to promote downstream oncogenic signaling pathways. In this review, we summarize the latest knowledge of CDK9 biology in solid tumors and the studies of small molecule CDK9 inhibitors. We discuss the results of the latest clinical trials of CDK9 inhibitors in solid tumors, with a focus on key issues to consider for improving the therapeutic impact of this drug class.
Collapse
Affiliation(s)
- Christiana Mo
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Ning Wei
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Terence Li
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Muzaffer Ahmed Bhat
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Mahshid Mohammadi
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Chaoyuan Kuang
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA.
| |
Collapse
|
4
|
Freeman DB, Hopkins TD, Mikochik PJ, Vacca JP, Gao H, Naylor-Olsen A, Rudra S, Li H, Pop MS, Villagomez RA, Lee C, Li H, Zhou M, Saffran DC, Rioux N, Hood TR, Day MAL, McKeown MR, Lin CY, Bischofberger N, Trotter BW. Discovery of KB-0742, a Potent, Selective, Orally Bioavailable Small Molecule Inhibitor of CDK9 for MYC-Dependent Cancers. J Med Chem 2023; 66:15629-15647. [PMID: 37967851 PMCID: PMC10726352 DOI: 10.1021/acs.jmedchem.3c01233] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/17/2023]
Abstract
Transcriptional deregulation is a hallmark of many cancers and is exemplified by genomic amplifications of the MYC family of oncogenes, which occur in at least 20% of all solid tumors in adults. Targeting of transcriptional cofactors and the transcriptional cyclin-dependent kinase (CDK9) has emerged as a therapeutic strategy to interdict deregulated transcriptional activity including oncogenic MYC. Here, we report the structural optimization of a small molecule microarray hit, prioritizing maintenance of CDK9 selectivity while improving on-target potency and overall physicochemical and pharmacokinetic (PK) properties. This led to the discovery of the potent, selective, orally bioavailable CDK9 inhibitor 28 (KB-0742). Compound 28 exhibits in vivo antitumor activity in mouse xenograft models and a projected human PK profile anticipated to enable efficacious oral dosing. Notably, 28 is currently being investigated in a phase 1/2 dose escalation and expansion clinical trial in patients with relapsed or refractory solid tumors.
Collapse
Affiliation(s)
- David B. Freeman
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Tamara D. Hopkins
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Peter J. Mikochik
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Joseph P. Vacca
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Hua Gao
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Adel Naylor-Olsen
- Naylor
Olsen Consulting, LLC, 3369 Saddle Wood Court, Lansdale, Pennsylvania 19446, United States
| | - Sonali Rudra
- TCG
Lifesciences Private Limited, Block BN, Plot 7, Salt-lake Electronics Complex, Sector V, Kolkata 700091, West Bengal, India
| | - Huixu Li
- WuXi
AppTec (Tianjin) Co., Ltd., 168 NanHai Road, 10th Avenue, TEDA, Tianjin 300457, P. R. China
| | - Marius S. Pop
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Rosa A. Villagomez
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Christina Lee
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Heng Li
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Minyun Zhou
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Douglas C. Saffran
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Nathalie Rioux
- Certara
Strategic Consulting, 100 Overlook Center, Suite 101, Princeton, New Jersey 08540, United States
| | - Tressa R. Hood
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Melinda A. L. Day
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Michael R. McKeown
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Charles Y. Lin
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Norbert Bischofberger
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - B. Wesley Trotter
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| |
Collapse
|
5
|
DeBerardine M, Booth GT, Versluis PP, Lis JT. The NELF pausing checkpoint mediates the functional divergence of Cdk9. Nat Commun 2023; 14:2762. [PMID: 37179384 PMCID: PMC10182999 DOI: 10.1038/s41467-023-38359-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Promoter-proximal pausing by RNA Pol II is a rate-determining step in gene transcription that is hypothesized to be a prominent point at which regulatory factors act. The pausing factor NELF is known to induce and stabilize pausing, but not all kinds of pausing are NELF-mediated. Here, we find that NELF-depleted Drosophila melanogaster cells functionally recapitulate the NELF-independent pausing we previously observed in fission yeast (which lack NELF). Critically, only NELF-mediated pausing establishes a strict requirement for Cdk9 kinase activity for the release of paused Pol II into productive elongation. Upon inhibition of Cdk9, cells with NELF efficiently shutdown gene transcription, while in NELF-depleted cells, defective, non-productive transcription continues unabated. By introducing a strict checkpoint for Cdk9, the evolution of NELF was likely critical to enable increased regulation of Cdk9 in higher eukaryotes, as Cdk9 availability can be restricted to limit gene transcription without inducing wasteful, non-productive transcription.
Collapse
Affiliation(s)
- Michael DeBerardine
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Gregory T Booth
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Kanvas Biosciences, Monmouth Junction, NJ, USA
| | - Philip P Versluis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
6
|
Camara MB, Sobeh AM, Eichhorn CD. Progress in 7SK ribonucleoprotein structural biology. Front Mol Biosci 2023; 10:1154622. [PMID: 37051324 PMCID: PMC10083321 DOI: 10.3389/fmolb.2023.1154622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
The 7SK ribonucleoprotein (RNP) is a dynamic and multifunctional regulator of RNA Polymerase II (RNAPII) transcription in metazoa. Comprised of the non-coding 7SK RNA, core proteins, and numerous accessory proteins, the most well-known 7SK RNP function is the sequestration and inactivation of the positive transcription elongation factor b (P-TEFb). More recently, 7SK RNP has been shown to regulate RNAPII transcription through P-TEFb-independent pathways. Due to its fundamental role in cellular function, dysregulation has been linked with human diseases including cancers, heart disease, developmental disorders, and viral infection. Significant advances in 7SK RNP structural biology have improved our understanding of 7SK RNP assembly and function. Here, we review progress in understanding the structural basis of 7SK RNA folding, biogenesis, and RNP assembly.
Collapse
Affiliation(s)
- Momodou B. Camara
- Department of Chemistry, University of Nebraska, Lincoln, NE, United States
| | - Amr M. Sobeh
- Department of Chemistry, University of Nebraska, Lincoln, NE, United States
| | - Catherine D. Eichhorn
- Department of Chemistry, University of Nebraska, Lincoln, NE, United States
- Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE, United States
- *Correspondence: Catherine D. Eichhorn,
| |
Collapse
|
7
|
Akcan TS, Vilov S, Heinig M. Predictive model of transcriptional elongation control identifies trans regulatory factors from chromatin signatures. Nucleic Acids Res 2023; 51:1608-1624. [PMID: 36727445 PMCID: PMC9976927 DOI: 10.1093/nar/gkac1272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/09/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023] Open
Abstract
Promoter-proximal Polymerase II (Pol II) pausing is a key rate-limiting step for gene expression. DNA and RNA-binding trans-acting factors regulating the extent of pausing have been identified. However, we lack a quantitative model of how interactions of these factors determine pausing, therefore the relative importance of implicated factors is unknown. Moreover, previously unknown regulators might exist. Here we address this gap with a machine learning model that accurately predicts the extent of promoter-proximal Pol II pausing from large-scale genome and transcriptome binding maps and gene annotation and sequence composition features. We demonstrate high accuracy and generalizability of the model by validation on an independent cell line which reveals the model's cell line agnostic character. Model interpretation in light of prior knowledge about molecular functions of regulatory factors confirms the interconnection of pausing with other RNA processing steps. Harnessing underlying feature contributions, we assess the relative importance of each factor, quantify their predictive effects and systematically identify previously unknown regulators of pausing. We additionally identify 16 previously unknown 7SK ncRNA interacting RNA-binding proteins predictive of pausing. Our work provides a framework to further our understanding of the regulation of the critical early steps in transcriptional elongation.
Collapse
Affiliation(s)
- Toray S Akcan
- Institute of Computational Biology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.,Department of Computer Science, TUM School of Computation, Information and Technology, Technical University Munich, Munich, Germany
| | - Sergey Vilov
- Institute of Computational Biology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Matthias Heinig
- Institute of Computational Biology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.,Department of Computer Science, TUM School of Computation, Information and Technology, Technical University Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Munich Heart Association, Partner Site Munich, 10785 Berlin, Germany
| |
Collapse
|
8
|
Sobeh AM, Eichhorn CD. C-terminal determinants for RNA binding motif 7 protein stability and RNA recognition. Biophys Chem 2023; 292:106928. [PMID: 36427363 PMCID: PMC9768861 DOI: 10.1016/j.bpc.2022.106928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/13/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
The 7SK ribonucleoprotein (RNP) is a critical regulator of eukaryotic transcription. Recently, RNA binding motif 7 (RBM7) containing an RNA recognition motif (RRM) was reported to associate with 7SK RNA and core 7SK RNP protein components in response to DNA damage. However, little is known about the mode of RBM7-7SK RNA recognition. Here, we found that RRM constructs containing extended C-termini have increased solubility compared to a minimal RRM construct, although these constructs aggregate in a temperature and concentration-dependent manner. Using solution NMR dynamics experiments, we identified additional structural features observed previously in crystal but not in solution structures. To identify potential RBM7-7SK RNA binding sites, we analyzed deposited data from in cellulo crosslinking experiments and found that RBM7 primarily crosslinks to the distal region of 7SK stem-loop 3 (SL3). Electrophoretic mobility shift assays and NMR chemical shift perturbation experiments showed weak binding to 7SK SL3 constructs in vitro. Together, these results provide new insights into RBM7 RRM folding and recognition of 7SK RNA.
Collapse
Affiliation(s)
- Amr M Sobeh
- Department of Chemistry, University of Nebraska, 639 North 12th St, Lincoln, NE 68588, USA
| | - Catherine D Eichhorn
- Department of Chemistry, University of Nebraska, 639 North 12th St, Lincoln, NE 68588, USA.
| |
Collapse
|
9
|
Cruz-Lorenzo E, Ramirez NGP, Lee J, Pandhe S, Wang L, Hernandez-Doria J, Spivak AM, Planelles V, Petersen T, Jain MK, Martinez ED, D’Orso I. Host Cell Redox Alterations Promote Latent HIV-1 Reactivation through Atypical Transcription Factor Cooperativity. Viruses 2022; 14:v14102288. [PMID: 36298843 PMCID: PMC9612055 DOI: 10.3390/v14102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Immune cell state alterations rewire HIV-1 gene expression, thereby influencing viral latency and reactivation, but the mechanisms are still unfolding. Here, using a screen approach on CD4+ T cell models of HIV-1 latency, we revealed Small Molecule Reactivators (SMOREs) with unique chemistries altering the CD4+ T cell state and consequently promoting latent HIV-1 transcription and reactivation through an unprecedented mechanism of action. SMOREs triggered rapid oxidative stress and activated a redox-responsive program composed of cell-signaling kinases (MEK-ERK axis) and atypical transcription factor (AP-1 and HIF-1α) cooperativity. SMOREs induced an unusual AP-1 phosphorylation signature to promote AP-1/HIF-1α binding to the latent HIV-1 proviral genome for its activation. Consistently, latent HIV-1 reactivation was compromised with pharmacologic inhibition of oxidative stress sensing or of cell-signaling kinases, and transcription factor’s loss of expression, thus functionally linking the host redox-responsive program to viral transcriptional rewiring. Notably, SMOREs induced the redox program in primary CD4+ T cells and reactivated latent HIV-1 in aviremic patient samples alone and in combination with known latency-reversing agents, thus providing physiological relevance. Our findings suggest that manipulation of redox-sensitive pathways could be exploited to alter the course of HIV-1 latency, thus rendering host cells responsive to help achieve a sterilizing cure.
Collapse
Affiliation(s)
- Emily Cruz-Lorenzo
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nora-Guadalupe P. Ramirez
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeon Lee
- Lydia Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sonali Pandhe
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Wang
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Juan Hernandez-Doria
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam M. Spivak
- Division of Infectious Diseases, Department of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Vicente Planelles
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Tianna Petersen
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mamta K. Jain
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Parkland Health & Hospital System, 5200 Harry Hines Blvd, Dallas, TX 75235, USA
| | - Elisabeth D. Martinez
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Iván D’Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
10
|
Lockwood DC, Amin H, Costa TRD, Schroeder GN. The Legionella pneumophila Dot/Icm type IV secretion system and its effectors. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35639581 DOI: 10.1099/mic.0.001187] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To prevail in the interaction with eukaryotic hosts, many bacterial pathogens use protein secretion systems to release virulence factors at the host–pathogen interface and/or deliver them directly into host cells. An outstanding example of the complexity and sophistication of secretion systems and the diversity of their protein substrates, effectors, is the Defective in organelle trafficking/Intracellular multiplication (Dot/Icm) Type IVB secretion system (T4BSS) of
Legionella pneumophila
and related species.
Legionella
species are facultative intracellular pathogens of environmental protozoa and opportunistic human respiratory pathogens. The Dot/Icm T4BSS translocates an exceptionally large number of effectors, more than 300 per
L. pneumophila
strain, and is essential for evasion of phagolysosomal degradation and exploitation of protozoa and human macrophages as replicative niches. Recent technological advancements in the imaging of large protein complexes have provided new insight into the architecture of the T4BSS and allowed us to propose models for the transport mechanism. At the same time, significant progress has been made in assigning functions to about a third of
L. pneumophila
effectors, discovering unprecedented new enzymatic activities and concepts of host subversion. In this review, we describe the current knowledge of the workings of the Dot/Icm T4BSS machinery and provide an overview of the activities and functions of the to-date characterized effectors in the interaction of
L. pneumophila
with host cells.
Collapse
Affiliation(s)
- Daniel C Lockwood
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland, UK
| | - Himani Amin
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Tiago R D Costa
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Gunnar N Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland, UK
| |
Collapse
|
11
|
Cordsmeier A, Rinkel S, Jeninga M, Schulze-Luehrmann J, Ölke M, Schmid B, Hasler D, Meister G, Häcker G, Petter M, Beare PA, Lührmann A. The Coxiella burnetii T4SS effector protein AnkG hijacks the 7SK small nuclear ribonucleoprotein complex for reprogramming host cell transcription. PLoS Pathog 2022; 18:e1010266. [PMID: 35134097 PMCID: PMC8824381 DOI: 10.1371/journal.ppat.1010266] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/10/2022] [Indexed: 11/24/2022] Open
Abstract
Inhibition of host cell apoptosis is crucial for survival and replication of several intracellular bacterial pathogens. To interfere with apoptotic pathways, some pathogens use specialized secretion systems to inject bacterial effector proteins into the host cell cytosol. One of these pathogens is the obligate intracellular bacterium Coxiella burnetii, the etiological agent of the zoonotic disease Q fever. In this study, we analyzed the molecular activity of the anti-apoptotic T4SS effector protein AnkG (CBU0781) to understand how C. burnetii manipulates host cell viability. We demonstrate by co- and RNA-immunoprecipitation that AnkG binds to the host cell DExD box RNA helicase 21 (DDX21) as well as to the host cell 7SK small nuclear ribonucleoprotein (7SK snRNP) complex, an important regulator of the positive transcription elongation factor b (P-TEFb). The co-immunoprecipitation of AnkG with DDX21 is probably mediated by salt bridges and is independent of AnkG-7SK snRNP binding, and vice versa. It is known that DDX21 facilitates the release of P-TEFb from the 7SK snRNP complex. Consistent with the documented function of released P-TEFb in RNA Pol II pause release, RNA sequencing experiments confirmed AnkG-mediated transcriptional reprogramming and showed that expression of genes involved in apoptosis, trafficking, and transcription are influenced by AnkG. Importantly, DDX21 and P-TEFb are both essential for AnkG-mediated inhibition of host cell apoptosis, emphasizing the significance of the interaction of AnkG with both, the DDX21 protein and the 7SK RNA. In line with a critical function of AnkG in pathogenesis, the AnkG deletion C. burnetii strain was severely affected in its ability to inhibit host cell apoptosis and to generate a replicative C. burnetii-containing vacuole. In conclusion, the interference with the activity of regulatory host cell RNAs mediated by a bacterial effector protein represent a novel mechanism through which C. burnetii modulates host cell transcription, thereby enhancing permissiveness to bacterial infection. For intracellular replication, Coxiella burnetii depends on a functional type IV secretion system, which is utilized to inject ~150 virulence factors, so called effector proteins, into the host cell cytosol. Activities have only been established for few of them. These effector proteins interfere with vesicular trafficking, autophagy, lipid metabolism, apoptosis, and transcription by binding and manipulating the activity of host cell proteins. Here, we report that the C. burnetii T4SS effector protein AnkG (CBU0781, Q83DF6) binds to the host cell DExD box helicase 21 (DDX21) as well as to several host cell RNAs, including the small regulatory 7SK RNA, which is an important regulator of the positive elongation factor b (pTEFb). AnkG interferes with the function of the 7SK small nuclear ribonucleoprotein (7SK snRNP) complex, leading to significant changes in host cell transcription and ensuring host cell survival. AnkG activity is essential for efficient intracellular replication of C. burnetii and its ability to inhibit apoptosis. In summary, we identified a novel process by which a bacterial effector protein manipulates the host cell for its own benefit.
Collapse
Affiliation(s)
- Arne Cordsmeier
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven Rinkel
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Myriam Jeninga
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Schulze-Luehrmann
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martha Ölke
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benedikt Schmid
- Lehrstuhl für Biotechnik, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniele Hasler
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Georg Häcker
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Freiburg, Germany
| | - Michaela Petter
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Paul A. Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Anja Lührmann
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
12
|
Zhu Z, Liu J, Feng H, Zhang Y, Huang R, Pan Q, Nan J, Miao R, Cheng B. Overcoming the cytoplasmic retention of GDOWN1 modulates global transcription and facilitates stress adaptation. eLife 2022; 11:79116. [PMID: 36476745 PMCID: PMC9728996 DOI: 10.7554/elife.79116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Dynamic regulation of transcription is crucial for the cellular responses to various environmental or developmental cues. Gdown1 is a ubiquitously expressed, RNA polymerase II (Pol II) interacting protein, essential for the embryonic development of metazoan. It tightly binds Pol II in vitro and competitively blocks the binding of TFIIF and possibly other transcriptional regulatory factors, yet its cellular functions and regulatory circuits remain unclear. Here, we show that human GDOWN1 strictly localizes in the cytoplasm of various types of somatic cells and exhibits a potent resistance to the imposed driving force for its nuclear localization. Combined with the genetic and microscope-based approaches, two types of the functionally coupled and evolutionally conserved localization regulatory motifs are identified, including the CRM1-dependent nucleus export signal (NES) and a novel Cytoplasmic Anchoring Signal (CAS) that mediates its retention outside of the nuclear pore complexes (NPC). Mutagenesis of CAS alleviates GDOWN1's cytoplasmic retention, thus unlocks its nucleocytoplasmic shuttling properties, and the increased nuclear import and accumulation of GDOWN1 results in a drastic reduction of both Pol II and its associated global transcription levels. Importantly, the nuclear translocation of GDOWN1 occurs in response to the oxidative stresses, and the ablation of GDOWN1 significantly weakens the cellular tolerance. Collectively, our work uncovers the molecular basis of GDOWN1's subcellular localization and a novel cellular strategy of modulating global transcription and stress-adaptation via controlling the nuclear translocation of GDOWN1.
Collapse
Affiliation(s)
- Zhanwu Zhu
- School of Life Sciences, Lanzhou UniversityLanzhouChina
| | - Jingjing Liu
- School of Life Sciences, Lanzhou UniversityLanzhouChina
| | - Huan Feng
- School of Life Sciences, Lanzhou UniversityLanzhouChina
| | - Yanning Zhang
- School of Life Sciences, Lanzhou UniversityLanzhouChina
| | - Ruiqi Huang
- Cuiying Honors College, Lanzhou UniversityLanzhouChina
| | - Qiaochu Pan
- Cuiying Honors College, Lanzhou UniversityLanzhouChina
| | - Jing Nan
- School of Life Sciences, Lanzhou UniversityLanzhouChina
| | - Ruidong Miao
- School of Life Sciences, Lanzhou UniversityLanzhouChina
| | - Bo Cheng
- School of Life Sciences, Lanzhou UniversityLanzhouChina,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou UniversityLanzhouChina
| |
Collapse
|
13
|
Nguyen D, Buisine N, Fayol O, Michels AA, Bensaude O, Price DH, Uguen P. An alternative D. melanogaster 7SK snRNP. BMC Mol Cell Biol 2021; 22:43. [PMID: 34461828 PMCID: PMC8406779 DOI: 10.1186/s12860-021-00381-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The 7SK small nuclear RNA (snRNA) found in most metazoans is a key regulator of P-TEFb which in turn regulates RNA polymerase II elongation. Although its primary sequence varies in protostomes, its secondary structure and function are conserved across evolutionary distant taxa. RESULTS Here, we describe a novel ncRNA sharing many features characteristic of 7SK RNAs, in D. melanogaster. We examined the structure of the corresponding gene and determined the expression profiles of the encoded RNA, called snRNA:7SK:94F, during development. It is probably produced from the transcription of a lncRNA which is processed into a mature snRNA. We also addressed its biological function and we show that, like dm7SK, this alternative 7SK interacts in vivo with the different partners of the P-TEFb complex, i.e. HEXIM, LARP7 and Cyclin T. This novel RNA is widely expressed across tissues. CONCLUSION We propose that two distinct 7SK genes might contribute to the formation of the 7SK snRNP complex in D. melanogaster.
Collapse
Affiliation(s)
- Duy Nguyen
- Université Paris-Saclay, INSERM, CNRS, Interactions cellulaires et physiopathologie hépatique, Bât.440, 91405, Orsay, France
| | | | - Olivier Fayol
- Université Paris-Saclay, INSERM, CNRS, Interactions cellulaires et physiopathologie hépatique, Bât.440, 91405, Orsay, France
| | | | - Olivier Bensaude
- IBENS Paris, UMR CNRS 8197; UA INSERM 1024, 75005, Paris, France
| | - David H Price
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Patricia Uguen
- Université Paris-Saclay, INSERM, CNRS, Interactions cellulaires et physiopathologie hépatique, Bât.440, 91405, Orsay, France.
- Present address: Université Paris-Saclay, CNRS, INSERM, Institut Curie, Intégrité du Génome, ARN et cancer, Bât. 110, 91401, Orsay cedex, France.
| |
Collapse
|
14
|
Willbanks A, Wood S, Cheng JX. RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases. Genes (Basel) 2021; 12:genes12050627. [PMID: 33922187 PMCID: PMC8145807 DOI: 10.3390/genes12050627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 02/08/2023] Open
Abstract
Chromatin structure plays an essential role in eukaryotic gene expression and cell identity. Traditionally, DNA and histone modifications have been the focus of chromatin regulation; however, recent molecular and imaging studies have revealed an intimate connection between RNA epigenetics and chromatin structure. Accumulating evidence suggests that RNA serves as the interplay between chromatin and the transcription and splicing machineries within the cell. Additionally, epigenetic modifications of nascent RNAs fine-tune these interactions to regulate gene expression at the co- and post-transcriptional levels in normal cell development and human diseases. This review will provide an overview of recent advances in the emerging field of RNA epigenetics, specifically the role of RNA modifications and RNA modifying proteins in chromatin remodeling, transcription activation and RNA processing, as well as translational implications in human diseases.
Collapse
|
15
|
Noncoding RNAs Set the Stage for RNA Polymerase II Transcription. Trends Genet 2020; 37:279-291. [PMID: 33046273 DOI: 10.1016/j.tig.2020.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022]
Abstract
Effective synthesis of mammalian messenger (m)RNAs depends on many factors that together direct RNA polymerase II (pol II) through the different stages of the transcription cycle and ensure efficient cotranscriptional processing of mRNAs. In addition to the many proteins involved in transcription initiation, elongation, and termination, several noncoding (nc)RNAs also function as global transcriptional regulators. Understanding the mode of action of these non-protein regulators has been an intense area of research in recent years. Here, we describe how these ncRNAs influence key regulatory steps of the transcription process, to affect large numbers of genes. Through direct association with pol II or by modulating the activity of transcription or RNA processing factors, these regulatory RNAs perform critical roles in gene expression.
Collapse
|
16
|
Hasler D, Meister G, Fischer U. Stabilize and connect: the role of LARP7 in nuclear non-coding RNA metabolism. RNA Biol 2020; 18:290-303. [PMID: 32401147 DOI: 10.1080/15476286.2020.1767952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
La and La-related proteins (LARPs) are characterized by a common RNA interaction platform termed the La module. This structural hallmark allows LARPs to pervade various aspects of RNA biology. The metazoan LARP7 protein binds to the 7SK RNA as part of a 7SK small nuclear ribonucleoprotein (7SK snRNP), which inhibits the transcriptional activity of RNA polymerase II (Pol II). Additionally, recent findings revealed unanticipated roles of LARP7 in the assembly of other RNPs, as well as in the modification, processing and cellular transport of RNA molecules. Reduced levels of functional LARP7 have been linked to cancer and Alazami syndrome, two seemingly unrelated human diseases characterized either by hyperproliferation or growth retardation. Here, we review the intricate regulatory networks centered on LARP7 and assess how malfunction of these networks may relate to the etiology of LARP7-linked diseases.
Collapse
Affiliation(s)
- Daniele Hasler
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Utz Fischer
- Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
17
|
Olson A, Basukala B, Wong WW, Henderson AJ. Targeting HIV-1 proviral transcription. Curr Opin Virol 2019; 38:89-96. [PMID: 31473372 DOI: 10.1016/j.coviro.2019.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
Despite the success of antiretroviral therapies, there is no cure for HIV-1 infection due to the establishment of a long-lived latent reservoir that fuels viral rebound upon treatment interruption. 'Shock-and-kill' strategies to diminish the latent reservoir have had modest impact on the reservoir leading to considerations of alternative approaches to target HIV-1 proviruses. This review explores approaches to target HIV-1 transcription as a way to block the provirus expression.
Collapse
Affiliation(s)
- Alex Olson
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, United States
| | - Binita Basukala
- Cell & Molecular Biology, Biology, Boston University, United States
| | - Wilson W Wong
- Biomedical Engineering, Boston University, United States
| | - Andrew J Henderson
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, United States.
| |
Collapse
|
18
|
Morton EL, Forst CV, Zheng Y, DePaula-Silva AB, Ramirez NGP, Planelles V, D'Orso I. Transcriptional Circuit Fragility Influences HIV Proviral Fate. Cell Rep 2019; 27:154-171.e9. [PMID: 30943398 PMCID: PMC6461408 DOI: 10.1016/j.celrep.2019.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/14/2018] [Accepted: 02/28/2019] [Indexed: 01/12/2023] Open
Abstract
Transcriptional circuit architectures in several organisms have been evolutionarily selected to dictate precise given responses. Unlike these cellular systems, HIV is regulated through a complex circuit composed of two successive phases (host and viral), which create a positive feedback loop facilitating viral replication. However, it has long remained unclear whether both phases operate identically and to what extent the host phase influences the entire circuit. Here, we report that, although the host phase is regulated by a checkpoint whereby KAP1 mediates transcription activation, the virus evolved a minimalist system bypassing KAP1. Given the complex circuit's architecture, cell-to-cell KAP1 fluctuations impart heterogeneity in the host transcriptional responses, thus affecting the feedback loop. Mathematical modeling of a complete circuit reveals how these oscillations ultimately influence homogeneous reactivation potential of a latent virus. Thus, although HIV drives molecular innovation to fuel robust gene activation, it experiences transcriptional fragility, thereby influencing viral fate and cure efforts.
Collapse
Affiliation(s)
- Emily L Morton
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christian V Forst
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yue Zheng
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ana B DePaula-Silva
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Nora-Guadalupe P Ramirez
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vicente Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Iván D'Orso
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
19
|
Liang K, Smith ER, Aoi Y, Stoltz KL, Katagi H, Woodfin AR, Rendleman EJ, Marshall SA, Murray DC, Wang L, Ozark PA, Mishra RK, Hashizume R, Schiltz GE, Shilatifard A. Targeting Processive Transcription Elongation via SEC Disruption for MYC-Induced Cancer Therapy. Cell 2018; 175:766-779.e17. [PMID: 30340042 PMCID: PMC6422358 DOI: 10.1016/j.cell.2018.09.027] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/02/2018] [Accepted: 09/13/2018] [Indexed: 11/15/2022]
Abstract
The super elongation complex (SEC) is required for robust and productive transcription through release of RNA polymerase II (Pol II) with its P-TEFb module and promoting transcriptional processivity with its ELL2 subunit. Malfunction of SEC contributes to multiple human diseases including cancer. Here, we identify peptidomimetic lead compounds, KL-1 and its structural homolog KL-2, which disrupt the interaction between the SEC scaffolding protein AFF4 and P-TEFb, resulting in impaired release of Pol II from promoter-proximal pause sites and a reduced average rate of processive transcription elongation. SEC is required for induction of heat-shock genes and treating cells with KL-1 and KL-2 attenuates the heat-shock response from Drosophila to human. SEC inhibition downregulates MYC and MYC-dependent transcriptional programs in mammalian cells and delays tumor progression in a mouse xenograft model of MYC-driven cancer, indicating that small-molecule disruptors of SEC could be used for targeted therapy of MYC-induced cancer.
Collapse
Affiliation(s)
- Kaiwei Liang
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Edwin R. Smith
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Yuki Aoi
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kristen L. Stoltz
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Hiroaki Katagi
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Ashley R. Woodfin
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Emily J. Rendleman
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Stacy A. Marshall
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - David C. Murray
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lu Wang
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Patrick A. Ozark
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rama K. Mishra
- Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA,Department of Pharmacology, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Rintaro Hashizume
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Gary E. Schiltz
- Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA,Department of Pharmacology, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg, School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA.
| |
Collapse
|
20
|
Castro-Gonzalez S, Colomer-Lluch M, Serra-Moreno R. Barriers for HIV Cure: The Latent Reservoir. AIDS Res Hum Retroviruses 2018; 34:739-759. [PMID: 30056745 PMCID: PMC6152859 DOI: 10.1089/aid.2018.0118] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Thirty-five years after the identification of HIV-1 as the causative agent of AIDS, we are still in search of vaccines and treatments to eradicate this devastating infectious disease. Progress has been made in understanding the molecular pathogenesis of this infection, which has been crucial for the development of the current therapy regimens. However, despite their efficacy at limiting active viral replication, these drugs are unable to purge the latent reservoir: a pool of cells that harbor transcriptionally inactive, but replication-competent HIV-1 proviruses, and that represent the main barrier to eradicate HIV-1 from affected individuals. In this review, we discuss advances in the field that have allowed a better understanding of HIV-1 latency, including the diverse cell types that constitute the latent reservoir, factors influencing latency, tools to study HIV-1 latency, as well as current and prospective therapeutic approaches to target these latently infected cells, so a functional cure for HIV/AIDS can become a reality.
Collapse
Affiliation(s)
- Sergio Castro-Gonzalez
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, Texas
| | - Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Ruth Serra-Moreno
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, Texas
| |
Collapse
|
21
|
Rice AP. The HIV-1 Tat Protein: Mechanism of Action and Target for HIV-1 Cure Strategies. Curr Pharm Des 2018; 23:4098-4102. [PMID: 28677507 DOI: 10.2174/1381612823666170704130635] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/12/2017] [Accepted: 06/20/2017] [Indexed: 02/07/2023]
Abstract
The general mechanism involved in Tat activation of RNA Polymerase II (RNAP II) elongation of the integrated HIV-1 was elucidated over 20 years ago. This mechanism involves Tat binding to the TAR RNA element that forms at the 5' end of viral transcripts and recruiting a general RNAP II elongation factor termed as PTEFb. This elongation factor consists of CDK9 and Cyclin T1, and when recruited by Tat to TAR RNA, CDK9 was proposed to phosphorylate the carboxyl terminal domain of RNAP II and thereby activate elongation. Research in the past two decades has shown that the mechanism of Tat action is considerably more complicated than this simple model. In metabolically active cells, CDK9 and Cyclin T1 are now known to be largely sequestered in a RNA-protein complex termed the 7SK RNP. CDK9 and Cyclin T1 are released from the 7SK RNP by mechanisms not yet fully elucidated and along with Tat, bind to TAR RNA and orchestrate the assembly of a Super Elongation Complex (SEC) containing several additional proteins. CDK9 in the SEC then phosphorylates multiple substrates in the RNAP II complex to activate elongation. Importantly for therapeutic strategies, CDK9 and Cyclin T1 functions are down-regulated in resting CD4+ T cells that harbor latent HIV-1, and their up-regulation is required for reactivation of latent virus. Current strategies for a functional cure of HIV-1 infection therefore are likely to require development of latency reversal agents that up-regulate CDK9 and Cyclin T1 function in resting CD4+ T cells.
Collapse
Affiliation(s)
- Andrew P Rice
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030. United States
| |
Collapse
|
22
|
Abstract
Hexim1 acts as a tumor suppressor and is involved in the regulation of innate immunity. It was initially described as a non-coding RNA-dependent regulator of transcription. Here, we detail how 7SK RNA binds to Hexim1 and turns it into an inhibitor of the positive transcription elongation factor (P-TEFb). In addition to its action on P-TEFb, it plays a role in a variety of different mechanisms: it controls the stability of transcription factor components and assists binding of transcription factors to their targets.
Collapse
Affiliation(s)
- Annemieke A Michels
- a IBENS , Ecole Normale Supérieure UMR CNRS 8107, UA INSERM 1024 , 46 rue d'Ulm Paris Cedex France
| | - Olivier Bensaude
- a IBENS , Ecole Normale Supérieure UMR CNRS 8107, UA INSERM 1024 , 46 rue d'Ulm Paris Cedex France
| |
Collapse
|
23
|
Ali I, Conrad RJ, Verdin E, Ott M. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chem Rev 2018; 118:1216-1252. [PMID: 29405707 PMCID: PMC6609103 DOI: 10.1021/acs.chemrev.7b00181] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-translational acetylation of lysine residues has emerged as a key regulatory mechanism in all eukaryotic organisms. Originally discovered in 1963 as a unique modification of histones, acetylation marks are now found on thousands of nonhistone proteins located in virtually every cellular compartment. Here we summarize key findings in the field of protein acetylation over the past 20 years with a focus on recent discoveries in nuclear, cytoplasmic, and mitochondrial compartments. Collectively, these findings have elevated protein acetylation as a major post-translational modification, underscoring its physiological relevance in gene regulation, cell signaling, metabolism, and disease.
Collapse
Affiliation(s)
- Ibraheem Ali
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Ryan J. Conrad
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| |
Collapse
|
24
|
Lakhotia SC. From Heterochromatin to Long Noncoding RNAs in Drosophila: Expanding the Arena of Gene Function and Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1008:75-118. [PMID: 28815537 DOI: 10.1007/978-981-10-5203-3_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent years have witnessed a remarkable interest in exploring the significance of pervasive noncoding transcripts in diverse eukaryotes. Classical cytogenetic studies using the Drosophila model system unraveled the perplexing attributes and "functions" of the "gene"-poor heterochromatin. Recent molecular studies in the fly model are likewise revealing the very diverse and significant roles played by long noncoding RNAs (lncRNAs) in development, gene regulation, chromatin organization, cell and nuclear architecture, etc. There has been a rapid increase in the number of identified lncRNAs, although a much larger number still remains unknown. The diversity of modes of actions and functions of the limited number of Drosophila lncRNAs, which have been examined, already reflects the profound roles of such RNAs in generating and sustaining the biological complexities of eukaryotes. Several of the known Drosophila lncRNAs originate as independent sense or antisense transcripts from promoter or intergenic, intronic, or 5'/3'-UTR regions, while many of them are independent genes that produce only lncRNAs or coding as well as noncoding RNAs. The different lncRNAs affect chromatin organization (local or large-scale pan-chromosomal), transcription, RNA processing/stability, or translation either directly through interaction with their target DNA sequences or indirectly by acting as intermediary molecules for specific regulatory proteins or may act as decoys/sinks, or storage sites for specific proteins or groups of proteins, or may provide a structural framework for the assembly of substructures in nucleus/cytoplasm. It is interesting that many of the "functions" alluded to heterochromatin in earlier cytogenetic studies appear to find correlates with the known subtle as well as far-reaching actions of the different small and long noncoding RNAs. Further studies exploiting the very rich and powerful genetic and molecular resources available for the Drosophila model are expected to unravel the mystery underlying the long reach of ncRNAs.
Collapse
Affiliation(s)
- Subhash C Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
25
|
Li Y, Liu M, Chen LF, Chen R. P-TEFb: Finding its ways to release promoter-proximally paused RNA polymerase II. Transcription 2018; 9:88-94. [PMID: 28102758 PMCID: PMC5834220 DOI: 10.1080/21541264.2017.1281864] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 12/26/2022] Open
Abstract
The release of a paused Pol II depends on the recruitment of P-TEFb. Recent studies showed that both active P-TEFb and inactive P-TEFb (7SK snRNP) can be recruited to the promoter regions of global genes by different mechanisms. Here, we summarize the recent advances on these distinct recruitment mechanisms.
Collapse
Affiliation(s)
- You Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Min Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Lin-Feng Chen
- Department of Biochemistry, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ruichuan Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
26
|
Burenina OY, Oretskaya TS, Kubareva EA. Non-Coding RNAs As Transcriptional Regulators In Eukaryotes. Acta Naturae 2017; 9:13-25. [PMID: 29340213 PMCID: PMC5762824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Indexed: 10/31/2022] Open
Abstract
Non-coding RNAs up to 1,000 nucleotides in length are widespread in eukaryotes and fulfil various regulatory functions, in particular during chromatin remodeling and cell proliferation. These RNAs are not translated into proteins: thus, they are non-coding RNAs (ncRNAs). The present review describes the eukaryotic ncRNAs involved in transcription regulation, first and foremost, targeting RNA polymerase II (RNAP II) and/or its major proteinaceous transcription factors. The current state of knowledge concerning the regulatory functions of SRA and TAR RNA, 7SK and U1 snRNA, GAS5 and DHFR RNA is summarized herein. Special attention is given to murine B1 and B2 RNAs and human Alu RNA, due to their ability to bind the active site of RNAP II. Discovery of bacterial analogs of the eukaryotic small ncRNAs involved in transcription regulation, such as 6S RNAs, suggests that they possess a common evolutionary origin.
Collapse
Affiliation(s)
- O. Y. Burenina
- Skolkovo Institute of Science and Technology, Nobel Str. 3, Moscow, 143026, Russia
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1, bld. 3, Moscow, 119991 , Russia
| | - T. S. Oretskaya
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1, bld. 3, Moscow, 119991 , Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, bld. 40, Moscow, 119991, Russia
| | - E. A. Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, bld. 40, Moscow, 119991, Russia
| |
Collapse
|
27
|
Liao R, Mizzen CA. Site-specific regulation of histone H1 phosphorylation in pluripotent cell differentiation. Epigenetics Chromatin 2017; 10:29. [PMID: 28539972 PMCID: PMC5440973 DOI: 10.1186/s13072-017-0135-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Structural variation among histone H1 variants confers distinct modes of chromatin binding that are important for differential regulation of chromatin condensation, gene expression and other processes. Changes in the expression and genomic distributions of H1 variants during cell differentiation appear to contribute to phenotypic differences between cell types, but few details are known about the roles of individual H1 variants and the significance of their disparate capacities for phosphorylation. In this study, we investigated the dynamics of interphase phosphorylation at specific sites in individual H1 variants during the differentiation of pluripotent NT2 and mouse embryonic stem cells and characterized the kinases involved in regulating specific H1 variant phosphorylations in NT2 and HeLa cells. RESULTS Here, we show that the global levels of phosphorylation at H1.5-Ser18 (pS18-H1.5), H1.2/H1.5-Ser173 (pS173-H1.2/5) and H1.4-Ser187 (pS187-H1.4) are regulated differentially during pluripotent cell differentiation. Enrichment of pS187-H1.4 near the transcription start site of pluripotency factor genes in pluripotent cells is markedly reduced upon differentiation, whereas pS187-H1.4 levels at housekeeping genes are largely unaltered. Selective inhibition of CDK7 or CDK9 rapidly diminishes pS187-H1.4 levels globally and its enrichment at housekeeping genes, and similar responses were observed following depletion of CDK9. These data suggest that H1.4-S187 is a bona fide substrate for CDK9, a notion that is further supported by the significant colocalization of CDK9 and pS187-H1.4 to gene promoters in reciprocal re-ChIP analyses. Moreover, treating cells with actinomycin D to inhibit transcription and trigger the release of active CDK9/P-TEFb from 7SK snRNA complexes induces the accumulation of pS187-H1.4 at promoters and gene bodies. Notably, the levels of pS187-H1.4 enrichment after actinomycin D treatment or cell differentiation reflect the extent of CDK9 recruitment at the same loci. Remarkably, the global levels of H1.5-S18 and H1.2/H1.5-S173 phosphorylation are not affected by these transcription inhibitor treatments, and selective inhibition of CDK2 does not affect the global levels of phosphorylation at H1.4-S187 or H1.5-S18. CONCLUSIONS Our data provide strong evidence that H1 variant interphase phosphorylation is dynamically regulated in a site-specific and gene-specific fashion during pluripotent cell differentiation, and that enrichment of pS187-H1.4 at genes is positively related to their transcription. H1.4-S187 is likely to be a direct target of CDK9 during interphase, suggesting the possibility that this particular phosphorylation may contribute to the release of paused RNA pol II. In contrast, the other H1 variant phosphorylations we investigated appear to be mediated by distinct kinases and further analyses are needed to determine their functional significance.
Collapse
Affiliation(s)
- Ruiqi Liao
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, B107 Chemistry and Life Sciences Building, MC-123 601 S. Goodwin Ave., Urbana, IL 61801 USA
| | - Craig A Mizzen
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, B107 Chemistry and Life Sciences Building, MC-123 601 S. Goodwin Ave., Urbana, IL 61801 USA.,Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL 61801 USA
| |
Collapse
|
28
|
Saxena R, Plenge RM, Bjonnes AC, Dashti HS, Okada Y, Gad El Haq W, Hammoudeh M, Al Emadi S, Masri BK, Halabi H, Badsha H, Uthman IW, Margolin L, Gupta N, Mahfoud ZR, Kapiri M, Dargham SR, Aranki G, Kazkaz LA, Arayssi T. A Multinational Arab Genome‐Wide Association Study Identifies New Genetic Associations for Rheumatoid Arthritis. Arthritis Rheumatol 2017; 69:976-985. [DOI: 10.1002/art.40051] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Richa Saxena
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, and Broad InstituteCambridge Massachusetts
| | - Robert M. Plenge
- Broad Institute, Cambridge, Massachusetts, and Merck Research Laboratories and Brigham and Women's Hospital, Harvard Medical SchoolBoston Massachusetts
| | - Andrew C. Bjonnes
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, and Broad InstituteCambridge Massachusetts
| | - Hassan S. Dashti
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, and Broad InstituteCambridge Massachusetts
| | - Yukinori Okada
- Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan, and RikenYokohama Japan
| | | | | | | | | | - Hussein Halabi
- King Faisal Specialist Hospital and Research CenterJeddah Saudi Arabia
| | - Humeira Badsha
- Dr. Humeira Badsha Medical CenterDubai United Arab Emirates
| | | | | | | | | | | | | | - Grace Aranki
- Weill Cornell Medicine–QatarEducation City Doha Qatar
| | | | | |
Collapse
|
29
|
Ma Z, Fung V, D'Orso I. Tandem Affinity Purification of Protein Complexes from Eukaryotic Cells. J Vis Exp 2017. [PMID: 28190026 DOI: 10.3791/55236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The purification of active protein-protein and protein-nucleic acid complexes is crucial for the characterization of enzymatic activities and de novo identification of novel subunits and post-translational modifications. Bacterial systems allow for the expression and purification of a wide variety of single polypeptides and protein complexes. However, this system does not enable the purification of protein subunits that contain post-translational modifications (e.g., phosphorylation and acetylation), and the identification of novel regulatory subunits that are only present/expressed in the eukaryotic system. Here, we provide a detailed description of a novel, robust, and efficient tandem affinity purification (TAP) method using STREP- and FLAG-tagged proteins that facilitates the purification of protein complexes with transiently or stably expressed epitope-tagged proteins from eukaryotic cells. This protocol can be applied to characterize protein complex functionality, to discover post-translational modifications on complex subunits, and to identify novel regulatory complex components by mass spectrometry. Notably, this TAP method can be applied to study protein complexes formed by eukaryotic or pathogenic (viral and bacterial) components, thus yielding a wide array of downstream experimental opportunities. We propose that researchers working with protein complexes could utilize this approach in many different ways.
Collapse
Affiliation(s)
- Zheng Ma
- Department of Microbiology, The University of Texas Southwestern Medical Center
| | - Victor Fung
- Department of Microbiology, The University of Texas Southwestern Medical Center
| | - Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center;
| |
Collapse
|
30
|
Ren K, Zhang W, Chen X, Ma Y, Dai Y, Fan Y, Hou Y, Tan RX, Li E. An Epigenetic Compound Library Screen Identifies BET Inhibitors That Promote HSV-1 and -2 Replication by Bridging P-TEFb to Viral Gene Promoters through BRD4. PLoS Pathog 2016; 12:e1005950. [PMID: 27764245 PMCID: PMC5072739 DOI: 10.1371/journal.ppat.1005950] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/22/2016] [Indexed: 12/22/2022] Open
Abstract
The human HSV-1 and -2 are common pathogens of human diseases. Both host and viral factors are involved in HSV lytic infection, although detailed mechanisms remain elusive. By screening a chemical library of epigenetic regulation, we identified bromodomain-containing protein 4 (BRD4) as a critical player in HSV infection. We show that treatment with pan BD domain inhibitor enhanced both HSV infection. Using JQ1 as a probe, we found that JQ1, a defined BD1 inhibitor, acts through BRD4 protein since knockdown of BRD4 expression ablated JQ1 effect on HSV infection. BRD4 regulates HSV replication through complex formation involving CDK9 and RNAP II; whereas, JQ1 promotes HSV-1 infection by allocating the complex to HSV gene promoters. Therefore, suppression of BRD4 expression or inhibition of CDK9 activity impeded HSV infection. Our data support a model that JQ1 enhances HSV infection by switching BRD4 to transcription regulation of viral gene expression from chromatin targeting since transient expression of BRD4 BD1 or BD1/2 domain had similar effect to that by JQ1 treatment. In addition to the identification that BRD4 is a modulator for JQ1 action on HSV infection, this study demonstrates BRD4 has an essential role in HSV infection.
Collapse
Affiliation(s)
- Ke Ren
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Jiangsu Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Wei Zhang
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Jiangsu Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Xiaoqing Chen
- The Hoffmann Institute of Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yingyu Ma
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Jiangsu Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yue Dai
- Jiangsu Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yimei Fan
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yayi Hou
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Ren Xiang Tan
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Jiangsu Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
- * E-mail: ;
| | - Erguang Li
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Jiangsu Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
- * E-mail: ;
| |
Collapse
|