1
|
Wang L, Yang Z, Satoshi F, Prasanna X, Yan Z, Vihinen H, Chen Y, Zhao Y, He X, Bu Q, Li H, Zhao Y, Jiang L, Qin F, Dai Y, Zhang N, Qin M, Kuang W, Zhao Y, Jokitalo E, Vattulainen I, Kajander T, Zhao H, Cen X. Membrane remodeling by FAM92A1 during brain development regulates neuronal morphology, synaptic function, and cognition. Nat Commun 2024; 15:6209. [PMID: 39043703 PMCID: PMC11266426 DOI: 10.1038/s41467-024-50565-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
The Bin/Amphiphysin/Rvs (BAR) domain protein FAM92A1 is a multifunctional protein engaged in regulating mitochondrial ultrastructure and ciliogenesis, but its physiological role in the brain remains unclear. Here, we show that FAM92A1 is expressed in neurons starting from embryonic development. FAM92A1 knockout in mice results in altered brain morphology and age-associated cognitive deficits, potentially due to neuronal degeneration and disrupted synaptic plasticity. Specifically, FAM92A1 deficiency impairs diverse neuronal membrane morphology, including the mitochondrial inner membrane, myelin sheath, and synapses, indicating its roles in membrane remodeling and maintenance. By determining the crystal structure of the FAM92A1 BAR domain, combined with atomistic molecular dynamics simulations, we uncover that FAM92A1 interacts with phosphoinositide- and cardiolipin-containing membranes to induce lipid-clustering and membrane curvature. Altogether, these findings reveal the physiological role of FAM92A1 in the brain, highlighting its impact on synaptic plasticity and neural function through the regulation of membrane remodeling and endocytic processes.
Collapse
Affiliation(s)
- Liang Wang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Ziyun Yang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Fudo Satoshi
- Helsinki Institute of Life Science - Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Xavier Prasanna
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Ziyi Yan
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Helena Vihinen
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Yaxing Chen
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yue Zhao
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiumei He
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China
| | - Qian Bu
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hongchun Li
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ying Zhao
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Linhong Jiang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Feng Qin
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yanping Dai
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ni Zhang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Meng Qin
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Weihong Kuang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yinglan Zhao
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Eija Jokitalo
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Tommi Kajander
- Helsinki Institute of Life Science - Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Hongxia Zhao
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland.
- School of Life Sciences, Guangxi Normal University, Guilin, China.
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.
| | - Xiaobo Cen
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Landau LM, Chaudhary N, Tien YC, Rogozinska M, Joshi S, Yao C, Crowley J, Hullahalli K, Campbell IW, Waldor MK, Haigis M, Kagan JC. pLxIS-containing domains are biochemically flexible regulators of interferons and metabolism. Mol Cell 2024; 84:2436-2454.e10. [PMID: 38925114 PMCID: PMC11282577 DOI: 10.1016/j.molcel.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/28/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Signal transduction proteins containing a pLxIS motif induce interferon (IFN) responses central to antiviral immunity. Apart from their established roles in activating the IFN regulator factor (IRF) transcription factors, the existence of additional pathways and functions associated with the pLxIS motif is unknown. Using a synthetic biology-based platform, we identified two orphan pLxIS-containing proteins that stimulate IFN responses independent of all known pattern-recognition receptor pathways. We further uncovered a diversity of pLxIS signaling mechanisms, where the pLxIS motif represents one component of a multi-motif signaling entity, which has variable functions in activating IRF3, the TRAF6 ubiquitin ligase, IκB kinases, mitogen-activated protein kinases, and metabolic activities. The most diverse pLxIS signaling mechanisms were associated with the highest antiviral activities in human cells. The flexibility of domains that regulate IFN signaling may explain their prevalence in nature.
Collapse
Affiliation(s)
- Lauren M Landau
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Neha Chaudhary
- Cambridge Research Center, AbbVie, Inc., Cambridge, MA, USA
| | - Yun Chen Tien
- Cambridge Research Center, AbbVie, Inc., Cambridge, MA, USA
| | | | - Shakchhi Joshi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Conghui Yao
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Joseph Crowley
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ian W Campbell
- Division of Infectious Diseases, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Marcia Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Morales-Heil DJ, Cao L, Sweeney C, Malara A, Brown F, Milam P, Anadkat M, Kaffenberger J, Kaffenberger B, Nagele P, Kirby B, Roberson ED. Rare missense variants in the SH3 domain of PSTPIP1 are associated with hidradenitis suppurativa. HGG ADVANCES 2023; 4:100187. [PMID: 37013170 PMCID: PMC10066561 DOI: 10.1016/j.xhgg.2023.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic, debilitating skin disease for which few treatment options are available. While most HS is sporadic, some rare kindred show a high-penetrance, autosomal-dominant inheritance. We wanted to identify rare variants that could contribute to HS risk in sporadic cases using candidate gene sequencing. We ultimately identified 21 genes for our capture panel. We included genes of the γ-secretase complex (n = 6) because rare variants in these genes sometimes cause familial HS. We added Notch receptor and ligand genes (n = 13) because γ-secretase is critical for processing Notch receptor signaling. Clinically, some people with PAPA (pyogenic arthritis, pyoderma gangrenosum, and acne) syndrome, a rare inflammatory disease, have concurrent HS. Rare variants in PSTPIP1 are known to cause PAPA syndrome, so we included PSTPIP1 and PSTPIP2 in the capture panel. We screened 117 individuals with HS for rare variations and calculated the expected burden using Genome Aggregation Database (gnomAD) allele frequencies. We discovered two pathogenic loss-of-function variants in NCSTN. This class of NCSTN variant can cause familial HS. There was no increased burden of rare variations in any γ-secretase complex gene. We did find that individuals with HS had a significantly increased number of rare missense variants in the SH3 domain of PSTPIP1. This finding, therefore, implicates PSTPIP1 variation in sporadic HS and further supports dysregulated immunity in HS. Our data also suggests that population-scale HS genetic research will yield valuable insights into disease pathology.
Collapse
Affiliation(s)
- David J. Morales-Heil
- Department of Medicine, Division of Rheumatology, Washington University, St. Louis, MO, USA
| | - Li Cao
- Department of Medicine, Division of Rheumatology, Washington University, St. Louis, MO, USA
| | - Cheryl Sweeney
- Department of Dermatology, St. Vincent’s University Hospital, Dublin, Ireland
| | - Anna Malara
- Department of Dermatology, St. Vincent’s University Hospital, Dublin, Ireland
| | - Frank Brown
- Department of Anesthesiology, Washington University, St. Louis, MO, USA
| | - Philip Milam
- Department of Internal Medicine, Division of Dermatology, Ohio State University, Columbus, OH, USA
| | - Milan Anadkat
- Department of Medicine, Division of Dermatology, Washington University, St. Louis, MO, USA
| | - Jessica Kaffenberger
- Department of Internal Medicine, Division of Dermatology, Ohio State University, Columbus, OH, USA
| | - Benjamin Kaffenberger
- Department of Internal Medicine, Division of Dermatology, Ohio State University, Columbus, OH, USA
| | - Peter Nagele
- Department of Anesthesiology, Washington University, St. Louis, MO, USA
| | - Brian Kirby
- Department of Dermatology, St. Vincent’s University Hospital, Dublin, Ireland
| | - Elisha D.O. Roberson
- Department of Medicine, Division of Rheumatology, Washington University, St. Louis, MO, USA
- Department of Genetics, Washington University, St. Louis, MO, USA
| |
Collapse
|
4
|
Saltukoglu D, Özdemir B, Holtmannspötter M, Reski R, Piehler J, Kurre R, Reth M. Plasma membrane topography governs the 3D dynamic localization of IgM B cell antigen receptor clusters. EMBO J 2023; 42:e112030. [PMID: 36594262 PMCID: PMC9929642 DOI: 10.15252/embj.2022112030] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 01/04/2023] Open
Abstract
B lymphocytes recognize bacterial or viral antigens via different classes of the B cell antigen receptor (BCR). Protrusive structures termed microvilli cover lymphocyte surfaces, and are thought to perform sensory functions in screening antigen-bearing surfaces. Here, we have used lattice light-sheet microscopy in combination with tailored custom-built 4D image analysis to study the cell-surface topography of B cells of the Ramos Burkitt's Lymphoma line and the spatiotemporal organization of the IgM-BCR. Ramos B-cell surfaces were found to form dynamic networks of elevated ridges bridging individual microvilli. A fraction of membrane-localized IgM-BCR was found in clusters, which were mainly associated with the ridges and the microvilli. The dynamic ridge-network organization and the IgM-BCR cluster mobility were linked, and both were controlled by Arp2/3 complex activity. Our results suggest that dynamic topographical features of the cell surface govern the localization and transport of IgM-BCR clusters to facilitate antigen screening by B cells.
Collapse
Affiliation(s)
- Deniz Saltukoglu
- Department of Molecular Immunology, Biology III, Faculty of BiologyUniversity of FreiburgFreiburgGermany
- Signaling Research Centers CIBSS and BIOSSUniversity of FreiburgFreiburgGermany
| | - Bugra Özdemir
- Signaling Research Centers CIBSS and BIOSSUniversity of FreiburgFreiburgGermany
- Plant Biotechnology, Faculty of BiologyUniversity of FreiburgFreiburgGermany
- Present address:
Euro‐BioImaging, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Michael Holtmannspötter
- Department of Biology/Chemistry and Center for Cellular NanoanalyticsOsnabrück UniversityOsnabrückGermany
| | - Ralf Reski
- Signaling Research Centers CIBSS and BIOSSUniversity of FreiburgFreiburgGermany
- Plant Biotechnology, Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular NanoanalyticsOsnabrück UniversityOsnabrückGermany
| | - Rainer Kurre
- Department of Biology/Chemistry and Center for Cellular NanoanalyticsOsnabrück UniversityOsnabrückGermany
| | - Michael Reth
- Department of Molecular Immunology, Biology III, Faculty of BiologyUniversity of FreiburgFreiburgGermany
- Signaling Research Centers CIBSS and BIOSSUniversity of FreiburgFreiburgGermany
| |
Collapse
|
5
|
Zhao H, Khan Z, Westlake CJ. Ciliogenesis membrane dynamics and organization. Semin Cell Dev Biol 2023; 133:20-31. [PMID: 35351373 PMCID: PMC9510604 DOI: 10.1016/j.semcdb.2022.03.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/28/2022]
Abstract
Ciliogenesis is a complex multistep process used to describe assembly of cilia and flagella. These organelles play essential roles in motility and signaling on the surface of cells. Cilia are built at the distal ends of centrioles through the formation of an axoneme that is surrounded by the ciliary membrane. As is the case in the biogenesis of other cellular organelles, regulators of membrane trafficking play essential roles in ciliogenesis, albeit with a unique feature that membranes are organized around microtubule-based structures. Membrane association with the distal end of the centriole is a critical initiating step for ciliogenesis. Studies of this process in different cell types suggests that a singular mechanism may not be utilized to initiate cilium assembly. In this review, we focus on recent insights into cilium biogenesis and the roles membrane trafficking regulators play in described ciliogenesis mechanisms with relevance to human disease.
Collapse
Affiliation(s)
- Huijie Zhao
- Center for Cancer Research, NCI Frederick, Laboratory of Cellular and Developmental, Signaling, Frederick, MD 21702, USA
| | - Ziam Khan
- Center for Cancer Research, NCI Frederick, Laboratory of Cellular and Developmental, Signaling, Frederick, MD 21702, USA
| | - Christopher J Westlake
- Center for Cancer Research, NCI Frederick, Laboratory of Cellular and Developmental, Signaling, Frederick, MD 21702, USA.
| |
Collapse
|
6
|
Insights into Membrane Curvature Sensing and Membrane Remodeling by Intrinsically Disordered Proteins and Protein Regions. J Membr Biol 2022; 255:237-259. [PMID: 35451616 PMCID: PMC9028910 DOI: 10.1007/s00232-022-00237-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022]
Abstract
Cellular membranes are highly dynamic in shape. They can rapidly and precisely regulate their shape to perform various cellular functions. The protein’s ability to sense membrane curvature is essential in various biological events such as cell signaling and membrane trafficking. As they are bound, these curvature-sensing proteins may also change the local membrane shape by one or more curvature driving mechanisms. Established curvature-sensing/driving mechanisms rely on proteins with specific structural features such as amphipathic helices and intrinsically curved shapes. However, the recent discovery and characterization of many proteins have shattered the protein structure–function paradigm, believing that the protein functions require a unique structural feature. Typically, such structure-independent functions are carried either entirely by intrinsically disordered proteins or hybrid proteins containing disordered regions and structured domains. It is becoming more apparent that disordered proteins and regions can be potent sensors/inducers of membrane curvatures. In this article, we outline the basic features of disordered proteins and regions, the motifs in such proteins that encode the function, membrane remodeling by disordered proteins and regions, and assays that may be employed to investigate curvature sensing and generation by ordered/disordered proteins.
Collapse
|
7
|
Carrillo-Garcia J, Herrera-Fernández V, Serra SA, Rubio-Moscardo F, Vogel-Gonzalez M, Doñate-Macian P, Hevia CF, Pujades C, Valverde MA. The mechanosensitive Piezo1 channel controls endosome trafficking for an efficient cytokinetic abscission. SCIENCE ADVANCES 2021; 7:eabi7785. [PMID: 34714681 PMCID: PMC8555900 DOI: 10.1126/sciadv.abi7785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Mechanical forces are exerted throughout cytokinesis, the final step of cell division. Yet, how forces are transduced and affect the signaling dynamics of cytokinetic proteins remains poorly characterized. We now show that the mechanosensitive Piezo1 channel is activated at the intercellular bridge (ICB) connecting daughter cells to regulate abscission. Inhibition of Piezo1 caused multinucleation both in vitro and in vivo. Piezo1 positioning at the ICB during cytokinesis depends on Pacsin3. Pharmacological and genetic inhibition of Piezo1 or Pacsin3 resulted in mislocation of Rab11-family-interacting protein 3 (Rab11-FIP3) endosomes, apoptosis-linked gene 2-interacting protein X (ALIX), and endosomal sorting complex required for transport III (ESCRT-III). Furthermore, we identified FIP3 as the link between Piezo1-generated Ca2+ signals and ALIX delivery to the ICB, where ALIX recruits the ESCRT-III component charged multivesicular body protein 4B, which promotes abscission. These results provide a different view of how mechanical forces participate in cytokinesis and identify Piezo1 as a key modulator of endosome trafficking.
Collapse
Affiliation(s)
- Julia Carrillo-Garcia
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Víctor Herrera-Fernández
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Selma A. Serra
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Fanny Rubio-Moscardo
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Marina Vogel-Gonzalez
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Pablo Doñate-Macian
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Covadonga F. Hevia
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Miguel A. Valverde
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
8
|
Ireton K, Mortuza R, Gyanwali GC, Gianfelice A, Hussain M. Role of internalin proteins in the pathogenesis of Listeria monocytogenes. Mol Microbiol 2021; 116:1407-1419. [PMID: 34704304 DOI: 10.1111/mmi.14836] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022]
Abstract
Listeria monocytogenes is a food-borne bacterium that causes gastroenteritis, meningitis, or abortion. L. monocytogenes induces its internalization (entry) into human cells and either spreads laterally in tissues or transcytoses to traverse anatomical barriers. In this review, we discuss mechanisms by which five structurally related proteins of the "internalin" family of L. monocytogenes (InlA, InlB, InlC, InlF, and InlP) interact with distinct host receptors to promote infection of human cells and/or crossing of the intestinal, blood-brain, or placental barriers. We focus on recent results demonstrating that the internalin proteins InlA, InlB, and InlC exploit exocytic pathways to stimulate transcytosis, entry, or cell-to-cell spread, respectively. We also discuss evidence that InlA-mediated transcytosis contributes to traversal of the intestinal barrier, whereas InlF promotes entry into endothelial cells to breach the blood-brain barrier. InlB also facilitates the crossing of the blood-brain barrier, but does so by extending the longevity of infected monocytes that may subsequently act as a "Trojan horse" to transfer bacteria to the brain. InlA, InlB, and InlP each contribute to fetoplacental infection by targeting syncytiotrophoblast or cytotrophoblast layers of the placenta. This work highlights the diverse functions of internalins and the complex mechanisms by which these structurally related proteins contribute to disease.
Collapse
Affiliation(s)
- Keith Ireton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Roman Mortuza
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Antonella Gianfelice
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Mazhar Hussain
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Khanal P, Hotulainen P. Dendritic Spine Initiation in Brain Development, Learning and Diseases and Impact of BAR-Domain Proteins. Cells 2021; 10:cells10092392. [PMID: 34572042 PMCID: PMC8468246 DOI: 10.3390/cells10092392] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Dendritic spines are small, bulbous protrusions along neuronal dendrites where most of the excitatory synapses are located. Dendritic spine density in normal human brain increases rapidly before and after birth achieving the highest density around 2-8 years. Density decreases during adolescence, reaching a stable level in adulthood. The changes in dendritic spines are considered structural correlates for synaptic plasticity as well as the basis of experience-dependent remodeling of neuronal circuits. Alterations in spine density correspond to aberrant brain function observed in various neurodevelopmental and neuropsychiatric disorders. Dendritic spine initiation affects spine density. In this review, we discuss the importance of spine initiation in brain development, learning, and potential complications resulting from altered spine initiation in neurological diseases. Current literature shows that two Bin Amphiphysin Rvs (BAR) domain-containing proteins, MIM/Mtss1 and SrGAP3, are involved in spine initiation. We review existing literature and open databases to discuss whether other BAR-domain proteins could also take part in spine initiation. Finally, we discuss the potential molecular mechanisms on how BAR-domain proteins could regulate spine initiation.
Collapse
Affiliation(s)
- Pushpa Khanal
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland;
- HiLIFE-Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland;
- Correspondence:
| |
Collapse
|
10
|
Recent developments in membrane curvature sensing and induction by proteins. Biochim Biophys Acta Gen Subj 2021; 1865:129971. [PMID: 34333084 DOI: 10.1016/j.bbagen.2021.129971] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/11/2021] [Accepted: 07/25/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Membrane-bound intracellular organelles have characteristic shapes attributed to different local membrane curvatures, and these attributes are conserved across species. Over the past decade, it has been confirmed that specific proteins control the large curvatures of the membrane, whereas many others due to their specific structural features can sense the curvatures and bind to the specific geometrical cues. Elucidating the interplay between sensing and induction is indispensable to understand the mechanisms behind various biological processes such as vesicular trafficking and budding. SCOPE OF REVIEW We provide an overview of major classes of membrane proteins and the mechanisms of curvature sensing and induction. We then discuss the importance of membrane elastic characteristics to induce the membrane shapes similar to intracellular organelles. Finally, we survey recently available assays developed for studying the curvature sensing and induction by many proteins. MAJOR CONCLUSIONS Recent theoretical/computational modeling along with experimental studies have uncovered fascinating connections between lipid membrane and protein interactions. However, the phenomena of protein localization and synchronization to generate spatiotemporal dynamics in membrane morphology are yet to be fully understood. GENERAL SIGNIFICANCE The understanding of protein-membrane interactions is essential to shed light on various biological processes. This further enables the technological applications of many natural proteins/peptides in therapeutic treatments. The studies of membrane dynamic shapes help to understand the fundamental functions of membranes, while the medicinal roles of various macromolecules (such as proteins, peptides, etc.) are being increasingly investigated.
Collapse
|
11
|
Willet AH, Igarashi MG, Chen JS, Bhattacharjee R, Ren L, Cullati SN, Elmore ZC, Roberts-Galbraith RH, Johnson AE, Beckley JR, Gould KL. Phosphorylation in the intrinsically disordered region of F-BAR protein Imp2 regulates its contractile ring recruitment. J Cell Sci 2021; 134:271847. [PMID: 34279633 DOI: 10.1242/jcs.258645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/12/2021] [Indexed: 11/20/2022] Open
Abstract
The F-BAR protein Imp2 is an important contributor to cytokinesis in the fission yeast, Schizosaccharomyces pombe. Because cell cycle regulated phosphorylation of the central intrinsically disordered region (IDR) of the Imp2 paralog, Cdc15, controls Cdc15 oligomerization state, localization, and ability to bind protein partners, we investigated whether Imp2 is similarly phosphoregulated. We found that Imp2 is endogenously phosphorylated on 28 sites within its IDR with the bulk of phosphorylation being constitutive. In vitro, casein kinase 1 (CK1) Hhp1 and Hhp2 can phosphorylate 17 sites and Cdk1 the remaining 11 sites. Mutations that prevent Cdk1 phosphorylation result in precocious Imp2 recruitment to the cell division site, and mutations designed to mimic these phosphorylation events delay Imp2 CR accumulation. Mutations that eliminated CK1 phosphorylation sites allowed CR sliding, and phosphomimetic substitutions at these sites reduced Imp2 protein levels and slowed CR constriction. Thus, like Cdc15, the Imp2 IDR is phosphorylated at many sites by multiple kinases. In contrast to Cdc15, for which phosphorylation plays a major cell cycle regulatory role, Imp2 phosphorylation is primarily constitutive with milder effects on localization and function.
Collapse
Affiliation(s)
- Alaina H Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Maya G Igarashi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Rahul Bhattacharjee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Sierra N Cullati
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Zachary C Elmore
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Rachel H Roberts-Galbraith
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Alyssa E Johnson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Janel R Beckley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| |
Collapse
|
12
|
The state of F-BAR domains as membrane-bound oligomeric platforms. Trends Cell Biol 2021; 31:644-655. [PMID: 33888395 DOI: 10.1016/j.tcb.2021.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022]
Abstract
Fes/Cip4 homology Bin/amphiphysin/Rvs (F-BAR) domains, like all BAR domains, are dimeric units that oligomerize and bind membranes. F-BAR domains are generally coupled to additional domains that function in protein binding or have enzymatic activity. Because of their crescent shape and ability to oligomerize, F-BAR domains have been traditionally viewed as membrane-deformation modules. However, multiple independent studies have provided no evidence that certain F-BAR domains are able to tubulate membrane. Instead, a growing body of literature featuring structural, biochemical, biophysical, and microscopy-based studies supports the idea that the F-BAR domain family can be unified only by their ability to form oligomeric assemblies on membranes to provide platforms for molecular assembly.
Collapse
|
13
|
Abstract
Ciliogenesis describes the assembly of cilia in interphase cells. Several hundred proteins have been linked to ciliogenesis, which proceeds through a highly coordinated multistage process at the distal end of centrioles requiring membranes. In this short review, we focus on recently reported insights into the biogenesis of the primary cilium membrane and its association with other ciliogenic processes in the intracellular ciliogenesis pathway.
Collapse
Affiliation(s)
- Saurabh Shakya
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Laboratory of Cellular and Developmental Signaling, Frederick, MD 21702, USA
| | - Christopher J Westlake
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Laboratory of Cellular and Developmental Signaling, Frederick, MD 21702, USA
| |
Collapse
|
14
|
Snider CE, Chandra M, McDonald NA, Willet AH, Collier SE, Ohi MD, Jackson LP, Gould KL. Opposite Surfaces of the Cdc15 F-BAR Domain Create a Membrane Platform That Coordinates Cytoskeletal and Signaling Components for Cytokinesis. Cell Rep 2020; 33:108526. [PMID: 33357436 PMCID: PMC7775634 DOI: 10.1016/j.celrep.2020.108526] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/02/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
Many eukaryotes assemble an actin- and myosin-based cytokinetic ring (CR) on the plasma membrane (PM) for cell division, but how it is anchored there remains unclear. In Schizosaccharomyces pombe, the F-BAR protein Cdc15 links the PM via its F-BAR domain to proteins in the CR’s interior via its SH3 domain. However, Cdc15’s F-BAR domain also directly binds formin Cdc12, suggesting that Cdc15 may polymerize a protein network directly adjacent to the membrane. Here, we determine that the F-BAR domain binds Cdc12 using residues on the face opposite its membrane-binding surface. These residues also bind paxillin-like Pxl1, promoting its recruitment with calcineurin to the CR. Mutation of these F-BAR domain residues results in a shallower CR, with components localizing ~35% closer to the PM than in wild type, and aberrant CR constriction. Thus, F-BAR domains serve as oligomeric membrane-bound platforms that can modulate the architecture of an entire actin structure. Multiple F-BAR domains link actin structures to membrane. Snider et al. show that the flat Cdc15 F-BAR domain utilizes opposite surfaces to bind the plasma membrane and cytokinetic ring proteins simultaneously. Disrupting Cdc15 F-BAR domain’s interaction with proteins results in an overall compression of the entire cytokinetic ring architecture.
Collapse
Affiliation(s)
- Chloe E Snider
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mintu Chandra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Nathan A McDonald
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Alaina H Willet
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Scott E Collier
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Lauren P Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
15
|
Liu Y, McDonald NA, Naegele SM, Gould KL, Wu JQ. The F-BAR Domain of Rga7 Relies on a Cooperative Mechanism of Membrane Binding with a Partner Protein during Fission Yeast Cytokinesis. Cell Rep 2020; 26:2540-2548.e4. [PMID: 30840879 PMCID: PMC6425953 DOI: 10.1016/j.celrep.2019.01.112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/03/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
F-BAR proteins bind the plasma membrane (PM) to scaffold and organize the actin cytoskeleton. To understand how F-BAR proteins achieve their PM association, we studied the localization of a Schizosaccharomyces pombe F-BAR protein Rga7, which requires the coiled-coil protein Rng10 for targeting to the division site during cytokinesis. We find that the Rga7 F-BAR domain directly binds a motif in Rng10 simultaneously with the PM, and that an adjacent Rng10 motif independently binds the PM. Together, these multivalent interactions significantly enhance Rga7 F-BAR avidity for membranes at physiological protein concentrations, ensuring the division site localization of Rga7. Moreover, the requirement for the F-BAR domain in Rga7 localization and function in cytokinesis is bypassed by tethering an Rga7 construct lacking its F-BAR to Rng10, indicating that at least some F-BAR domains are necessary but not sufficient for PM targeting and are stably localized to specific cortical positions through adaptor proteins. Liu et al. show that the Rga7 F-BAR domain binds an adaptor protein Rng10, which contains a second membrane-binding module, to enhance Rga7 membrane avidity and stabilize its membrane association. The authors reveal a mechanism by which F-BAR domains can achieve high-avidity binding with the plasma membrane.
Collapse
Affiliation(s)
- Yajun Liu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Nathan A McDonald
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Shelby M Naegele
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA.
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
16
|
Mangione MC, Snider CE, Gould KL. The intrinsically disordered region of the cytokinetic F-BAR protein Cdc15 performs a unique essential function in maintenance of cytokinetic ring integrity. Mol Biol Cell 2019; 30:2790-2801. [PMID: 31509478 PMCID: PMC6789166 DOI: 10.1091/mbc.e19-06-0314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/21/2019] [Accepted: 09/05/2019] [Indexed: 11/17/2022] Open
Abstract
Successful separation of two daughter cells (i.e., cytokinesis) is essential for life. Many eukaryotic cells divide using a contractile apparatus called the cytokinetic ring (CR) that associates dynamically with the plasma membrane (PM) and generates force that contributes to PM ingression between daughter cells. In Schizosaccharomyces pombe, important membrane-CR scaffolds include the paralogous F-BAR proteins Cdc15 and Imp2. Their conserved protein structure consists of the archetypal F-BAR domain linked to an SH3 domain by an intrinsically disordered region (IDR). Functions have been assigned to the F-BAR and SH3 domains. In this study we probed the function of the central IDR. We found that the IDR of Cdc15 is essential for viability and cannot be replaced by that of Imp2, whereas the F-BAR domain of Cdc15 can be swapped with several different F-BAR domains, including that of Imp2. Deleting part of the IDR results in CR defects and abolishes calcineurin phosphatase localization to the CR. Together these results indicate that Cdc15's IDR has a nonredundant essential function that coordinates regulation of CR architecture.
Collapse
Affiliation(s)
- MariaSanta C. Mangione
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Chloe E. Snider
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| |
Collapse
|
17
|
BAR domain proteins-a linkage between cellular membranes, signaling pathways, and the actin cytoskeleton. Biophys Rev 2018; 10:1587-1604. [PMID: 30456600 DOI: 10.1007/s12551-018-0467-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022] Open
Abstract
Actin filament assembly typically occurs in association with cellular membranes. A large number of proteins sit at the interface between actin networks and membranes, playing diverse roles such as initiation of actin polymerization, modulation of membrane curvature, and signaling. Bin/Amphiphysin/Rvs (BAR) domain proteins have been implicated in all of these functions. The BAR domain family of proteins comprises a diverse group of multi-functional effectors, characterized by their modular architecture. In addition to the membrane-curvature sensing/inducing BAR domain module, which also mediates antiparallel dimerization, most contain auxiliary domains implicated in protein-protein and/or protein-membrane interactions, including SH3, PX, PH, RhoGEF, and RhoGAP domains. The shape of the BAR domain itself varies, resulting in three major subfamilies: the classical crescent-shaped BAR, the more extended and less curved F-BAR, and the inverse curvature I-BAR subfamilies. Most members of this family have been implicated in cellular functions that require dynamic remodeling of the actin cytoskeleton, such as endocytosis, organelle trafficking, cell motility, and T-tubule biogenesis in muscle cells. Here, we review the structure and function of mammalian BAR domain proteins and the many ways in which they are interconnected with the actin cytoskeleton.
Collapse
|
18
|
Garabedian MV, Stanishneva-Konovalova T, Lou C, Rands TJ, Pollard LW, Sokolova OS, Goode BL. Integrated control of formin-mediated actin assembly by a stationary inhibitor and a mobile activator. J Cell Biol 2018; 217:3512-3530. [PMID: 30076201 PMCID: PMC6168263 DOI: 10.1083/jcb.201803164] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/20/2018] [Accepted: 07/17/2018] [Indexed: 12/15/2022] Open
Abstract
This study shows that in vivo actin nucleation by the yeast formin Bnr1 is controlled through the coordinated effects of two distinct regulators, a stationary inhibitor (the F-BAR protein Hof1) and a mobile activator (Bud6), establishing a positive feedback loop for precise spatial and temporal control of actin assembly. Formins are essential actin assembly factors whose activities are controlled by a diverse array of binding partners. Until now, most formin ligands have been studied on an individual basis, leaving open the question of how multiple inputs are integrated to regulate formins in vivo. Here, we show that the F-BAR domain of Saccharomyces cerevisiae Hof1 interacts with the FH2 domain of the formin Bnr1 and blocks actin nucleation. Electron microscopy of the Hof1–Bnr1 complex reveals a novel dumbbell-shaped structure, with the tips of the F-BAR holding two FH2 dimers apart. Deletion of Hof1’s F-BAR domain in vivo results in disorganized actin cables and secretory defects. The formin-binding protein Bud6 strongly alleviates Hof1 inhibition in vitro, and bud6Δ suppresses hof1Δ defects in vivo. Whereas Hof1 stably resides at the bud neck, we show that Bud6 is delivered to the neck on secretory vesicles. We propose that Hof1 and Bud6 functions are intertwined as a stationary inhibitor and a mobile activator, respectively.
Collapse
Affiliation(s)
- Mikael V Garabedian
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA
| | | | - Chenyu Lou
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA
| | - Thomas J Rands
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA
| | - Luther W Pollard
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA
| | - Olga S Sokolova
- Bioengineering Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA
| |
Collapse
|
19
|
Snead WT, Stachowiak JC. Structure Versus Stochasticity-The Role of Molecular Crowding and Intrinsic Disorder in Membrane Fission. J Mol Biol 2018; 430:2293-2308. [PMID: 29627460 DOI: 10.1016/j.jmb.2018.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 01/07/2023]
Abstract
Cellular membranes must undergo remodeling to facilitate critical functions including membrane trafficking, organelle biogenesis, and cell division. An essential step in membrane remodeling is membrane fission, in which an initially continuous membrane surface is divided into multiple, separate compartments. The established view has been that membrane fission requires proteins with conserved structural features such as helical scaffolds, hydrophobic insertions, and polymerized assemblies. In this review, we discuss these structure-based fission mechanisms and highlight recent findings from several groups that support an alternative, structure-independent mechanism of membrane fission. This mechanism relies on lateral collisions among crowded, membrane-bound proteins to generate sufficient steric pressure to drive membrane vesiculation. As a stochastic process, this mechanism contrasts with the paradigm that deterministic protein structures are required to drive fission, raising the prospect that many more proteins may participate in fission than previously thought. Paradoxically, our recent work suggests that intrinsically disordered domains may be among the most potent drivers of membrane fission, owing to their large hydrodynamic radii and substantial chain entropy. This stochastic view of fission also suggests new roles for the structure-based fission proteins. Specifically, we hypothesize that in addition to driving fission directly, the canonical fission machines may facilitate the enrichment and organization of bulky disordered protein domains in order to promote membrane fission by locally amplifying protein crowding.
Collapse
Affiliation(s)
- Wilton T Snead
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
20
|
Liu C, Zhai X, Du H, Cao Y, Cao H, Wang Y, Yu X, Gao J, Xu Z. Sorting nexin 9 (SNX9) is not essential for development and auditory function in mice. Oncotarget 2018; 7:68921-68932. [PMID: 27655699 PMCID: PMC5356600 DOI: 10.18632/oncotarget.12040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/02/2016] [Indexed: 12/20/2022] Open
Abstract
Sorting nexins are a large family of evolutionarily conserved proteins that play fundamental roles in endocytosis, endosomal sorting and signaling. As an important member of sorting nexin family, sorting nexin 9 (SNX9) has been shown to participate in coordinating actin polymerization with membrane tubulation and vesicle formation. We previously showed that SNX9 is expressed in mouse auditory hair cells and might regulate actin polymerization in those cells. To further examine the physiological role of SNX9, we generated Snx9 knockout mice using homologous recombination method. Unexpectedly, Snx9 knockout mice have normal viability and fertility, and are morphologically and behaviorally indistinguishable from control mice. Further investigation revealed that the morphology and function of auditory hair cells are not affected by Snx9 inactivation, and Snx9 knockout mice have normal hearing threshold. In conclusion, our data revealed that Snx9-deficient mice do not show defects in development as well as auditory function, suggesting that SNX9 is not essential for mice development and hearing.
Collapse
Affiliation(s)
- Chengcheng Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Xiaoyan Zhai
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Haibo Du
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Yujie Cao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Huiren Cao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Xiao Yu
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, P. R. China
| | - Jiangang Gao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| |
Collapse
|
21
|
Willet AH, Bohnert KA, Gould KL. Cdk1-dependent phosphoinhibition of a formin-F-BAR interaction opposes cytokinetic contractile ring formation. Mol Biol Cell 2018; 29:713-721. [PMID: 29343550 PMCID: PMC6003227 DOI: 10.1091/mbc.e17-11-0646] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 11/11/2022] Open
Abstract
In Schizosaccharomyces pombe, cytokinesis requires the assembly and constriction of an actomyosin-based contractile ring (CR). A single essential formin, Cdc12, localizes to the cell middle upon mitotic onset and nucleates the F-actin of the CR. Cdc12 medial recruitment is mediated in part by its direct binding to the F-BAR scaffold Cdc15. Given that Cdc12 is hyperphosphorylated in M phase, we explored whether Cdc12 phosphoregulation impacts its association with Cdc15 during mitosis. We found that Cdk1, a major mitotic kinase, phosphorylates Cdc12 on six N-terminal residues near the Cdc15-binding site, and phosphorylation on these sites inhibits its interaction with the Cdc15 F-BAR domain. Consistent with this finding, a cdc12 mutant with all six Cdk1 sites changed to phosphomimetic residues (cdc12-6D) displays phenotypes similar to cdc12-P31A, in which the Cdc15-binding motif is disrupted; both show reduced Cdc12 at the CR and delayed CR formation. Together, these results indicate that Cdk1 phosphorylation of formin Cdc12 antagonizes its interaction with Cdc15 and thereby opposes Cdc12's CR localization. These results are consistent with a general role for Cdk1 in inhibiting cytokinesis until chromosome segregation is complete.
Collapse
Affiliation(s)
- Alaina H Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - K Adam Bohnert
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
22
|
Oh Y, Schreiter JH, Okada H, Wloka C, Okada S, Yan D, Duan X, Bi E. Hof1 and Chs4 Interact via F-BAR Domain and Sel1-like Repeats to Control Extracellular Matrix Deposition during Cytokinesis. Curr Biol 2017; 27:2878-2886.e5. [PMID: 28918945 PMCID: PMC5658023 DOI: 10.1016/j.cub.2017.08.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/07/2017] [Accepted: 08/15/2017] [Indexed: 11/24/2022]
Abstract
Localized extracellular matrix (ECM) remodeling is thought to stabilize the cleavage furrow and maintain cell shape during cytokinesis [1-14]. This remodeling is spatiotemporally coordinated with a cytoskeletal structure pertaining to a kingdom of life, for example the FtsZ ring in bacteria [15], the phragmoplast in plants [16], and the actomyosin ring in fungi and animals [17, 18]. Although the cytoskeletal structures have been analyzed extensively, the mechanisms of ECM remodeling remain poorly understood. In the budding yeast Saccharomyces cerevisiae, ECM remodeling refers to sequential formations of the primary and secondary septa that are catalyzed by chitin synthase-II (Chs2) and chitin synthase-III (the catalytic subunit Chs3 and its activator Chs4), respectively [18, 19]. Surprisingly, both Chs2 and Chs3 are delivered to the division site at the onset of cytokinesis [6, 20]. What keeps Chs3 inactive until secondary septum formation remains unknown. Here, we show that Hof1 binds to the Sel1-like repeats (SLRs) of Chs4 via its F-BAR domain and inhibits Chs3-mediated chitin synthesis during cytokinesis. In addition, Hof1 is required for rapid accumulation as well as efficient removal of Chs4 at the division site. This study uncovers a mechanism by which Hof1 controls timely activation of Chs3 during cytokinesis and defines a novel interaction and function for the conserved F-BAR domain and SLR that are otherwise known for their abilities to bind membrane lipids [21, 22] and scaffold protein complex formation [23].
Collapse
Affiliation(s)
- Younghoon Oh
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Jennifer H Schreiter
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Carsten Wloka
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AE Groningen, the Netherlands
| | - Satoshi Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Department of Medical Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Di Yan
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Xudong Duan
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
23
|
The TORC2-Dependent Signaling Network in the Yeast Saccharomyces cerevisiae. Biomolecules 2017; 7:biom7030066. [PMID: 28872598 PMCID: PMC5618247 DOI: 10.3390/biom7030066] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022] Open
Abstract
To grow, eukaryotic cells must expand by inserting glycerolipids, sphingolipids, sterols, and proteins into their plasma membrane, and maintain the proper levels and bilayer distribution. A fungal cell must coordinate growth with enlargement of its cell wall. In Saccharomyces cerevisiae, a plasma membrane-localized protein kinase complex, Target of Rapamicin (TOR) complex-2 (TORC2) (mammalian ortholog is mTORC2), serves as a sensor and master regulator of these plasma membrane- and cell wall-associated events by directly phosphorylating and thereby stimulating the activity of two types of effector protein kinases: Ypk1 (mammalian ortholog is SGK1), along with a paralog (Ypk2); and, Pkc1 (mammalian ortholog is PKN2/PRK2). Ypk1 is a central regulator of pathways and processes required for plasma membrane lipid and protein homeostasis, and requires phosphorylation on its T-loop by eisosome-associated protein kinase Pkh1 (mammalian ortholog is PDK1) and a paralog (Pkh2). For cell survival under various stresses, Ypk1 function requires TORC2-mediated phosphorylation at multiple sites near its C terminus. Pkc1 controls diverse processes, especially cell wall synthesis and integrity. Pkc1 is also regulated by Pkh1- and TORC2-dependent phosphorylation, but, in addition, by interaction with Rho1-GTP and lipids phosphatidylserine (PtdSer) and diacylglycerol (DAG). We also describe here what is currently known about the downstream substrates modulated by Ypk1-mediated and Pkc1-mediated phosphorylation.
Collapse
|
24
|
Van Ngo H, Bhalla M, Chen DY, Ireton K. A role for host cell exocytosis in InlB-mediated internalisation ofListeria monocytogenes. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12768] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/10/2017] [Accepted: 07/24/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Hoan Van Ngo
- Department of Microbiology and Immunology; University of Otago; Dunedin New Zealand
| | - Manmeet Bhalla
- Department of Microbiology and Immunology; University of Otago; Dunedin New Zealand
| | - Da-Yuan Chen
- Department of Microbiology and Immunology; University of Otago; Dunedin New Zealand
| | - Keith Ireton
- Department of Microbiology and Immunology; University of Otago; Dunedin New Zealand
| |
Collapse
|
25
|
Lacy MM, Baddeley D, Berro J. Single-molecule imaging of the BAR-domain protein Pil1p reveals filament-end dynamics. Mol Biol Cell 2017; 28:2251-2259. [PMID: 28659415 PMCID: PMC5555653 DOI: 10.1091/mbc.e17-04-0238] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
Molecular assemblies can have highly heterogeneous dynamics within the cell, but the limitations of conventional fluorescence microscopy can mask nanometer-scale features. Here we adapt a single-molecule strategy to perform single-molecule recovery after photobleaching (SRAP) within dense macromolecular assemblies to reveal and characterize binding and unbinding dynamics within such assemblies. We applied this method to study the eisosome, a stable assembly of BAR-domain proteins on the cytoplasmic face of the plasma membrane in fungi. By fluorescently labeling only a small fraction of cellular Pil1p, the main eisosome BAR-domain protein in fission yeast, we visualized whole eisosomes and, after photobleaching, localized recruitment of new Pil1p molecules with ∼30-nm precision. Comparing our data to computer simulations, we show that Pil1p exchange occurs specifically at eisosome ends and not along their core, supporting a new model of the eisosome as a dynamic filament. This result is the first direct observation of any BAR-domain protein dynamics in vivo under physiological conditions consistent with the oligomeric filaments reported from in vitro experiments.
Collapse
Affiliation(s)
- Michael M Lacy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520.,Nanobiology Institute, Yale University, West Haven, CT 06516.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520
| | - David Baddeley
- Nanobiology Institute, Yale University, West Haven, CT 06516.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520.,Department of Cell Biology, Yale University, New Haven, CT 06520
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520 .,Nanobiology Institute, Yale University, West Haven, CT 06516.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520
| |
Collapse
|
26
|
Rout MP, Field MC. The Evolution of Organellar Coat Complexes and Organization of the Eukaryotic Cell. Annu Rev Biochem 2017; 86:637-657. [DOI: 10.1146/annurev-biochem-061516-044643] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Mark C. Field
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|