1
|
Baddela VS, Michaelis M, Tao X, Koczan D, Brenmoehl J, Vanselow J. Comparative analysis of PI3K-AKT and MEK-ERK1/2 signaling-driven molecular changes in granulosa cells. Reproduction 2025; 169:e240317. [PMID: 39665647 PMCID: PMC11774274 DOI: 10.1530/rep-24-0317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 12/12/2024] [Indexed: 12/13/2024]
Abstract
In brief PI3K-AKT signaling activates steroidogenesis by inducing estradiol and progesterone production, while MEK-ERK1/2 signaling regulates steroidogenesis by inhibiting estradiol and inducing progesterone production in granulosa cells (GCs). Both pathways are essential for glycolytic and mitochondrial metabolism in these cells. Abstract The PI3K-AKT and MEK-ERK1/2 signaling pathways are integral to fundamental cellular processes, such as proliferation, viability and differentiation. In GCs, these pathways are activated by follicle-stimulating hormone (FSH) and IGF1 through respective receptors. We investigated the comparative transcriptome changes induced by the AKT and ERK (ERK1/2) pathways using corresponding inhibitors in GCs. GCs isolated from antral follicles showed positive signals for phospho-AKT and phospho-ERK proteins. Treatment of cultured GCs with FSH and IGF1 induced phospho-AKT and phospho-ERK levels. Transcriptome analysis revealed 1436 genes regulated by AKT and 654 genes regulated by the ERK pathway. Among these, 94 genes were commonly downregulated and 11 genes were commonly upregulated in both datasets, while 110 genes were oppositely regulated. Bioinformatics analysis revealed that the inhibition of the PI3K-AKT and MEK-ERK pathways downregulates key reproductive processes and upstream molecules. Notably, AKT inhibition affected FSH, ESRRG and HIF1 pathways, while ERK inhibition impacted CG, FOS, TGFβ, EGR1 and LH pathways. Transcriptome data showed that genes related to estradiol production were inhibited by ERK and induced by the AKT pathway. This was verified by radioimmunoassays, and mRNA and protein analysis of CYP19A1 and STAR genes. In addition, transcriptome data suggested the downregulation of glucose metabolism in GCs. Using validation experiments, we confirm that both pathways are essential for glucose uptake, lactate production and mitochondrial activity in GCs. These data provide a resource for informing future research for analyzing various novel candidate genes regulated by the AKT and ERK pathways in GCs and other cell types.
Collapse
Affiliation(s)
| | - Marten Michaelis
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Xuelian Tao
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Dirk Koczan
- Institute of Immunology, University of Rostock, Rostock, Germany
| | - Julia Brenmoehl
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Jens Vanselow
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
2
|
Yuan J, Liu C, Jiang C, Liu N, Yang Z, Xing H. RSL3 induces ferroptosis by activating the NF-κB signalling pathway to enhance the chemosensitivity of triple-negative breast cancer cells to paclitaxel. Sci Rep 2025; 15:1654. [PMID: 39794456 PMCID: PMC11724089 DOI: 10.1038/s41598-025-85774-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025] Open
Abstract
Chemotherapy resistance in triple-negative breast cancer (TNBC) leads to poor therapeutic effects and a poor prognosis. Given that paclitaxel-based chemotherapy is the main treatment method for TNBC, enhancing its chemosensitivity has been a research focus. Induced ferroptosis of tumour cells has been proven to increase chemosensitivity, but its ability to sensitize TNBC cells to paclitaxel (PTX) is unknown. In our experiments, measurements of viability and proliferation validated the synergistic effect of PTX combined with RSL3 on TNBC cells. The accumulation of intracellular Fe2+ and lipid reactive oxygen species, as well as the expression of malondialdehyde, illustrated that RSL3 enhanced the chemosensitivity of TNBC to PTX by inducing ferroptosis. Through transcriptome sequencing, a series of differentially expressed genes were identified, in which the expression of cytokines, such as CXCLs, was significantly increased in the treatment group, and the effect of combination therapy on TNBC was enriched mainly in the NFκB signalling pathway. In subsequent validation experiments, the use of the NF-κB inhibitor BAY11-7082 reversed the inhibitory effects of PTX and RSL3 on TNBC cell activity. In a xenograft immunodeficient mouse model, the inhibitory effects of PTX and RSL3 on TNBC in vivo were further verified. Our research validated the synergistic effects of PTX and RSL3 both in vivo and in vitro, with RSL3 inducing ferroptosis by activating the NF-κB signalling pathway, thereby increasing the chemosensitivity of TNBC to PTX. This study provides new insights for improving the therapeutic efficacy of treatment strategies.
Collapse
Affiliation(s)
- Jialin Yuan
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Cong Liu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chengwei Jiang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ning Liu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Zhaoying Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Hua Xing
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Xiao C, Lai D. Impact of oxidative stress induced by heavy metals on ovarian function. J Appl Toxicol 2025; 45:107-116. [PMID: 38938153 PMCID: PMC11634564 DOI: 10.1002/jat.4664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
As a crucial organ of the female reproductive system, the ovary has both reproductive and endocrine functions. Oxidative stress refers to an increase in intracellular reactive oxygen species (ROS), which play a role in the normal physiological activity of the ovary. However, excessive ROS can cause damage to the ovary. With the advancement of human industrial activities, heavy metal pollution has become increasingly severe. Heavy metals cause oxidative stress through both direct and indirect mechanisms, leading to changes in signal transduction pathways that damage the ovaries. This review aims to outline the adverse effects of oxidative stress on the ovaries triggered by heavy metals such as copper, arsenic, cadmium, mercury, and lead. The detrimental effects of heavy metals on ovaries include follicular atresia and decreased estrogen production in experimental animals, and they also cause premature ovarian insufficiency in women. Additionally, this review discusses the role of antioxidants, provides some treatment methods, summarizes the limitations of current research, and offers perspectives for future research directions.
Collapse
Affiliation(s)
- Chengqi Xiao
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| |
Collapse
|
4
|
Zhang W, Chen X, Nie R, Guo A, Ling Y, Zhang B, Zhang H. Single-cell transcriptomic analysis reveals regulative mechanisms of follicular selection and atresia in chicken granulosa cells. Food Res Int 2024; 198:115368. [PMID: 39643375 DOI: 10.1016/j.foodres.2024.115368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/21/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
Eggs are an important food source for people. Follicle selection and atresia are the two directions of pre-hierarchical follicles that affect egg production in chickens. Granulosa cells (GCs), the vital somatic cells in follicles, determine the fate of follicles. In this study, single-cell RNA sequencing was performed on the GC layers from five follicular stages (small white follicles, atretic small white follicles, small yellow follicles, atretic small yellow follicles, and F6) to map the cellular differentiation trajectories and explore the follicle fate-determining genes. The results showed that GCs were genetically heterogeneous and could be divided into four subtypes, and the presence of GCs-Ⅲ with a steroid-producing capacity in unselected small follicles is a novel finding that differs from conventional wisdom. In addition, degenerated GCs were annotated for the first time, and GC degeneration was found to be significantly related to lipid metabolism disorders. Many candidate switch genes had been marked out, among which the overexpression of transforming growth factor-beta 2 (TGFB2) and insulin like growth factor binding protein 5 (IGFBP5) could inhibit the proliferation and differentiation of GCs and induce their degeneration. This study provided new insights into the regulatory mechanisms of follicle selection and atresia, which have significant value for improving egg production and prolonging the laying period of laying hens.
Collapse
Affiliation(s)
- Wenhui Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xuejiao Chen
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ruixue Nie
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Axiu Guo
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yao Ling
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bo Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Hao Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Wang T, Tang C, Xiao M, Cao Z, He H, He M, Li Y, Li X. Analysis of metabolic spectrum characteristics of naturally and cultivated Ophiocordyceps sinensis based on non-targeted metabolomics. Sci Rep 2024; 14:17425. [PMID: 39075220 PMCID: PMC11286869 DOI: 10.1038/s41598-024-68306-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
The analysis of the differences in metabolic profiles between naturally Ophiocordyceps sinensis (NO) and cultivated Ophiocordyceps sinensis (CO) is an essential process for the medicinal value mining of Ophiocordyceps sinensis. Non-targeted metabolomics was used to compare the differences in metabolite composition and abundance between NO and CO. Total metabolite composition found that NO is rich in organic acids and derivatives, and CO is rich in lipids and lipid-like molecules. HCA found that organooxygen compounds, cinchona alkaloid, and fatty acyls had different abundances in NO and CO. The variable importance in projection value and quantitative analysis of metabolites found that NO was rich in l-iditol, malate, linoleic acid, and oleic acid; CO is rich in sucrose, perseitol, hydroquinidine, nonanoic acid, 1-hydroxy-2-naphthoic acid, hymol-β-d-glucoside, and gly-his-lys. these compounds have the potential to be biomarkers of NO and CO. KEGG enrichment analysis showed that ascorbate and aldarate metabolism, carbon metabolism, pyrimidine metabolism, and fatty acid biosynthesis were the most different metabolic pathways between NO and CO. Therefore, the analysis of the characteristics of NO and CO metabolites has reference value for finding their different medicinal functions.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Chuyu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Mengjun Xiao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Zhengfei Cao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Hui He
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Min He
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Yuling Li
- Qinghai Academy of Animal and Veterinary Science, Xining, 810016, China.
| | - Xiuzhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China.
| |
Collapse
|
6
|
Yang C, Zheng H, Amin A, Faheem MS, Duan A, Li L, Xiao P, Li M, Shang J. Follicular Atresia in Buffalo: Cocaine- and Amphetamine-Regulated Transcript (CART) and the Underlying Mechanisms. Animals (Basel) 2024; 14:2138. [PMID: 39123664 PMCID: PMC11311020 DOI: 10.3390/ani14152138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Atresia is a process in ovarian follicles that is regulated by hormone-induced apoptosis. During atresia, granulosa cell (GC) apoptosis is a key mechanism orchestrated through diverse signaling pathways. Cocaine- and amphetamine-regulated transcript (CART) signaling within ovarian GCs has been demonstrated to play a key role in the regulation of follicular atresia in cattle, pigs, and sheep. The present work aimed to investigate the potential local regulatory role of CART in GC apoptosis-induced follicular atresia in buffalo, focusing on the modulation of the AKT/GSK3β/β-catenin signaling pathways, which are the intracellular signaling pathways involved in cell viability. Our findings revealed increased expression of CARTPT and BAX and decreased levels of AKT, β-catenin, and CYP19A1 genes in atretic follicles compared to healthy follicles. Subsequently, CART treatment in the presence of FSH inhibited the FSH-induced increase in GC viability by reducing estradiol production and increasing apoptosis. This change was accompanied by an increase in the gene expression levels of both CARTPT and BAX. At the protein level, treatment with CART in the presence of FSH negatively affected the activity of AKT, β-catenin, and LEF1, while the activity of GSK3β was enhanced. In conclusion, our study shows how CART negatively influences buffalo GC viability, underlying the modulation of the AKT/GSK3β/β-catenin pathway and promoting apoptosis-a key factor in follicular atresia.
Collapse
Affiliation(s)
- Chunyan Yang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
| | - Haiying Zheng
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
| | - Ahmed Amin
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Marwa S. Faheem
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Anqin Duan
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
| | - Lingyu Li
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
| | - Peng Xiao
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
| | - Mengqi Li
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
| | - Jianghua Shang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
| |
Collapse
|
7
|
Zhu Y, Yao L, Guo Y, Zhang J, Xia Y, Wei Z, Dai Y. Bergenin attenuates triptolide-caused premature ovarian failure in mice based on the antioxidant activity. Reprod Toxicol 2024; 126:108608. [PMID: 38735593 DOI: 10.1016/j.reprotox.2024.108608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/16/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Tripterygium wilfordii (TW) preparations have been utilized in China for treating rheumatoid arthritis and autoimmune diseases. However, their clinical use is limited due to reproductive toxicity, notably premature ovarian failure (POF). Our study aimed to investigate the effect and mechanism of bergenin in attenuating POF induced by triptolide in mice. POF was induced in female ICR mice via oral triptolide administration (50 μg/kg) for 60 days. Mice received bergenin (25, 50, 100 mg/kg, i.g.) or estradiol valerate (EV) (0.1 mg/kg, i.g.) daily, 1 h before triptolide treatment. In vitro, ovarian granulosa cells (OGCs) were exposed to triptolide (100 nM) and bergenin (1, 3, 10 μM). Antioxidant enzyme activity, protein expression, apoptosis rate, and reactive oxygen species (ROS) levels were assessed. The results showed that triptolide-treated mice exhibited evident atrophy, along with an increase in atretic follicles. Bergenin (50, 100 mg/kg) and EV (0.1 mg/kg), orally administered, exerted significant anti-POF effect. Bergenin and EV also decreased apoptosis in mouse ovaries. In vitro, bergenin (1, 3, 10 μM) attenuated triptolide-induced OGCs apoptosis by reducing levels of apoptosis-related proteins. Additionally, bergenin reduced oxidative stress through downregulation of antioxidant enzymes activity and overall ROS levels. Moreover, the combined use with Sh-Nrf2 resulted in a reduced protection of bergenin against triptolide-induced apoptosis of OGCs. Together, bergenin counteracts triptolide-caused POF in mice by inhibiting Nrf2-mediated oxidative stress and preventing OGC apoptosis. Combining bergenin with TW preparations may effectively reduce the risk of POF.
Collapse
Affiliation(s)
- Yanrong Zhu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Lichen Yao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Yilei Guo
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Jing Zhang
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Yufeng Xia
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China.
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China.
| |
Collapse
|
8
|
Zhu Z, He M, Zhang T, Zhao T, Qin S, Gao M, Wang W, Zheng W, Chen Z, Liu L, Hao M, Zhou B, Zhang H, Wang J, Wang F, Xia G, Wang C. LSD1 promotes the FSH responsive follicle formation by regulating autophagy and repressing Wt1 in the granulosa cells. Sci Bull (Beijing) 2024; 69:1122-1136. [PMID: 38302330 DOI: 10.1016/j.scib.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
In a growing follicle, the survival and maturation of the oocyte largely depend on support from somatic cells to facilitate FSH-induced mutual signaling and chemical communication. Although apoptosis and autophagy in somatic cells are involved in the process of FSH-induced follicular development, the underlying mechanisms require substantial study. According to our study, along with FSH-induced antral follicles (AFs) formation, both lysine-specific demethylase 1 (LSD1) protein levels and autophagy increased simultaneously in granulosa cells (GCs) in a time-dependent manner, we therefore evaluated the importance of LSD1 upon facilitating the formation of AFs correlated to autophagy in GCs. Conditional knockout of Lsd1 in GCs resulted in significantly decreased AF number and subfertility in females, accompanied by marked suppression of the autophagy in GCs. On the one hand, depletion of Lsd1 resulted in accumulation of Wilms tumor 1 homolog (WT1), at both the protein and mRNA levels. WT1 prevented the expression of FSH receptor (Fshr) in GCs and thus reduced the responsiveness of the secondary follicles to FSH induction. On the other hand, depletion of LSD1 resulted in suppressed level of autophagy by upregulation of ATG16L2 in GCs. We finally approved that LSD1 contributed to these sequential activities in GCs through its H3K4me2 demethylase activity. Therefore, the importance of LSD1 in GCs is attributable to its roles in both accelerating autophagy and suppressing WT1 expression to ensure the responsiveness of GCs to FSH during AFs formation.
Collapse
Affiliation(s)
- Zijian Zhu
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meina He
- College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Tuo Zhang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Ting Zhao
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shaogang Qin
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meng Gao
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenji Wang
- School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Wenying Zheng
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziqi Chen
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Longping Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ming Hao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bo Zhou
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hua Zhang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fengchao Wang
- Transgenic Animal Center, National Institute of Biological Sciences, Beijing 102206, China.
| | - Guoliang Xia
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan 750021, China.
| | - Chao Wang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Gasque-Belz L, Raes K, Park B, Colville C, Siciliano S, Hogan N, Weber L, Campbell P, Peters R, Hanson M, Hecker M. Hazard assessment of complex legacy-contaminated groundwater mixtures using a novel approach method in adult fathead minnows. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133299. [PMID: 38141307 DOI: 10.1016/j.jhazmat.2023.133299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Traditional risk assessment methods face challenges in the determination of drivers of toxicity for complex mixtures such as those present at legacy-contaminated sites. Bioassay-driven analysis across several levels of biological organization represents an approach to address these obstacles. This study aimed to apply a novel transcriptomics tool, the EcoToxChip, to characterize the effects of complex mixtures of contaminants in adult fathead minnows (FHMs) and to compare molecular response patterns to higher-level biological responses. Adult FHMs were exposed for 4 and 21 days to groundwater mixtures collected from a legacy-contaminated site. Adult FHM showed significant induction of micronuclei in erythrocytes, decrease in reproductive capacities, and some abnormal appearance of liver histology. Parallel EcoToxChip analyses showed a high proportion of upregulated genes and a few downregulated genes characteristic of compensatory responses. The three most enriched pathways included thyroid endocrine processes, transcription and translation cellular processes, and xenobiotics and reactive oxygen species metabolism. Several of the most differentially regulated genes involved in these biological pathways could be linked to the apical outcomes observed in FHMs. We concluded that molecular responses as determined by EcoToxChip analysis show promise for informing of apical outcomes and could support risk assessments of complex contaminated sites.
Collapse
Affiliation(s)
- Laura Gasque-Belz
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Katherine Raes
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bradley Park
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Carly Colville
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steven Siciliano
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Natacha Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lynn Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Rachel Peters
- Federated Co-operatives Limited, Saskatoon, SK, Canada
| | - Mark Hanson
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
10
|
Yang R, Wang X, Liu H, Chen J, Tan C, Chen H, Wang X. Egr-1 is a key regulator of the blood-brain barrier damage induced by meningitic Escherichia coli. Cell Commun Signal 2024; 22:44. [PMID: 38233877 PMCID: PMC10795328 DOI: 10.1186/s12964-024-01488-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
Bacterial meningitis remains a leading cause of infection-related mortality worldwide. Although Escherichia coli (E. coli) is the most common etiology of neonatal meningitis, the underlying mechanisms governing bacterial blood-brain barrier (BBB) disruption during infection remain elusive. We observed that infection of human brain microvascular endothelial cells with meningitic E. coli triggers the activation of early growth response 1 (Egr-1), a host transcriptional activator. Through integrated chromatin immunoprecipitation sequencing and transcriptome analysis, we identified Egr-1 as a crucial regulator for maintaining BBB integrity. Mechanistically, Egr-1 induced cytoskeletal changes and downregulated tight junction protein expression by directly targeting VEGFA, PDGFB, and ANGPTL4, resulting in increased BBB permeability. Meanwhile, Egr-1 also served as a master regulator in the initiation of neuroinflammatory response during meningitic E. coli infection. Our findings support an Egr-1-dependent mechanism of BBB disruption by meningitic E. coli, highlighting a promising therapeutic target for bacterial meningitis.
Collapse
Affiliation(s)
- Ruicheng Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Xinyi Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Hulin Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jiaqi Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China.
| |
Collapse
|
11
|
Wen J, Feng Y, Xue L, Yuan S, Chen Q, Luo A, Wang S, Zhang J. High-fat diet-induced L-saccharopine accumulation inhibits estradiol synthesis and damages oocyte quality by disturbing mitochondrial homeostasis. Gut Microbes 2024; 16:2412381. [PMID: 39410876 PMCID: PMC11485700 DOI: 10.1080/19490976.2024.2412381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 09/15/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
High-fat diet (HFD) has been linked to female infertility. However, the specific age at which HFD impacts ovarian function and the underlying mechanisms remain poorly understood. Here, we administered a HFD to female mice at various developmental stages: pre-puberty (4 weeks old), post-puberty (6 weeks old), young adult (9 weeks old), and middle age (32 weeks old). Our observations indicated that ovarian function was most significantly compromised when HFD was initiated at post-puberty. Consequently, post-puberty mice were chosen for further investigation. Through transplantation of fecal bacteria from the HFD mice to the mice on a normal diet, we confirmed that gut microbiota dysbiosis contributed to HFD-induced deteriorated fertility and disrupted estradiol synthesis. Utilizing untargeted and targeted metabolomics analyses, we identified L-saccharopine as a key metabolite, which was enriched in the feces, serum, and ovaries of HFD and HFD-FMT mice. Subsequent in vitro and in vivo experiments demonstrated that L-saccharopine disrupted mitochondrial homeostasis by impeding AMPKα/MFF-mediated mitochondrial fission. This disruption ultimately hindered estradiol synthesis and compromised oocyte quality. AICAR, an activator of AMPKα, ameliorated L-saccharopine induced mitochondrial damage in granulosa cells and oocytes, thereby enhancing E2 synthesis and improving oocyte quality. Collectively, our findings indicate that the accumulation of L-saccharopine may play a pivotal role in mediating HFD-induced ovarian dysfunction. This highlights the potential therapeutic benefits of targeting the gut microbiota-metabolite-ovary axis to address HFD-induced ovarian dysfunction.
Collapse
Affiliation(s)
- Jingyi Wen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Yanzhi Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Suzhen Yuan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| |
Collapse
|
12
|
Orisaka M, Mizutani T, Miyazaki Y, Shirafuji A, Tamamura C, Fujita M, Tsuyoshi H, Yoshida Y. Chronic low-grade inflammation and ovarian dysfunction in women with polycystic ovarian syndrome, endometriosis, and aging. Front Endocrinol (Lausanne) 2023; 14:1324429. [PMID: 38192421 PMCID: PMC10773729 DOI: 10.3389/fendo.2023.1324429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
The ovarian microenvironment is critical for follicular development and oocyte maturation. Maternal conditions, including polycystic ovary syndrome (PCOS), endometriosis, and aging, may compromise the ovarian microenvironment, follicular development, and oocyte quality. Chronic low-grade inflammation can induce oxidative stress and tissue fibrosis in the ovary. In PCOS, endometriosis, and aging, pro-inflammatory cytokine levels are often elevated in follicular fluids. In women with obesity and PCOS, hyperandrogenemia and insulin resistance induce ovarian chronic low-grade inflammation, thereby disrupting follicular development by increasing oxidative stress. In endometriosis, ovarian endometrioma-derived iron overload can induce chronic inflammation and oxidative stress, leading to ovarian ferroptosis and fibrosis. In inflammatory aging (inflammaging), senescent cells may secrete senescence-associated secretory phenotype factors, causing chronic inflammation and oxidative stress in the ovary. Therefore, controlling chronic low-grade inflammation and fibrosis in the ovary would present a novel therapeutic strategy for improving the follicular microenvironment and minimizing ovarian dysfunction.
Collapse
Affiliation(s)
- Makoto Orisaka
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tetsuya Mizutani
- Department of Nursing, Faculty of Nursing and Welfare Sciences, Fukui Prefectural University, Fukui, Japan
| | - Yumiko Miyazaki
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Aya Shirafuji
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Chiyo Tamamura
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masayuki Fujita
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hideaki Tsuyoshi
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
- Department of Obstetrics and Gynecology, Ishikawa Prefectural Central Hospital, Ishikawa, Japan
| | - Yoshio Yoshida
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
13
|
Suginobe H, Ishida H, Ishii Y, Ueda K, Yoshihara C, Ueyama A, Wang R, Tsuru H, Hashimoto K, Hirose M, Ishii R, Narita J, Kitabatake Y, Ozono K. Isogenic pairs of induced-pluripotent stem-derived endothelial cells identify DYRK1A/PPARG/EGR1 pathway is responsible for Down syndrome-associated pulmonary hypertension. Hum Mol Genet 2023; 33:78-90. [PMID: 37792788 PMCID: PMC10729858 DOI: 10.1093/hmg/ddad162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023] Open
Abstract
Down syndrome (DS) is the most prevalent chromosomal disorder associated with a higher incidence of pulmonary arterial hypertension (PAH). The dysfunction of vascular endothelial cells (ECs) is known to cause pulmonary arterial remodeling in PAH, although the physiological characteristics of ECs harboring trisomy 21 (T21) are still unknown. In this study, we analyzed the human vascular ECs by utilizing the isogenic pairs of T21-induced pluripotent stem cells (iPSCs) and corrected disomy 21 (cDi21)-iPSCs. In T21-iPSC-derived ECs, apoptosis and mitochondrial reactive oxygen species (mROS) were significantly increased, and angiogenesis and oxygen consumption rate (OCR) were significantly impaired as compared with cDi21-iPSC-derived ECs. The RNA-sequencing identified that EGR1 on chromosome 5 was significantly upregulated in T21-ECs. Both EGR1 suppression by siRNA and pharmacological inhibitor could recover the apoptosis, mROS, angiogenesis, and OCR in T21-ECs. Alternately, the study also revealed that DYRK1A was responsible to increase EGR1 expression via PPARG suppression, and that chemical inhibition of DYRK1A could restore the apoptosis, mROS, angiogenesis, and OCR in T21-ECs. Finally, we demonstrated that EGR1 was significantly upregulated in the pulmonary arterial ECs from lung specimens of a patient with DS and PAH. In conclusion, DYRK1A/PPARG/EGR1 pathway could play a central role for the pulmonary EC functions and thus be associated with the pathogenesis of PAH in DS.
Collapse
Affiliation(s)
- Hidehiro Suginobe
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hidekazu Ishida
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoichiro Ishii
- Department of Pediatric Cardiology, Osaka Children’s and Women’s Hospital, 840 Murodohcho, Izumi, Osaka 594-1101, Japan
| | - Kazutoshi Ueda
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chika Yoshihara
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsuko Ueyama
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Renjie Wang
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hirofumi Tsuru
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Pediatrics, Niigata University School of Medicine, 1-757 Asahimachi-dori, chuo-ku, Niigata 951-8510, Japan
| | - Kazuhisa Hashimoto
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaki Hirose
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryo Ishii
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jun Narita
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuji Kitabatake
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Shen J, Liu Y, Teng X, Jin L, Feng L, Sun X, Zhao F, Huang B, Zhong J, Chen Y, Wang L. Spatial Transcriptomics of Aging Rat Ovaries Reveals Unexplored Cell Subpopulations with Reduced Antioxidative Defense. Gerontology 2023; 69:1315-1329. [PMID: 37717573 DOI: 10.1159/000533922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
INTRODUCTION Ovarian aging is characterized by a gradual decline in quantity and quality of oocytes and lower chance of fertility. Better understanding the genetic modulation during ovarian aging can further address available treatment options for aging-related ovarian diseases and fertility preservation. METHODS A novel technique spatial transcriptomics (ST) was used to investigate the spatial transcriptome features of rat ovaries. Transcriptomes from ST spots in the young and aged ovaries were clustered using differentially expressed genes. These data were analyzed to determine the spatial organization of age-induced heterogeneity and potential mechanisms underlying ovarian aging. RESULTS In this study, ST technology was applied to profile the comprehensive spatial imaging in young and aged rat ovary. Fifteen ovarian cell clusters with distinct gene-expression signatures were identified. The gene expression dynamics of granulosa cell clusters revealed three sub-types with sequential developmental stages. Aged ovary showed a significant decrease in the number of granulosa cells from the antral follicle. Besides, a remarkable rearrangement of interstitial gland cells was detected in aging ovary. Further analysis of aging-associated transcriptional changes revealed that the disturbance of oxidative pathway was a crucial factor in ovarian aging. CONCLUSIONS This study firstly described an aging-related spatial transcriptome changes in ovary and identified the potential targets for prevention of ovarian aging. These data may provide the basis for further investigations of the diagnosis and treatment of aging-related ovarian disorders.
Collapse
Affiliation(s)
- Jiayu Shen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,
| | - Yuanyuan Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyuan Teng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ligui Jin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Feng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiwen Sun
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Fengdong Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinjie Zhong
- Department of Basic Medicine Sciences, and Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingying Chen
- Department of Basic Medicine Sciences, and Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liquan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Yang R, Zhang S, Duan C, Guo Y, Shan X, Zhang X, Yue S, Zhang Y, Liu Y. Effect of prolactin on cytotoxicity and oxidative stress in ovine ovarian granulosa cells. PeerJ 2023; 11:e15629. [PMID: 37456891 PMCID: PMC10340108 DOI: 10.7717/peerj.15629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023] Open
Abstract
Background Prolactin (PRL) has been reported to be associated with oxidative stress, which is an important contributor leading to cell apoptosis. However, little is known about the mechanisms underlying the effects of PRL on cytotoxicity and oxidative stress in ovine ovarian granulosa cells (GCs). Methods Ovine ovarian GCs were treated with 0, 4, 20, 100 and 500 ng/mL of PRL. Then, the cytotoxicity, cell viability, malondialdehyde (MDA), reactive oxygen species (ROS), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) of GCs were detected. Additionally, 500 ng/mL PRL was chosen as the high PRL concentration (HPC) due to its high cytotoxicity and oxidative stress. Proteomic and metabonomic were performed to examine the overall difference in proteins and metabolic pathways between C (control: 0 ng/mL PRL) and P groups (500 ng/mL PRL). Results The results indicated that GCs treated with 4 ng/mL PRL significantly decreased (P < 0.05) the cytotoxicity, ROS and MDA, increased (P < 0.05) the cell viability, SOD and T-AOC, and the GCs treated with 500 ng/mL PRL showed the opposite trend (P < 0.05). Supplementation with 500 ng/mL PRL significantly increased the proteins of MT-ND1, MAPK12, UBA52 and BCL2L1, which were enriched in ROS and mitophagy pathways. Pathway enrichment analysis showed that the pentose phosphate pathway was significantly enriched in the P group. Conclusion A low concentration of PRL inhibited cytotoxicity and oxidative stress. HPC induced oxidative stress in ovine ovarian GCs via the pentose phosphate pathway by modulating the associated proteins MT-ND1 in ROS pathway and UBA52, MAPK12 and BCL2L1 in mitophagy pathway, resulting in cytotoxicity.
Collapse
Affiliation(s)
| | - Shuo Zhang
- China Agricultural University, Beijing, China
| | | | - Yunxia Guo
- Hebei Agricultural University, Baoding, China
| | - Xinyu Shan
- Hebei Agricultural University, Baoding, China
| | | | - Sicong Yue
- Hebei Agricultural University, Baoding, China
| | | | - Yueqin Liu
- Hebei Agricultural University, Baoding, China
| |
Collapse
|
16
|
Redmond LC, Limbu S, Farjo B, Messenger AG, Higgins CA. Male pattern hair loss: Can developmental origins explain the pattern? Exp Dermatol 2023; 32:1174-1181. [PMID: 37237288 PMCID: PMC10946844 DOI: 10.1111/exd.14839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Male pattern hair loss (MPHL), also referred to as male androgenetic alopecia (AGA) is the most common type of non-scarring progressive hair loss, with 80% of men suffering from this condition in their lifetime. In MPHL, the hair line recedes to a specific part of the scalp which cannot be accurately predicted. Hair is lost from the front, vertex, and the crown, yet temporal and occipital follicles remain. The visual effect of hair loss is due to hair follicle miniaturisation, where terminal hair follicles become dimensionally smaller. Miniaturisation is also characterised by a shortening of the growth phase of the hair cycle (anagen), and a prolongation of the dormant phase (kenogen). Together, these changes result in the production of thinner and shorter hair fibres, referred to as miniaturised or vellus hairs. It remains unclear why miniaturisation occurs in this specific pattern, with frontal follicles being susceptible while occipital follicles remain in a terminal state. One main factor we believe to be at play, which will be discussed in this viewpoint, is the developmental origin of the skin and hair follicle dermis on different regions of the scalp.
Collapse
Affiliation(s)
| | - Summik Limbu
- Department of BioengineeringImperial College LondonLondonUK
| | | | | | | |
Collapse
|
17
|
Effects of Zearalenone on Apoptosis and Copper Accumulation of Goat Granulosa Cells In Vitro. BIOLOGY 2023; 12:biology12010100. [PMID: 36671791 PMCID: PMC9856194 DOI: 10.3390/biology12010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023]
Abstract
Zearalenone (ZEA), also known as F-2 toxin, is a mycotoxin. Despite numerous reports of ZEA impairing livestock production performance and fertility, little information is available, including information about the mechanism underlying damage to cell metal ion transport. Copper, which is essential for cell survival as a metal ion, can consist of a variety of enzymes that facilitate abundant metabolic processes. However, the accumulation of copper in cells can have toxic effects. Here, we intended to determine whether ZEA could impair goat granulosa cells (GCs) and alter the cellular copper concentration. GCs were divided into a negative control (NC) group (cells cultured with 0.1% dimethyl sulfoxide (DMSO) for 8 h) and a ZEA group (cells cultured with 200 μmol/L ZEA diluted in DMSO for 8 h). The results showed that ZEA could inhibit GC proliferation and impair cell viability. GCs showed significant increases in the apoptosis rate and oxidative stress levels, while their ability to synthesize estrogen decreased. In addition, RNA-seq results showed dramatic changes in the expression of copper transport-related genes. The expression levels of ATPase copper transporting alpha (ATP7A) and ATPase copper transporting beta (ATP7B) were significantly downregulated (p < 0.01), while the expression of solute carrier family 31 member 1 (SLC31A1) was not modified in the ZEA group compared with the NC group. In accordance with these trends, the copper concentration increased significantly in the ZEA group (p < 0.01). In summary, our results show that ZEA can negatively affect GCs and cause copper accumulation. This finding may provide a prospective line of research on the relationship between ZEA and the transport of copper ions in GCs.
Collapse
|
18
|
Sze SCW, Zhang L, Zhang S, Lin K, Ng TB, Ng ML, Lee KF, Lam JKW, Zhang Z, Yung KKL. Aberrant Transferrin and Ferritin Upregulation Elicits Iron Accumulation and Oxidative Inflammaging Causing Ferroptosis and Undermines Estradiol Biosynthesis in Aging Rat Ovaries by Upregulating NF-Κb-Activated Inducible Nitric Oxide Synthase: First Demonstration of an Intricate Mechanism. Int J Mol Sci 2022; 23:ijms232012689. [PMID: 36293552 PMCID: PMC9604315 DOI: 10.3390/ijms232012689] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
We report herein a novel mechanism, unraveled by proteomics and validated by in vitro and in vivo studies, of the aberrant aging-associated upregulation of ovarian transferrin and ferritin in rat ovaries. The ovarian mass and serum estradiol titer plummeted while the ovarian labile ferrous iron and total iron levels escalated with age in rats. Oxidative stress markers, such as nitrite/nitrate, 3-nitrotyrosine, and 4-hydroxy-2-nonenal, accumulated in the aging ovaries due to an aberrant upregulation of the ovarian transferrin, ferritin light/heavy chains, and iron regulatory protein 2(IRP2)-mediated transferrin receptor 1 (TfR1). Ferritin inhibited estradiol biosynthesis in ovarian granulosa cells in vitro via the upregulation of a nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and p65/p50-induced oxidative and inflammatory factor inducible nitric oxide synthase (iNOS). An in vivo study demonstrated how the age-associated activation of NF-κB induced the upregulation of iNOS and the tumor necrosis factor α (TNFα). The downregulation of the keap1-mediated nuclear factor erythroid 2-related factor 2 (Nrf2), that induced a decrease in glutathione peroxidase 4 (GPX4), was observed. The aberrant transferrin and ferritin upregulation triggered an iron accumulation via the upregulation of an IRP2-induced TfR1. This culminates in NF-κB-iNOS-mediated ovarian oxi-inflamm-aging and serum estradiol decrement in naturally aging rats. The iron accumulation and the effect on ferroptosis-related proteins including the GPX4, TfR1, Nrf2, Keap1, and ferritin heavy chain, as in testicular ferroptosis, indicated the triggering of ferroptosis. In young rats, an intraovarian injection of an adenovirus, which expressed iron regulatory proteins, upregulated the ovarian NF-κB/iNOS and downregulated the GPX4. These novel findings have contributed to a prompt translational research on the ovarian aging-associated iron metabolism and aging-associated ovarian diseases.
Collapse
Affiliation(s)
- Stephen Cho Wing Sze
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China
- Correspondence: (S.C.W.S.); (K.K.L.Y.); Tel.: +852-34112318 (S.C.W.S.); Tel.: +852-34117060 (K.K.L.Y.)
| | - Liang Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Shiqing Zhang
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 999077, China
| | - Kaili Lin
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China
- School of Public Health, Guangzhou Medical University, Guangzhou 999077, China
| | - Tzi Bun Ng
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR 999077, China
| | - Man Ling Ng
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, HKU, Pokfulam, Hong Kong SAR 999077, China
| | - Jenny Ka Wing Lam
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- Department of Pharmacology & Pharmacy, LKS Faculty of Medicine, HKU, Pokfulam, Hong Kong SAR 999077, China
| | - Zhang Zhang
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China
| | - Ken Kin Lam Yung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China
- Correspondence: (S.C.W.S.); (K.K.L.Y.); Tel.: +852-34112318 (S.C.W.S.); Tel.: +852-34117060 (K.K.L.Y.)
| |
Collapse
|
19
|
Hua L, Chen W, Meng Y, Qin M, Yan Z, Yang R, Liu Q, Wei Y, Zhao Y, Yan L, Qiao J. The combination of DNA methylome and transcriptome revealed the intergenerational inheritance on the influence of advanced maternal age. Clin Transl Med 2022; 12:e990. [PMID: 36103411 PMCID: PMC9473489 DOI: 10.1002/ctm2.990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The number of women delivering at advanced maternal age (AMA; > = 35) continuously increases in developed and high-income countries. Large cohort studies have associated AMA with increased risks of various pregnancy complications and adverse pregnancy outcomes, which raises great concerns about the adverse effect of AMA on the long-term health of offspring. Specific acquired characteristics of parents can be passed on to descendants through certain molecular mechanisms, yet the underlying connection between AMA-related alterations in parents and that in offspring remains largely uncharted. METHODS We profiled the DNA methylomes of paired parental peripheral bloods and cord bloods from 20 nuclear families, including 10 AMA and 10 Young, and additional transcriptomes of 10 paired maternal peripheral bloods and cord bloods. RESULTS We revealed that AMA induced aging-like changes in DNA methylome and gene expression in both parents and offspring. The expression changes in several genes, such as SLC28A3, were highly relevant to the disorder in DNA methylation. In addition, AMA-related differentially methylated regions (DMRs) identified in mother and offspring groups showed remarkable similarities in both genomic locations and biological functions, mainly involving neuron differentiation, metabolism, and histone modification pathways. AMA-related differentially expressed genes (DEGs) shared by mother and offspring groups were highly enriched in the processes of immune cell activation and mitotic nuclear division. We further uncovered developmental-dependent dynamics for the DNA methylation of intergenerationally correlated DMRs during pre-implantation embryonic development, as well as diverse gene expression patterns during gametogenesis and early embryonic development for those common AMA-related DEGs presenting intergenerational correlation, such as CD24. Moreover, some intergenerational DEGs, typified by HTRA3, also showed the same significant alterations in AMA MII oocyte or blastocyst. CONCLUSIONS Our results reveal potential intergenerational inheritance of both AMA-related DNA methylome and transcriptome and provide new insights to understand health problems in AMA offspring.
Collapse
Affiliation(s)
- Lingyue Hua
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Key Laboratory of Assisted Reproduction, Peking UniversityMinistry of EducationBeijingChina
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyBeijingChina
| | - Wei Chen
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Key Laboratory of Assisted Reproduction, Peking UniversityMinistry of EducationBeijingChina
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyBeijingChina
| | - Yan Meng
- Department of Obstetrics and GynecologyBeijing Jishuitan Hospital, Fourth Clinical College of Peking UniversityBeijingChina
| | - Meng Qin
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Key Laboratory of Assisted Reproduction, Peking UniversityMinistry of EducationBeijingChina
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyBeijingChina
| | - Zhiqiang Yan
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Key Laboratory of Assisted Reproduction, Peking UniversityMinistry of EducationBeijingChina
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyBeijingChina
| | - Rui Yang
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Key Laboratory of Assisted Reproduction, Peking UniversityMinistry of EducationBeijingChina
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyBeijingChina
| | - Qiang Liu
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Key Laboratory of Assisted Reproduction, Peking UniversityMinistry of EducationBeijingChina
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyBeijingChina
| | - Yuan Wei
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Center for Healthcare Quality Management in ObstetricsBeijingChina
| | - Yangyu Zhao
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Center for Healthcare Quality Management in ObstetricsBeijingChina
| | - Liying Yan
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Key Laboratory of Assisted Reproduction, Peking UniversityMinistry of EducationBeijingChina
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyBeijingChina
| | - Jie Qiao
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Key Laboratory of Assisted Reproduction, Peking UniversityMinistry of EducationBeijingChina
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyBeijingChina
- Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- Beijing Advanced Innovation Center for GenomicsBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
20
|
Ding JJ, Jiao C, Qi YL, Guo HX, Yuan QQ, Huang YN, Han JQ, Ma XY, Xu J. New insights into the reverse of chromium-induced reprotoxicity of pregnant mice by melatonin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113608. [PMID: 35525112 DOI: 10.1016/j.ecoenv.2022.113608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Hexavalent chromium Cr(VI) is a well-known environmental toxic metal that causes reprotoxicity in pregnant females. There are currently no appropriate interventions or treatments for Cr(VI) exposure during pregnancy. Herein, the protective effect of melatonin (MLT) against Cr(VI)-induced reprotoxicity is investigated by administrating MLT to pregnant mice exposed to Cr(VI). The results indicate that MLT effectively alleviates Cr(VI)-induced adverse pregnancy outcomes, restoring the decreased fetal weight and increased fetal resorption and malformation caused by Cr(VI) exposure to normal levels. MLT reduces the negative effects of Cr(VI) on follicular atresia and the development of primordial follicle in the maternal ovarian, thereby mitigating the decline in the reserve of primordial follicles. MLT alleviates Cr(VI)-induced oxidative stress, hence reducing the excessive accumulation of malondialdehyde in the maternal ovary. MLT inhibits Cr(VI)-induced apoptosis of ovarian granulosa cells and the expression of cleaved caspase-3 in the ovary. MLT reduces the increase in serum follicle-stimulating hormone caused by Cr(VI) exposure, while elevating anti-Mullerian hormone levels. We demonstrate that MLT reverses Cr(VI)-induced reprotoxicity in pregnant mice, opening up a new avenue for treating reproductive defects caused by environmental stress.
Collapse
Affiliation(s)
- Jia-Jie Ding
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chan Jiao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Peninsula Cancer Center, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Ya-Lei Qi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hui-Xia Guo
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qin-Qin Yuan
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yu-Nuo Huang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jian-Qiu Han
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Xue-Yun Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Juan Xu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
21
|
Huang L, Hou Y, Li H, Wu H, Hu J, Lu Y, Liu X. Endoplasmic reticulum stress is involved in small white follicular atresia in chicken ovaries. Theriogenology 2022; 184:140-152. [DOI: 10.1016/j.theriogenology.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/26/2022] [Accepted: 03/13/2022] [Indexed: 11/26/2022]
|
22
|
Bai L, He G, Gao C, Yang H, Li M, Huang Y, Moussa M, Xu C. Tanshinone IIA enhances the ovarian reserve and attenuates ovarian oxidative stress in aged mice. Vet Med Sci 2022; 8:1617-1625. [PMID: 35451235 PMCID: PMC9297741 DOI: 10.1002/vms3.811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Background Tanshinone IIA (TSA), a major lipophilic component extracted from the roots of Salvia miltiorrhiza Bunge, has been widely used in China for its various biological activities. However, its effect on ovarian reserve in aged mice was not studied elsewhere. Objectives This study aimed to explore the effect of TSA on the ovarian reserve of aged mice as well as young mice. Forty weeks old mice (N = 40) were considered as aged group compared to 4 weeks old mice (N = 40), and these groups were subdivided into four subgroups (N = 10) to receive different doses of TSA (0, 10, 20, and 40 μg/g/day). Methods The effect of TSA was evaluated by counting follicular number by histological examination. Basal serum levels of FSH, LH, E2, and anti‐Mullerian hormone (AMH) were measured by ELISA. Moreover, the expression levels of antioxidant genes (CAT, Nrf2, GPX1), gap junction (Cx37), ERK1/2, and Smad5 family gene were examined at both mRNA (qPCR) and protein levels (western blot). Results Follicular number, level of AMH and E2, and the expression of CAT, Nrf2, and GPX1 genes increased significantly (p < 0.05) in aged mice administrated with medium (20 μg/g/day) and high (40 μg/g/day) doses of TSA, whereas FSH and LH levels were significantly low compared to low dose (10 μg/g/day) and control (0 μg/g/day) aged subgroups. However, we did not observe any effect of all doses of TSA on young mice. Conclusions Administration of TSA with medium and high doses up‐regulates the expression of antioxidative genes, reduces the oxidative injury, increases levels of AMH, and E2 levels that are relatively comparable to those in young mice, and consequently results in a healthy oocyte development.
Collapse
Affiliation(s)
- Lin Bai
- School of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Guozhen He
- School of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Chenghai Gao
- School of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Hua Yang
- Nanning Second People's Hospital, Nanning, China
| | - Mingxing Li
- School of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Yulin Huang
- School of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Mahmoud Moussa
- Department of Theriogenology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Changlong Xu
- Nanning Second People's Hospital, Nanning, China
| |
Collapse
|
23
|
Luo X, Xu J, Zhao R, Qin J, Wang X, Yan Y, Wang LJ, Wang G, Yang X. The Role of Inactivated NF-κB in Premature Ovarian Failure. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:468-483. [PMID: 34971586 DOI: 10.1016/j.ajpath.2021.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Premature ovarian failure (POF) is defined as deployment of amenorrhea due to the cessation of ovarian function in a woman younger than 40 years old. The pathologic mechanism of POF is not yet well understood, although genetic aberrations, autoimmune damage, and environmental factors have been identified. The current study demonstrated that NF-κB inactivation is closely associated with the development of POF based on the data from literature and cyclophosphamide (Cytoxan)-induced POF mouse model. In the successfully established NF-κB-inactivated mouse model, the results showed the reduced expression of nuclear p65 and the increased expression of IκBα in ovarian granulosa cells; the reduced numbers of antral follicles; the reduction of Ki-67/proliferating cell nuclear antigen-labeled cell proliferation and enhanced Fas/FasL-dependent apoptosis in granulosa cells; the reduced level of E2 and anti-Müllerian hormone; the decreased expression of follicle-stimulating hormone receptor and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) in granulosa cells, which was reversed in the context of blocking NF-κB signaling with BAY 11-7082; and the decreased expressions of glucose-regulated protein 78 (GRP78), activating transcription factor 6, protein kinase R-like endoplasmic reticulum kinase, and inositol-requiring enzyme 1 in granulosa cells. Dual-luciferase reporter assay demonstrated that p50 stimulated the transcription of GRP78, and NF-κB affected the expression of follicle-stimulating hormone receptor and promoted granulosa cell proliferation through GRP78-mediated endoplasmic reticulum stress. Taken together, these data indicate, for the first time, that the inactivation of NF-κB signaling plays an important role in POF.
Collapse
Affiliation(s)
- Xin Luo
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Junjie Xu
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Ran Zhao
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Jiajia Qin
- Gynecology, Chinese Medicine College, Jinan University, Guangzhou, China
| | - Xiaoyu Wang
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Yu Yan
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Li-Jing Wang
- Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guang Wang
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China; Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China.
| | - Xuesong Yang
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China; Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China.
| |
Collapse
|
24
|
Tremblay PG, Fortin C, Sirard MA. Gene cascade analysis in human granulosa tumor cells (KGN) following exposure to high levels of free fatty acids and insulin. J Ovarian Res 2021; 14:178. [PMID: 34930403 PMCID: PMC8690403 DOI: 10.1186/s13048-021-00934-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022] Open
Abstract
Maternal metabolic disorders such as obesity and diabetes are detrimental factors that compromise fertility and the success rates of medically assisted procreation procedures. During metabolic stress, adipose tissue is more likely to release free fatty acids (FFA) in the serum resulting in an increase of FFA levels not only in blood, but also in follicular fluid (FF). In humans, high concentrations of palmitic acid and stearic acid reduced granulosa cell survival and were associated with poor cumulus-oocyte complex (COC) morphology. Obesity and high levels of circulating FFA were also causatively linked to hampered insulin sensitivity in cells and compensatory hyperinsulinemia. To provide a global picture of the principal upstream signaling pathways and genomic mechanisms involved in this metabolic context, human granulosa-like tumor cells (KGN) were treated with a combination of palmitic acid, oleic acid, and stearic acid at the higher physiological concentrations found in the follicular fluid of women with a higher body mass index (BMI) (≥ 30.0 kg/m2). We also tested a high concentration of insulin alone and in combination with high concentrations of fatty acids. Transcription analysis by RNA-seq with a cut off for fold change of 1.5 and p-value 0.05 resulted in thousands of differentially expressed genes for each treatment. Using analysis software such as Ingenuity Pathway Analysis (IPA), we were able to establish that high concentrations of FFA affected the expression of genes mainly related to glucose and insulin homoeostasis, fatty acid metabolism, as well as steroidogenesis and granulosa cell differentiation processes. The combination of insulin and high concentrations of FFA affected signaling pathways related to apoptosis, inflammation, and oxidative stress. Taken together, our results provided new information on the mechanisms that might be involved in human granulosa cells exposed to high concentrations of FFA and insulin in the contexts of metabolism disorders.
Collapse
Affiliation(s)
- Patricia G Tremblay
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Chloé Fortin
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Marc-André Sirard
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
25
|
Zhang ZY, Zhang SL, Chen HL, Mao YQ, Kong CY, Li ZM, Wang LS, Ma M, Han B. Low EGR1 expression predicts poor prognosis in clear cell renal cell carcinoma. Pathol Res Pract 2021; 228:153666. [PMID: 34749216 DOI: 10.1016/j.prp.2021.153666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 12/24/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is resistant to conventional therapy due to the deletion of the von Hippel-Lindau (VHL) gene, and novel treatment options are urgently needed. Here, using tissue microarray analysis of 445 cancer tissues and 326 adjacent normal renal tissues obtained from patients with ccRCC, we present the early growth response-1 (EGR1) protein levels are significantly decreased in ccRCC cancer tissues. Consistently, the EGR1 mRNA expression also decreased in cancer tissues based on the transcriptomic data for 599 tumor and normal samples from The Cancer Genome Atlas. Moreover, Patients with ccRCC presenting low EGR1 expression are more prone to exhibit metastasis and a poor prognosis than those with high EGR1 expression. By multivariate Cox regression analysis, EGR1 is determined to serve as an independent prognostic factor for patients with ccRCC. Further cellular biochemical function analyses show that EGR1 may inhibit proliferation, invasion and metastasis of ccRCC. These findings will deepen our understanding of EGR1 function and shed light on precise treatment for ccRCC patients.
Collapse
Affiliation(s)
- Zheng-Yan Zhang
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), and Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai 201100, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201100, China
| | - Shi-Long Zhang
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), and Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai 201100, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201100, China
| | - Hui-Ling Chen
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), and Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai 201100, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201100, China
| | - Yu-Qin Mao
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), and Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai 201100, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201100, China
| | - Chao-Yue Kong
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), and Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai 201100, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201100, China
| | - Zhan-Ming Li
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), and Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai 201100, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201100, China
| | - Li-Shun Wang
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), and Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai 201100, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201100, China
| | - Ming Ma
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), and Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai 201100, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201100, China.
| | - Bing Han
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), and Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai 201100, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201100, China.
| |
Collapse
|
26
|
Li S, Wang J, Zhang H, Ma D, Zhao M, Li N, Men Y, Zhang Y, Chu H, Lei C, Shen W, Othman OEM, Zhao Y, Min L. Transcriptome profile of goat folliculogenesis reveals the interaction of oocyte and granulosa cell in correlation with different fertility population. Sci Rep 2021; 11:15698. [PMID: 34344973 PMCID: PMC8333342 DOI: 10.1038/s41598-021-95215-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/15/2021] [Indexed: 11/28/2022] Open
Abstract
To understand the molecular and genetic mechanisms related to the litter size in one species of two different populations (high litter size and low litter size), we performed RNA-seq for the oocytes and granulosa cells (GCs) at different developmental stages of follicle, and identified the interaction of genes from both sides of follicle (oocyte and GCs) and the ligand-receptor pairs from these two sides. Our data were very comprehensive to uncover the difference between these two populations regarding the folliculogenesis. First, we identified a set of potential genes in oocyte and GCs as the marker genes which can be used to determine the goat fertility capability and ovarian reserve ability. The data showed that GRHPR, GPR84, CYB5A and ERAL1 were highly expressed in oocyte while JUNB, SCN2A, MEGE8, ZEB2, EGR1and PRRC2A were highly expressed in GCs. We found more functional genes were expressed in oocytes and GCs in high fertility group (HL) than that in low fertility group (LL). We uncovered that ligand-receptor pairs in Notch signaling pathway and transforming growth factor-β (TGF-β) superfamily pathways played important roles in goat folliculogenesis for the different fertility population. Moreover, we discovered that the correlations of the gene expression in oocytes and GCs at different stages in the two populations HL and LL were different, too. All the data reflected the gene expression landscape in oocytes and GCs which was correlated well with the fertility capability.
Collapse
Affiliation(s)
- Shen Li
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Junjie Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Dongxue Ma
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Minghui Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Na Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Yuhao Men
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Yuan Zhang
- Jining Animal Husbandry Development Center, Jining, People's Republic of China
| | - Huimin Chu
- Jining Agricultural Science Institute, Jining, People's Republic of China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | | | - Yong Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China. .,State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Lingjiang Min
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
27
|
Yao W, Wang S, Du X, Lin C, Zhang J, Pan Z, Li Q. SMAD4 Inhibits Granulosa Cell Apoptosis via the miR-183-96-182 Cluster and FoxO1 Axis. Reprod Sci 2021; 29:1577-1585. [PMID: 34287793 DOI: 10.1007/s43032-021-00690-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/04/2021] [Indexed: 12/21/2022]
Abstract
The miR-183-96-182 cluster is a polycistronic miRNA cluster necessary for ovarian functions in mammals. However, its transcriptional regulation in the ovary is largely unclear. In this study, we characterized the promoter region of the porcine miR-183-96-182 cluster, and showed that SMAD4 may function as a transcriptional activator of the miR-183-96-182 cluster in GCs through direct binding to SBE motifs in its promoter. SMAD4 may inhibit GC apoptosis via suppression of FoxO1, an effector of GC apoptosis and a direct target of the miR-183-96-182 cluster, by inducing the miR-183-96-182 cluster, and this process may be regulated by the TGF-β/SMAD signaling pathway. Our findings uncovered the regulatory mechanism of miR-183-96-182 cluster expression in GCs and demonstrated that TGF-β1/SMAD4/miR-183-96-182 cluster/FoxO1 may be a potential pathway for regulating follicular atresia and female reproduction.
Collapse
Affiliation(s)
- Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Siqi Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chenggang Lin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinbi Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
28
|
Sha C, Chen L, Lin L, Li T, Wei H, Yang M, Gao W, Zhao D, Chen Q, Liu Y, Chen X, Xu W, Li Y, Zhu X. TRDMT1 participates in the DNA damage repair of granulosa cells in premature ovarian failure. Aging (Albany NY) 2021; 13:15193-15213. [PMID: 34100772 PMCID: PMC8221345 DOI: 10.18632/aging.203080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022]
Abstract
The molecular mechanisms underlying premature ovarian failure, which seriously impacts the physical and psychological health of patients, are not fully understood. Here, we present the role of TRDMT1 in reactive oxygen species-induced granulosa cells death, which is considered an important cause of premature ovarian failure. We found that reactive oxygen species were increased in a H2O2 dose-dependent manner and accompanied by the nuclear shuttling of TRDMT1, increased DNA damage and increased apoptosis of granulosa cells. In addition, reactive oxygen species-induced granulosa cells apoptosis could be prevented by the antioxidant N-acetylcysteine or overexpression of TRDMT1. Furthermore, DNA repair following reactive oxygen species induction was severely impaired/enhanced in TRDMT1 mutants, which exhibited reduced/increased RNA m5C methylation activity. Altogether, our results reveal a novel role of TRDMT1 in the regulation of premature ovarian failure through the repair of reactive oxygen species-triggered DNA damage in granulosa cells and provide an improved understanding of the mechanisms underlying granulosa cells apoptosis, which could potentially be useful for future clinical treatments of premature ovarian failure.
Collapse
Affiliation(s)
- Chunli Sha
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
| | - Lu Chen
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
| | - Li Lin
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
| | - Taoqiong Li
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
| | - Hong Wei
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
| | - Meiling Yang
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
| | - Wujiang Gao
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
| | - Dan Zhao
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
| | - Qi Chen
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
| | - Yueqin Liu
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
| | - Xiaofang Chen
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
| | - Wenlin Xu
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
| | - Yuefeng Li
- Department of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
| | - Xiaolan Zhu
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
- International Genome Center, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
29
|
Wołodko K, Castillo-Fernandez J, Kelsey G, Galvão A. Revisiting the Impact of Local Leptin Signaling in Folliculogenesis and Oocyte Maturation in Obese Mothers. Int J Mol Sci 2021; 22:4270. [PMID: 33924072 PMCID: PMC8074257 DOI: 10.3390/ijms22084270] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022] Open
Abstract
The complex nature of folliculogenesis regulation accounts for its susceptibility to maternal physiological fitness. In obese mothers, progressive expansion of adipose tissue culminates with severe hyperestrogenism and hyperleptinemia with detrimental effects for ovarian performance. Indeed, maternal obesity is associated with the establishment of ovarian leptin resistance. This review summarizes current knowledge on potential effects of impaired leptin signaling throughout folliculogenesis and oocyte developmental competence in mice and women.
Collapse
Affiliation(s)
- Karolina Wołodko
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, Tuwima 10, 10-748 Olsztyn, Poland;
| | | | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; (J.C.-F.); (G.K.)
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - António Galvão
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, Tuwima 10, 10-748 Olsztyn, Poland;
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; (J.C.-F.); (G.K.)
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
30
|
Huang J, Shan W, Li N, Zhou B, Guo E, Xia M, Lu H, Wu Y, Chen J, Wang B, Xi L, Ma D, Chen G, Li K, Sun C. Melatonin provides protection against cisplatin-induced ovarian damage and loss of fertility in mice. Reprod Biomed Online 2021; 42:505-519. [PMID: 33388265 DOI: 10.1016/j.rbmo.2020.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022]
Abstract
RESEARCH QUESTION Can melatonin provide non-invasive ovarian protection against damage caused by cis-diamminedichloroplatinum (cisplatin) and preserve fertility in female cancer patients? And if so, what is the possible mechanism? DESIGN Athymic BALB/c nude tumour-bearing female mice were used to demonstrate whether melatonin affects the antineoplastic effect when co-administrated with cisplatin. Sexually mature and newborn C57BL/6 female mice were used to evaluate the potential effects of melatonin on the ovarian follicle pool, pregnancy rate and litter number in cisplatin-treated mice. The ovaries underwent immunohistochemical, TdT (terminal deoxynucleotidyl transferase)-mediated dUTP nick-end labelling (TUNEL) and gene array analysis to explore the underlying mechanism. In addition, granulosa cells were isolated to investigate the potential protective mechanism of melatonin. RESULTS Melatonin not only enhanced the anti-cancer effect of cisplatin in tumour-bearing nude mice, but also reduced ovarian toxicity and preserved long-term fertility in cisplatin-treated C57BL/6 female mice. When co-administrated, melatonin was able to reduce the DNA damage and toxic effects on lipid peroxidation in the ovaries caused by cisplatin. Specifically, melatonin was able to largely restore lipid peroxidation in granulosa cells and thus prevent ovarian follicles from being depleted. CONCLUSIONS Melatonin has the potential to be used as a chemotherapeutic adjuvant to simultaneously improve the outcome of anti-cancer treatment and preserve ovarian function during cisplatin chemotherapy. Notably, its properties of DNA protection and antioxidant effects on follicles may benefit female cancer survivors and prevent premature ovarian failure as well as fertility loss caused by chemotherapy.
Collapse
Affiliation(s)
- Jia Huang
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Wanying Shan
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Na Li
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Bo Zhou
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Ensong Guo
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Meng Xia
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Hao Lu
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Yifan Wu
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Jing Chen
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Beibei Wang
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Ling Xi
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Ding Ma
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Gang Chen
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Kezhen Li
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China.
| | - Chaoyang Sun
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China.
| |
Collapse
|
31
|
Xie L, Wang Y, Chen Z. Early Growth Response Protein 1 Knockdown Alleviates the Cerebral Injury in Rats with Intracerebral Hemorrhage (ICH) via STAT3/NF-κB Pathway by Reducing RXRα Acetylation Level. Neuroscience 2021; 487:120-130. [PMID: 33600884 DOI: 10.1016/j.neuroscience.2021.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 11/25/2022]
Abstract
Brain EGR1 (early growth response protein 1) overexpression aggravates focal ischemic brain injury, but its role in intracerebral hemorrhage (ICH) induced cerebral injury remains obscure. In this study, a rat ICH model was established by injecting type VII collagenase into the brain, and EGR1 knockdown reversed the increase of hematoma area, neurological function score, brain water content, blood-brain barrier (BBB) permeability, inflammation, p300 and retinoid a X receptor-α (RXRα) protein levels, as well as RXRα acetylation level induced by ICH. EGR1 expression was up-regulated in primary brain microvascular endothelial cells (BMECs), neurons, and astrocytes after ICH induction, and the up-regulation was most significant in BMECs. We also found that EGR1 promoted RXRα acetylation level by regulating p300 in BMECs. Subsequently, the BMECs were treated with OGD (oxygen glucose deprivation) plus hemin to simulate ICH condition. And silencing EGR1 rescued the upregulation of cell inflammation and the reduction of cell viability and TEER (transendothelial electric resistance) caused by OGD plus hemin via p300-mediated RXRα acetylation. Furthermore, the STAT3/NF-κB pathway was activated after treatment with OGD plus hemin, which was suppressed by silencing EGR1. And treatment with Stattic (an inhibitor of STAT3) restrained the effect of OGD plus hemin on NF-κB pathway activity, inflammation, cell viability and TEER. In conclusion, EGR1 increased RXRα acetylation level by regulating p300, thereby aggravating brain damage in ICH rat model and dysfunction in BMECs, which might through the STAT3/NF-κB pathway.
Collapse
Affiliation(s)
- Lijuan Xie
- Department of Vascular Surgery, China-Japan Friendship Hospital, Jilin University, China
| | - Yingying Wang
- Ward 4 of Neurology Department, China-Japan Friendship Hospital, Jilin University, China
| | - Zhuo Chen
- Ward 1 of Neurosurgery Department, China-Japan Friendship Hospital, Jilin University, China.
| |
Collapse
|
32
|
Namei E, Sun W, Pan D, Zhao Y, Yang B, Weng Y, Du C, Li H, Yu B, Subudeng G. The advanced paraffin-section preparation technique based on multiple cumulus-oocyte complexes rather than ovaries in ovine. Reprod Biol 2020; 21:100473. [PMID: 33373929 DOI: 10.1016/j.repbio.2020.100473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 11/17/2022]
Abstract
Immunohistochemical staining is the important method for the identification of protein expression in mammal ovaries, in particular in the follicles with the potential to develop into cumulus-oocyte complexes (COCs), which are able to support oocyte maturation regardless of in vivo or in vitro. Here, we reported an advanced immunohistochemical method based on an artificial structure gathering multiple COCs by paraffin embedding for rapid and highly sensitive detection of co-expressed proteins in ovine COCs rather than ovaries. Compared with the conventional immunohistochemistry on ovine ovaries, the advanced COC paraffin sectioning technique showed the better immunostaining effect and featured the higher generation rate for COCs, the distincter cumulus layers, and the more simplified procedures. These results indicate that the COC paraffin sectioning technique is highly effectively applied for identification of protein expression in ovine COC.
Collapse
Affiliation(s)
- Erge Namei
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Wei Sun
- College of Life Science, Inner Mongolia University, Hohhot, 010070, PR China
| | - Deng Pan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Yufen Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Bingxue Yang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Yu Weng
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Chenguang Du
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Haijun Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agricultural University, Hohhot, 010018, PR China.
| | - Boyang Yu
- College of Basic Medical, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Gerile Subudeng
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agricultural University, Hohhot, 010018, PR China.
| |
Collapse
|
33
|
Metformin Prevents Follicular Atresia in Aging Laying Chickens through Activation of PI3K/AKT and Calcium Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3648040. [PMID: 33294120 PMCID: PMC7718058 DOI: 10.1155/2020/3648040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/05/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022]
Abstract
Increased follicular atresia occurs with aging and results in reduced fecundity in laying chickens. Therefore, relieving follicular atresia of aging poultry is a crucial measure to maintain sustained high laying performance. As an antiaging agent, metformin was reported to play important roles in preventing aging in diverse animals. In this study, the physiological state of the prehierarchical follicles in the peak-laying hens (D280) and aged hens (D580) was compared, followed with exploration for the possible capacity of metformin in delaying atresia of the prehierarchical follicles in the aged D580 hens. Results showed that the capacity of yolk deposition within follicles declined with aging, and the point of endoplasmic reticulum- (ER-) mitochondrion contact decreased in the ultrastructure of the follicular cells. Meanwhile, the expression of apoptosis signaling genes was increased in the atretic small white follicles. Subsequently, the H2O2-induced follicular atresia model was established to evaluate the enhancing capacity of metformin on yolk deposition and inhibition of apoptosis in the atretic small white follicles. Metformin inhibited apoptosis through regulating cooperation of the mitochondrion-associated ER membranes and the insulin (PI3K/AKT) signaling pathway. Furthermore, metformin regulated calcium ion homeostasis to relieve ER-stress and inhibited release of mitochondrion apoptosis factors (BAD and caspase). Additionally, metformin activated PI3K/AKT that suppressed activation of BAD (downstream of the insulin signaling pathway) in the atretic follicles. Further, serum estrogen level and liver estrogen receptor-α expression were increased after dietary metformin supplementation in D580 hens. These results indicated that administration of dietary metformin activated the PI3K/AKT and calcium signaling pathway and enhanced yolk deposition to prevent chicken follicular atresia.
Collapse
|
34
|
Han P, Relav L, Price CA. Regulation of the early growth response-1 binding protein NAB2 in bovine granulosa cells and effect on connective tissue growth factor expression. Mol Cell Endocrinol 2020; 518:111041. [PMID: 33002529 DOI: 10.1016/j.mce.2020.111041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/18/2020] [Accepted: 09/27/2020] [Indexed: 11/18/2022]
Abstract
Ovarian fibrosis is associated with increased expression of the transcription factor, Early growth response-1 (EGR1) and connective tissue growth factor (CCN2) in granulosa cells. The transcriptional activity of EGR1 is under negative feedback control by NAB1 and NAB2, but little is known about NAB expression in granulosa cells. Using a well-defined bovine in-vitro granulosa cell model, we show that NAB2 but not NAB1 mRNA is upregulated by fibroblast growth factor (FGF)1 and FGF2, but not by FGF4 or FGF8b. Overexpressing NAB2 abrogated the ability of FGF8b to increase EGR1 and CCN2 mRNA, as well as mRNAs encoding other FGF-target genes. Surprisingly, overexpression of NAB2 in the absence of growth factor stimulation increased abundance of mRNA encoding CCN2 and EGR1, and decreased estradiol secretion. We conclude that NAB2 is expressed in granulosa cells and plays a role in regulating EGR1-induced CCN2 expression, although cross-talk with other signaling pathways is likely occurring.
Collapse
Affiliation(s)
- Peng Han
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine vétérinaire, Université de Montréal, 3200, Sicotte, St-Hyacinthe, QC, Canada
| | - Lauriane Relav
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine vétérinaire, Université de Montréal, 3200, Sicotte, St-Hyacinthe, QC, Canada
| | - Christopher A Price
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine vétérinaire, Université de Montréal, 3200, Sicotte, St-Hyacinthe, QC, Canada.
| |
Collapse
|
35
|
He L, Wang X, Cheng D, Xiong Z, Liu X. Ginsenoside Rg1 improves pathological damages by activating the p21‑p53‑STK pathway in ovary and Bax‑Bcl2 in the uterus in premature ovarian insufficiency mouse models. Mol Med Rep 2020; 23:37. [PMID: 33179093 PMCID: PMC7684879 DOI: 10.3892/mmr.2020.11675] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/25/2020] [Indexed: 01/02/2023] Open
Abstract
The aim of the present study was to investigate the effects of the ginsenoside Rg1 on D-galactose (D-gal)-induced mouse models of premature ovarian insufficiency (POI) and the related mechanisms. C57BL/6 female mice were randomly grouped into the following: i) D-gal [subcutaneously (s.c.) 200 mg/kg/d D-gal for 42 days]; ii) Rg1 [intraperitoneally (i.p.) 20 mg/kg/d Rg1 for 28 days]; iii) D-gal + Rg1 (s.c. 200 mg/kg/d D-gal for 42 days followed by i.p. 20 mg/kg/d Rg1 for 28 days); and iv) saline groups (equivalent volume of saline s.c. and i.p.). Hematoxylin and eosin staining and electron microscopy were used to analyze uterine and ovarian morphology. Expression levels of senescence factors (p21, p53 and serine/threonine kinase), secretion of pro-inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-1β] and the activities of oxidation biomarkers [superoxide dismutase (T-SOD), malondialdehyde (MDA) and glutathione peroxidase (GSH-px)] were analyzed. The results showed that mice in the Rg1 + D-gal group had significantly higher uterine and ovarian weight compared with those in the D-gal group. Uterus morphology was also improved, based on the comparison between the D-gal group and the Rg1 + D-gal group. In addition, the Rg1 treatment after D-gal administration significantly decreased the expression of senescence-associated factors, enhanced the activities of anti-oxidant enzymes total T-SOD and GSH-px in addition to reducing TNF-α, IL-1β, MDA and IL-6 (based on the comparison between the D-gal group and the Rg1 + D-gal group). In conclusion, the present study suggested that the ginsenoside Rg1 improved pathological damages in the ovary and uterus by increasing anti-oxidant and anti-inflammatory abilities whilst reducing the expression of senescence signaling pathways in POI mouse models.
Collapse
Affiliation(s)
- Lianli He
- Department of Gynecology and Obstetrics, The First People's Hospital of Zunyi and Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xiaojuan Wang
- Department of Gynecology and Obstetrics, The First People's Hospital of Zunyi and Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Daigang Cheng
- Department of Gynecology and Obstetrics, The First People's Hospital of Zunyi and Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Zhengai Xiong
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xiaoyun Liu
- Department of Gynecology and Obstetrics, The First People's Hospital of Zunyi and Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
36
|
Zhang T, Chi XX, Kong FX, Chu XL. Effect of genistein on the gene and protein expressions of CXCL-12 and EGR-1 in the rat ovary. J Anim Physiol Anim Nutr (Berl) 2020; 105:191-197. [PMID: 32981128 DOI: 10.1111/jpn.13448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/20/2020] [Indexed: 11/28/2022]
Abstract
The effect of genistein (GEN) on the gene expression level of stromal cell-derived factor-1/CXCL-12 and early growth response gene-1 was studied in ovarian tissue of young and initially ageing (early stages in the ageing process) female rats. Forty, young female Sprague Dawley (SD) rats of 2-3 months old (200 ±20 g) and forty, initially ageing female SD rats of 10-12 months (490 ± 20 g) old were selected. According to the weight, rats were divided into control group, low-dose group (L), medium-dose group (M) and a high-dose group (H) and were given 15, 30 and 60 mg/kg GEN respectively. The positive control (Oestrogen) group was given 0.5 mg/kg diethylstilbestrol. The treatment lasted for 30 days. The mRNA expression of C-X-C motif chemokine ligand 12 (CXCL-12) and early growth response factor-1 (EGR-1) was measured by real-time PCR, and protein expression of EGR-1 was detected by Western blot. When compared to the negative control group (NC), the ovary/body weight ratio in the young rats decreased in the GEN group, but the difference was not significant. Similarly, compared with NC, the ovary/body weight ratio in the initially ageing rats also decreased with the increase in GEN concentration, but the decrease was significant in M and H groups (p < .01). The administration of GEN enhanced both the gene and protein expression levels of CXCL-12 and EGR-1 in the ovary. Pearson's correlation analysis showed a synergistic effect between CXCL-12 and EGR-1. Thus, we conclude that the effect of GEN on CXCL-12 and EGR-1 in the initially ageing group was obvious than that in the younger group.
Collapse
Affiliation(s)
- Tao Zhang
- College of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, Heilongjiang Province, China
| | - Xiao-Xing Chi
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China.,Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing, Heilongjiang Province, China
| | - Fan-Xiu Kong
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Xiao-Li Chu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| |
Collapse
|
37
|
He R, Zhao Z, Yang Y, Liang X. Using bioinformatics and metabolomics to identify altered granulosa cells in patients with diminished ovarian reserve. PeerJ 2020; 8:e9812. [PMID: 32923184 PMCID: PMC7457930 DOI: 10.7717/peerj.9812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/04/2020] [Indexed: 11/20/2022] Open
Abstract
Background During fertility treatment, diminished ovarian reserve (DOR) is a challenge that can seriously affect a patient's reproductive potential. However, the pathogenesis of DOR is still unclear and its treatment options are limited. This study aimed to explore DOR's molecular mechanisms. Methods We used R software to analyze the mRNA microarray dataset E-MTAB-391 downloaded from ArrayExpress, screen for differentially expressed genes (DEGs), and perform functional enrichment analyses. We also constructed the protein-protein interaction (PPI) and miRNA-mRNA networks. Ovarian granulosa cells (GCs) from women with DOR and the control group were collected to perform untargeted metabolomics analyses. Additionally, small molecule drugs were identified using the Connectivity Map database. Results We ultimately identified 138 DEGs. Our gene ontology (GO) analysis indicated that DEGs were mainly enriched in cytokine and steroid biosynthetic processes. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG), the DEGs were mainly enriched in the AGE (advanced glycation end-product)-RAGE (receptor for AGE) signaling pathway in diabetic complications and steroid biosynthesis. In the PPI network, we determined that JUN, EGR1, HMGCR, ATF3, and SQLE were hub genes that may be involved in steroid biosynthesis and inflammation. miRNAs also played a role in DOR development by regulating target genes. We validated the differences in steroid metabolism across GCs using liquid chromatography-tandem mass spectrometry (LC-MS/MS). We selected 31 small molecules with potentially positive or negative influences on DOR development. Conclusion We found that steroidogenesis and inflammation played critical roles in DOR development, and our results provide promising insights for predicting and treating DOR.
Collapse
Affiliation(s)
- Ruifen He
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Zhongying Zhao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Gansu Province, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Gansu Province, Lanzhou, China
| |
Collapse
|
38
|
Effects of FOXO1 on the proliferation and cell cycle-, apoptosis- and steroidogenesis-related genes expression in sheep granulosa cells. Anim Reprod Sci 2020; 221:106604. [PMID: 32980650 DOI: 10.1016/j.anireprosci.2020.106604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022]
Abstract
Forkhead boxO (FOXO) transcription factors regulate diverse biological processes, including cellular metabolism, cell apoptosis, and the cell cycle. Results from several studies indicate FOXO1 regulates different granulosa cell (GC) pathways involved in proliferation, survival and differentiation. Functions and mechanisms of FOXO1 regulation of sheep GCs remain unclear. This study was conducted to analyze the function of FOXO1 in regulation of sheep GCs. In this study, the 1827 bp sheep FOXO1 coding sequence was cloned from sheep GCs. Multiple sequence alignment and phylogenetic analysis indicated that the FOXO1 protein sequence is highly homologous to FOXO1 protein sequences from other species. The results obtained from using CCK-8 assays indicated sheep GC proliferation increased when there was suppression of FOXO1 gene expression. When there was induced expression of the FOXO1 gene in sheep GCs, there was a resulting increased abundance of P21 and P27 mRNA transcript, whereas suppression of the FOXO1 gene expression had the opposite effect. Furthermore, the relative abundance in vitro of apoptosis-related protein mRNA transcripts (caspase3, caspase8, caspase9, Bax/Bcl-2) was markedly increased or decreased when there was induction or suppression of FOXO1 gene expression, respectively,(P < 0.05). Induction of FOXO1 gene expression resulted in an increase in abundance of steroidogenic protein mRNA transcripts (CYP11A1, 3β-HSD), while suppression of FOXO1 gene expresion resulted in a decrease abundance of the CYP11A1, STAR mRNA transcripts. Results from the present study indicated that FOXO1 inhibited the proliferation of sheep GCs and affected mRNA transcript abundance for proteins involved in regulation of apoptosis, the cell cycle and steroidogenesis.
Collapse
|
39
|
Yang X, Li D, Qi YZ, Chen W, Yang CH, Jiang YH. MicroRNA-217 ameliorates inflammatory damage of endothelial cells induced by oxidized LDL by targeting EGR1. Mol Cell Biochem 2020; 475:41-51. [PMID: 32737769 DOI: 10.1007/s11010-020-03857-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/24/2020] [Indexed: 01/25/2023]
Abstract
Oxidized low-density lipoprotein (ox-LDL) modulates gene transcription and expression and induces the development of endothelium inflammation and endothelial dysfunction, in which microRNAs (miRNAs) play a crucial role. However, the mechanism of ox-LDL in inflammatory damage of endothelial cells still remains elusive. Herein, we focused on the effect of hsa-miR-217-5p (miR-217) on endothelial dysfunction induced by ox-LDL by targeting early growth response protein-1 (EGR1). In the present study, 31 upregulated miRNAs and 59 downregulated miRNAs (Fold Change > 2, P value < 0.05) were identified after 6 h of 80 μg/mL ox-LDL exposure in human aortic endothelial cells (HAECs) by small RNA sequencing, including miR-217 that was significantly decreased (FC = 0.2787, P value = 5.22E-16). MiR-217 knockdown inhibited cell proliferation and increased level of IL-6, IL-1β, ICAM-1 and TNF-α, while overexpression of miR-217 relieved the growth inhibition induced by ox-LDL and demonstrated anti-inflammatory effect in HAECs. EGR1 was predicted as a potential candidate target gene of miR-217 by TargetScan. The subsequent dual-luciferase reporter assay confirmed the direct binding of miR-217 to 3'UTR of EGR1. And EGR1 expression was negatively correlated with the level of miRNA-217 in HAECs after exposure to ox-LDL. Overexpression of EGR1 recapitulated the effects of miR-217 knockdown on cell proliferation inhibition and inflammation in HAECs, while knockdown EGR1 relieved the proliferative inhibition and demonstrated anti-inflammatory effect in ox-LDL-induced HAECs. The present study confirmed miR-217 ameliorates inflammatory damage of endothelial cells induced by oxidized LDL by targeting EGR1.
Collapse
Affiliation(s)
- Xuesong Yang
- Vascular Surgery Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Jinan, 250011, China
| | - Dongna Li
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Jinan, 250011, China
| | - Ying-Zi Qi
- Health College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wenjing Chen
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Jinan, 250011, China
| | - Chuan-Hua Yang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Jinan, 250011, China.
| | - Yue-Hua Jiang
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Jinan, 250011, China.
| |
Collapse
|
40
|
Bunel A, Nivet AL, Blondin P, Vigneault C, Richard FJ, Sirard MA. The effects of LH inhibition with cetrorelix on cumulus cell gene expression during the luteal phase under ovarian coasting stimulation in cattle. Domest Anim Endocrinol 2020; 72:106429. [PMID: 32320933 DOI: 10.1016/j.domaniend.2019.106429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 01/14/2023]
Abstract
Cumulus cells have an important role to play in the final preparation of the oocyte before ovulation. During the final phase of follicular differentiation, FSH levels are low and LH maintains follicular growth; however, it is not known if at that time LH has an influence on cumulus cells inside the follicle. In humans, LH is often inhibited to avoid a premature ovulatory LH surge. This procedure provides a tool to investigate the role of LH in follicular development. In this study, we investigated the impact of suppressing LH using the GnRH antagonist cetrorelix during an ovarian coasting stimulation protocol on the transcriptome of bovine cumulus cells (CC). Oocytes were collected twice from 6 dairy cows. For the first collection, the cows received FSH twice daily for 3 d, followed by FSH withdrawal for 68 h as a control protocol. For the second collection, the same stimulation protocol was used, but the cows also received, starting on day 2 of FSH stimulation, a GnRH antagonist once a day until recovery of the cumulus-oocyte complexes (COC). Half of the COC were subjected to in vitro maturation, fertilization, and culture to assess blastocyst rates. The other half of the COC underwent microarray analysis (n = 3 cows, 2 treatments, 6 oocyte collections) and qRT-PCR (n = 6 cows: 3 microarray cows +3 other cows, 2 treatments, 12 oocyte collections). The differential expression of specific genes was confirmed by RT-qPCR: decrease of ATP6AP2, SC4MOL, and OSTC and increase of PTGDS in the LH-inhibited condition. The global transcriptomic analysis of cumulus cells demonstrated that the inhibition of LH secretion may decrease survival and growth of the follicle. Moreover, the results suggested that LH may be important to cumulus for the maintenance of cellular mechanisms such as global RNA expression, protein and nucleic acid metabolism, and energy production. These results support the hypothesis that LH support is important during the final part of follicle maturation through its influence on the cumulus cells.
Collapse
Affiliation(s)
- A Bunel
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Université Laval, Québec, QC G1V 0A6, Canada
| | - A L Nivet
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Université Laval, Québec, QC G1V 0A6, Canada
| | - P Blondin
- L'Alliance Boviteq, Saint-Hyacinthe, QC, Canada
| | - C Vigneault
- L'Alliance Boviteq, Saint-Hyacinthe, QC, Canada
| | - F J Richard
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Université Laval, Québec, QC G1V 0A6, Canada
| | - M A Sirard
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
41
|
Control of Murine Primordial Follicle Growth Activation by IκB/NFκB Signaling. Reprod Sci 2020; 27:2063-2074. [PMID: 32542534 DOI: 10.1007/s43032-020-00225-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023]
Abstract
The transcription factor NFκB has been associated with the timing of menopause in a large human genome-wide association study. Furthermore, preclinical studies demonstrate that loss of Tumor necrosis factor alpha (Tnfα) or its receptor Tnfr2 slows primordial follicle growth activation (PFGA). Although Tnfα:receptor signaling stimulates NFκB and may mechanistically link these findings, very little is known about NFκB signaling in PFGA. Because signaling downstream of Tnfα/Tnfr2 ligand/receptor interaction has not been interrogated as relates to PFGA, we evaluated the expression of key NFκB signaling proteins in primordial and growing follicles, as well as during ovarian aging. We show that key members of the NFκB pathway, including subunits, activating kinases, and inhibitory proteins, are expressed in the murine ovary. Furthermore, the subunits p65 and p50, and the cytosolic inhibitory proteins IκBα and IκBβ, are present in ovarian follicles, including at the primordial stage. Finally, we assessed PFGA in genetically modified mice (AKBI) previously demonstrated to be resistant to inflammatory stress-induced NFκB activation due to overexpression of the NFκB inhibitory protein IκBβ. Consistent with the hypothesis that NFκB plays a key role in PFGA, AKBI mice exhibit slower PGFA than wild-type (WT) controls, and their ovaries contain nearly twice the number of primordial follicles as WT both at early and late reproductive ages. These data provide mechanistic insight on the control of PFGA and suggest that targeting NFκB at the level of IκB proteins may be a tractable route to slowing the rate of PFGA in women faced with early ovarian demise.
Collapse
|
42
|
Yang Y, Cheung HH, Zhang C, Wu J, Chan WY. Melatonin as Potential Targets for Delaying Ovarian Aging. Curr Drug Targets 2020; 20:16-28. [PMID: 30156157 DOI: 10.2174/1389450119666180828144843] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/02/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022]
Abstract
In previous studies, oxidative stress damage has been solely considered to be the mechanism of ovarian aging, and several antioxidants have been used to delay ovarian aging. But recently, more reports have found that endoplasmic reticulum stress, autophagy, sirtuins, mitochondrial dysfunction, telomeres, gene mutation, premature ovarian failure, and polycystic ovary syndrome are all closely related to ovarian aging, and these factors all interact with oxidative stress. These novel insights on ovarian aging are summarized in this review. Furthermore, as a pleiotropic molecule, melatonin is an important antioxidant and used as drugs for several diseases treatment. Melatonin regulates not only oxidative stress, but also the various molecules, and normal and pathological processes interact with ovarian functions and aging. Hence, the mechanism of ovarian aging and the extensive role of melatonin in the ovarian aging process are described herein. This systematic review supply new insights into ovarian aging and the use of melatonin to delay its onset, further supply a novel drug of melatonin for ovarian aging treatment.
Collapse
Affiliation(s)
- Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Ningxia Medical University, Yinchuan, Ningxia, 75004, China
| | - Hoi-Hung Cheung
- Chinese University of Hong Kong - Shandong University Joint Laboratory for Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, SAR, Hong Kong
| | - Cheng Zhang
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Ji Wu
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Ningxia Medical University, Yinchuan, Ningxia, 75004, China.,Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wai-Yee Chan
- Chinese University of Hong Kong - Shandong University Joint Laboratory for Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, SAR, Hong Kong
| |
Collapse
|
43
|
Jabbarzadeh Kaboli P, Afzalipour Khoshkbejari M, Mohammadi M, Abiri A, Mokhtarian R, Vazifemand R, Amanollahi S, Yazdi Sani S, Li M, Zhao Y, Wu X, Shen J, Cho CH, Xiao Z. Targets and mechanisms of sulforaphane derivatives obtained from cruciferous plants with special focus on breast cancer - contradictory effects and future perspectives. Biomed Pharmacother 2019; 121:109635. [PMID: 31739165 DOI: 10.1016/j.biopha.2019.109635] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most common type of cancer among women. Therefore, discovery of new and effective drugs with fewer side effects is necessary to treat it. Sulforaphane (SFN) is an organosulfur compound obtained from cruciferous plants, such as broccoli and mustard, and it has the potential to treat breast cancer. Hence, it is vital to find out how SFN targets certain genes and cellular pathways in treating breast cancer. In this review, molecular targets and cellular pathways of SFN are described. Studies have shown SFN inhibits cell proliferation, causes apoptosis, stops cell cycle and has anti-oxidant activities. Increasing reactive oxygen species (ROS) produces oxidative stress, activates inflammatory transcription factors, and these result in inflammation leading to cancer. Increasing anti-oxidant potential of cells and discovering new targets to reduce ROS creation reduces oxidative stress and it eventually reduces cancer risks. In short, SFN effectively affects histone deacetylases involved in chromatin remodeling, gene expression, and Nrf2 anti-oxidant signaling. This review points to the potential of SFN to treat breast cancer as well as the importance of other new cruciferous compounds, derived from and isolated from mustard, to target Keap1 and Akt, two key regulators of cellular homeostasis.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China; Drug Discovery Research Group, Parham Academy of Biomedical Sciences, The Heritage B-16-10, Selangor, 43300, Malaysia.
| | | | - Mahsa Mohammadi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Roya Mokhtarian
- Drug Discovery Research Group, Parham Academy of Biomedical Sciences, The Heritage B-16-10, Selangor, 43300, Malaysia
| | - Reza Vazifemand
- Laboratory of Virology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, 43400, Malaysia
| | - Shima Amanollahi
- Drug Discovery Research Group, Parham Academy of Biomedical Sciences, The Heritage B-16-10, Selangor, 43300, Malaysia; School of Mathematical, Physical, and Natural Sciences, University of Florence, Firenze, 50134, Italy
| | - Shaghayegh Yazdi Sani
- Drug Discovery Research Group, Parham Academy of Biomedical Sciences, The Heritage B-16-10, Selangor, 43300, Malaysia
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China.
| |
Collapse
|
44
|
Shen L, Chen Y, Cheng J, Yuan S, Zhou S, Yan W, Liu J, Luo A, Wang S. CCL5 secreted by senescent theca‐interstitial cells inhibits preantral follicular development via granulosa cellular apoptosis. J Cell Physiol 2019; 234:22554-22564. [PMID: 31111482 DOI: 10.1002/jcp.28819] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Lu Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yuan Chen
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine Zhejiang University Hangzhou China
| | - Jing Cheng
- Department of Obstetrics and Gynecology Zhongnan Hospital of Wuhan University Wuhan China
| | - Suzhen Yuan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Wei Yan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Junfeng Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
45
|
Miura K, Harikae K, Nakaguchi M, Imaimatsu K, Hiramatsu R, Tomita A, Hirate Y, Kanai-Azuma M, Kurohmaru M, Ogura A, Kanai Y. Molecular and genetic characterization of partial masculinization in embryonic ovaries grafted into male nude mice. PLoS One 2019; 14:e0212367. [PMID: 30840652 PMCID: PMC6402656 DOI: 10.1371/journal.pone.0212367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/31/2019] [Indexed: 01/01/2023] Open
Abstract
In most of mammalian embryos, gonadal sex differentiation occurs inside the maternal uterus before birth. In several fetal ovarian grafting experiments using male host mice, an experimental switch from the maternal intrauterine to male-host environment gradually induces partial masculinization of the grafted ovaries even under the wild-type genotype. However, either host-derived factors causing or molecular basis underlying this masculinization of the fetal ovaries are not clear. Here, we demonstrate that ectopic appearance of SOX9-positive Sertoli cell-like cells in grafted ovaries was mediated by the testosterone derived from the male host. Neither Sox8 nor Amh activity in the ovarian tissues is essential for such ectopic appearance of SOX9-positive cells. The transcriptome analyses of the grafted ovaries during this masculinization process showed early downregulation of pro-ovarian genes such as Irx3, Nr0b1/Dax1, Emx2, and Fez1/Lzts1 by days 7-10 post-transplantation, and subsequent upregulation of several pro-testis genes, such as Bhlhe40, Egr1/2, Nr4a2, and Zc3h12c by day 20, leading to a partial sex reversal with altered expression profiles in one-third of the total numbers of the sex-dimorphic pre-granulosa and Sertoli cell-specific genes at 12.5 dpc. Our data imply that the paternal testosterone exposure is partially responsible for the sex-reversal expression profiles of certain pro-ovarian and pro-testis genes in the fetal ovaries in a temporally dependent manner.
Collapse
Affiliation(s)
- Kento Miura
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- RIKEN BioResovurce Research Center, Tsukuba, Ibaraki, Japan
| | - Kyoko Harikae
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mayu Nakaguchi
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kenya Imaimatsu
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryuji Hiramatsu
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ayako Tomita
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoshikazu Hirate
- Center for Experimental Animals, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Masami Kanai-Azuma
- Center for Experimental Animals, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Masamichi Kurohmaru
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsuo Ogura
- RIKEN BioResovurce Research Center, Tsukuba, Ibaraki, Japan
- RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
46
|
Wang JL, Liu B, Zhang C, Wang XM, Zhen D, Huang XM, Chen W, Gao JM. Effects of icariin on ovarian function in d-galactose-induced aging mice. Theriogenology 2019; 125:157-167. [PMID: 30447495 DOI: 10.1016/j.theriogenology.2018.10.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 10/13/2018] [Accepted: 10/29/2018] [Indexed: 01/15/2023]
Abstract
In this study, effects of icariin (Ica) on were examined in a mouse model of d-galactose (D-gal)-induced ovarian aging. Kunming white mice were divided into three groups: aging group induced with D-gal, experiment group treated with Ica at low (50 mg/kg), middle (100 mg/kg) and high (200 mg/kg) concentrations, and control group with no treatment. Ovarian histomorphology, serum FSH, LH and E2 levels, and reproductive function were compared among the groups. Ovarian expression of Amh, Bax and Bcl-2 was examined by qPCR and western blotting. Our results showed that diameters of secondary and tertiary follicles were significantly reduced in the aging group when compared with control group (P < 0.01), and were restored to normal in Ica 100 and Ica 200 treatment groups. The diameter of atretic follicles was significantly smaller in the aging group compared with control group and Ica 200 treatment group (P < 0.05). The proportion of secondary and atretic follicles was higher in the aging group compared with control group, Ica 100 and 200 treatment groups, whereas the proportion of tertiary and mature follicles was reduced in the aging group versus control, Ica 100 and 200 groups. The aging group lacked mature follicles, whereas Ica treatment induced mature follicle development. Primary and secondary follicles exhibited similar theca cell numbers and theca interna and externa cell layers in all groups examined, whereas theca interna and externa cell layers were decreased and increased, respectively, in tertiary follicles of aging group compared with control and I 200 groups. In the aging group, FSH and LH levels were significantly higher than those in control and Ica 200 groups (P < 0.05), and the E2 level was significantly reduced compared with control (P < 0.01), Ica 200 (P < 0.01), and Ica 100 (P < 0.05) groups. Serum hormone levels were equivalent in the control, Ica 100 and Ica 200 groups. The pregnancy rate was reduced in the aging group compared with other groups. The average litter size per birth, birth litter weight, and weaning weight of litters were all significantly lower in the aging group compared with control, Ica 100 and 200 groups (P < 0.05). The ovarian expression of AMH and Bcl-2 mRNA was significantly reduced in the aging group compared with those in control and Ica-treated groups (P < 0.01). In contrast, Bax expression was significantly higher in the aging group compared with all other groups (P < 0.01), and the Bcl-2/Bax ratio was markedly reduced in aging group compared with control, Ica 100 and 200 groups (P < 0.01), and Ica 50 group (P < 0.05). Ovarian expression of AMH protein was elevated in the Ica 100 group compared with the aging, control and Ica 50 groups (P < 0.01) and Ica 200 group (P < 0.05). Ovarian Bcl-2 protein levels and the Bcl-2/Bax ratio were significantly higher in the Ica 100 group than those in the Ica 50, 200 and aging groups (P < 0.05), and were similar or reduced (P < 0.05), respectively, compared to those in control group. Ovarian Bax expression was similar in each group. These findings suggest that Ica can improve ovarian follicular development, inhibit follicular atresia, decrease FSH and LH levels and increase E2, upregulate ovarian AMH expression and increase the Bcl-2/Bax ratio in aging mice. Therefore, Ica can partially restore ovarian function of aging mice and enhance their fertility. Optimal reproductive effects were obtained with the Ica 100 group.
Collapse
Affiliation(s)
- Jun-Li Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Bing Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Chao Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xin-Mei Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Di Zhen
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xiao-Meng Huang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Wu Chen
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China.
| | - Jian-Ming Gao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China.
| |
Collapse
|
47
|
Shi B, Tu H, Sha L, Luo X, Wu W, Su Y, Yang S, Wang H. Upregulation of long noncoding RNA TUG1 by EGR1 promotes adenomyotic epithelial cell migration and invasion through recruiting EZH2 and suppressing TIMP2. Mol Reprod Dev 2019; 86:239-247. [PMID: 30593723 DOI: 10.1002/mrd.23099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022]
Abstract
Emerging studies showed that lncRNA taurine upregulated 1 (TUG1) plays important roles in diverse biological processes. However, there is no previously published research reporting the regulatory role of lncRNAs in the progression of adenomyosis. In the present study, we found that TUG1 is upregulated in human adenomyosis, and the overexpression of TUG1 is associated with the transcription factor early growth response 1 (EGR1). Functionally, the knockdown of TUG1 inhibited adenomyotic epithelial cell migration and invasion but not growth. The mechanistic experiments demonstrated that the function of TUG1 in adenomyotic epithelial cell invasion is, at least in part, through recruiting the enhancer of zeste homolog 2 (EZH2) to the promoter of tissue inhibitor of metalloproteinases 2 (TIMP2) and negatively regulating its expression. Our study demonstrated that TUG1 promotes the migration and invasion of human adenomyotic epithelial cells, and EGR1/TUG1/EZH2/TIMP2 may be a potential therapeutic target for adenomyosis.
Collapse
Affiliation(s)
- Beibei Shi
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongxiang Tu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lixiao Sha
- Department of Obstetrics and Gynecology, Wenzhou People's Hospital, Wenzhou, China
| | - Xishao Luo
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenlie Wu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Su
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Simeng Yang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hanchu Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
48
|
Han P, Guerrero-Netro H, Estienne A, Price CA. Effects of fibroblast growth factors and the transcription factor, early growth response 1, on bovine theca cells. Mol Cell Endocrinol 2018; 476:96-102. [PMID: 29723542 DOI: 10.1016/j.mce.2018.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/28/2018] [Accepted: 04/29/2018] [Indexed: 01/17/2023]
Abstract
The theca cell layer of the ovarian follicle secretes growth factors that impact the function of granulosa cells. One such factor is fibroblast growth factor 18 (FGF18) that causes apoptosis of granulosa cells, however it is not known if FGF18 induces apoptosis also in theca cells. Addition of recombinant FGF18 to bovine theca cells in vitro inhibited steroidogenesis but, in contrast to previous data in granulosa cells, decreased the incidence of apoptosis. FGF18 activated typical FGF signaling pathways in theca cells, which was not previously observed in granulosa cells. The transcription factor Early Growth Response-1 (EGR1) was a target of FGF18 action; overexpression and knock-down experiments demonstrated that EGR1 is a major upstream component of FGF signaling in theca cells and that it directs cell fate toward proliferation. These data suggest that FGF18 is mitogenic for theca cells while being pro-apoptotic in granulosa cells.
Collapse
Affiliation(s)
- Peng Han
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe QC Canada; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hilda Guerrero-Netro
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe QC Canada
| | - Anthony Estienne
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe QC Canada
| | - Christopher A Price
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe QC Canada.
| |
Collapse
|
49
|
Nilsson E, Klukovich R, Sadler-Riggleman I, Beck D, Xie Y, Yan W, Skinner MK. Environmental toxicant induced epigenetic transgenerational inheritance of ovarian pathology and granulosa cell epigenome and transcriptome alterations: ancestral origins of polycystic ovarian syndrome and primary ovarian insufiency. Epigenetics 2018; 13:875-895. [PMID: 30207508 PMCID: PMC6224216 DOI: 10.1080/15592294.2018.1521223] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/23/2018] [Accepted: 08/30/2018] [Indexed: 12/30/2022] Open
Abstract
Two of the most prevalent ovarian diseases affecting women's fertility and health are Primary Ovarian Insufficiency (POI) and Polycystic Ovarian Syndrome (PCOS). Previous studies have shown that exposure to a number of environmental toxicants can promote the epigenetic transgenerational inheritance of ovarian disease. In the current study, transgenerational changes to the transcriptome and epigenome of ovarian granulosa cells are characterized in F3 generation rats after ancestral vinclozolin or DDT exposures. In purified granulosa cells from 20-day-old F3 generation females, 164 differentially methylated regions (DMRs) (P < 1 x 10-6) were found in the F3 generation vinclozolin lineage and 293 DMRs (P < 1 x 10-6) in the DDT lineage, compared to controls. Long noncoding RNAs (lncRNAs) and small noncoding RNAs (sncRNAs) were found to be differentially expressed in both the vinclozolin and DDT lineage granulosa cells. There were 492 sncRNAs (P < 1 x 10-4) in the vinclozolin lineage and 1,085 sncRNAs (P < 1 x 10-4) in the DDT lineage. There were 123 lncRNAs and 51 lncRNAs in the vinclozolin and DDT lineages, respectively (P < 1 x 10-4). Differentially expressed mRNAs were also found in the vinclozolin lineage (174 mRNAs at P < 1 x 10-4) and the DDT lineage (212 mRNAs at P < 1 x 10-4) granulosa cells. Comparisons with known ovarian disease associated genes were made. These transgenerational epigenetic changes appear to contribute to the dysregulation of the ovary and disease susceptibility that can occur in later life. Observations suggest that ancestral exposure to toxicants is a risk factor that must be considered in the molecular etiology of ovarian disease.
Collapse
Affiliation(s)
- Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Rachel Klukovich
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
50
|
Yan W, Zhou S, Shen W, Cheng J, Yuan S, Ye S, Jin Y, Luo A, Wang S. Suppression of SEMA6C promotes preantral follicles atresia with decreased cell junctions in mice ovaries. J Cell Physiol 2018; 234:4934-4943. [PMID: 30256425 DOI: 10.1002/jcp.27294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/28/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022]
Abstract
Mammalian oocytes go through a long and complex developmental process, while acquiring the competencies that are required for fertilization and embryogenesis. Recent studies revealed that the communication between oocytes and granulosa cells (GCs) is a critical process for female follicle development. In the current study, we aimed to study whether and how semaphorin 6C (Sema6c) regulated the cell junctions between oocytes and GCs in mice preantral follicles. The attenuation of SEMA6C expression by siRNA decreased the cell-cell junctions and accelerated follicle atresia in vitro. PI3K-AKT pathway was activated when SEMA6C expression was downregulated. And the LY294002, a PI3K inhibitor, could reverse the effect of low SEMA6C expression on cell junctions in preantral follicles. Our findings revealed that Sema6c was involved in follicle development, and the suppression of SEMA6C led to cell junction defection by activating the PI3K/AKT pathway, which might also provide valuable information for understanding premature ovarian failure and ovarian aging.
Collapse
Affiliation(s)
- Wei Yan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Cheng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Suzhen Yuan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuangmei Ye
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Jin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|