1
|
Homan CC, Drazer MW, Yu K, Lawrence DM, Feng J, Arriola-Martinez L, Pozsgai MJ, McNeely KE, Ha T, Venugopal P, Arts P, King-Smith SL, Cheah J, Armstrong M, Wang P, Bödör C, Cantor AB, Cazzola M, Degelman E, DiNardo CD, Duployez N, Favier R, Fröhling S, Rio-Machin A, Klco JM, Krämer A, Kurokawa M, Lee J, Malcovati L, Morgan NV, Natsoulis G, Owen C, Patel KP, Preudhomme C, Raslova H, Rienhoff H, Ripperger T, Schulte R, Tawana K, Velloso E, Yan B, Kim E, Sood R, Hsu AP, Holland SM, Phillips K, Poplawski NK, Babic M, Wei AH, Forsyth C, Mar Fan H, Lewis ID, Cooney J, Susman R, Fox LC, Blombery P, Singhal D, Hiwase D, Phipson B, Schreiber AW, Hahn CN, Scott HS, Liu P, Godley LA, Brown AL. Somatic mutational landscape of hereditary hematopoietic malignancies caused by germline variants in RUNX1, GATA2, and DDX41. Blood Adv 2023; 7:6092-6107. [PMID: 37406166 PMCID: PMC10582382 DOI: 10.1182/bloodadvances.2023010045] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/22/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Individuals with germ line variants associated with hereditary hematopoietic malignancies (HHMs) have a highly variable risk for leukemogenesis. Gaps in our understanding of premalignant states in HHMs have hampered efforts to design effective clinical surveillance programs, provide personalized preemptive treatments, and inform appropriate counseling for patients. We used the largest known comparative international cohort of germline RUNX1, GATA2, or DDX41 variant carriers without and with hematopoietic malignancies (HMs) to identify patterns of genetic drivers that are unique to each HHM syndrome before and after leukemogenesis. These patterns included striking heterogeneity in rates of early-onset clonal hematopoiesis (CH), with a high prevalence of CH in RUNX1 and GATA2 variant carriers who did not have malignancies (carriers-without HM). We observed a paucity of CH in DDX41 carriers-without HM. In RUNX1 carriers-without HM with CH, we detected variants in TET2, PHF6, and, most frequently, BCOR. These genes were recurrently mutated in RUNX1-driven malignancies, suggesting CH is a direct precursor to malignancy in RUNX1-driven HHMs. Leukemogenesis in RUNX1 and DDX41 carriers was often driven by second hits in RUNX1 and DDX41, respectively. This study may inform the development of HHM-specific clinical trials and gene-specific approaches to clinical monitoring. For example, trials investigating the potential benefits of monitoring DDX41 carriers-without HM for low-frequency second hits in DDX41 may now be beneficial. Similarly, trials monitoring carriers-without HM with RUNX1 germ line variants for the acquisition of somatic variants in BCOR, PHF6, and TET2 and second hits in RUNX1 are warranted.
Collapse
Affiliation(s)
- Claire C. Homan
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Michael W. Drazer
- Departments of Medicine and Human Genetics, Section of Hematology/Oncology, Center for Clinical Cancer Genetics, and The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL
| | - Kai Yu
- Division of Intramural Research, Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - David M. Lawrence
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Jinghua Feng
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Luis Arriola-Martinez
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Matthew J. Pozsgai
- Departments of Medicine and Human Genetics, Section of Hematology/Oncology, Center for Clinical Cancer Genetics, and The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL
| | - Kelsey E. McNeely
- Departments of Medicine and Human Genetics, Section of Hematology/Oncology, Center for Clinical Cancer Genetics, and The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL
| | - Thuong Ha
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Parvathy Venugopal
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Peer Arts
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Sarah L. King-Smith
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Jesse Cheah
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Mark Armstrong
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Paul Wang
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Alan B. Cantor
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mario Cazzola
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Erin Degelman
- Alberta Children’s Hospital, Calgary, Alberta, Canada
| | - Courtney D. DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nicolas Duployez
- Laboratory of Hematology, Biology and Pathology Center, Centre Hospitalier Regional Universitaire de Lille, Lille, France
- Jean-Pierre Aubert Research Center, INSERM, Universitaire de Lille, Lille, France
| | - Remi Favier
- Assistance Publique-Hôpitaux de Paris, Armand Trousseau Children's Hospital, Paris, France
| | - Stefan Fröhling
- Department of Translational Medical Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ana Rio-Machin
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Mineo Kurokawa
- Department of Hematology & Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Joanne Lee
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Neil V. Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Carolyn Owen
- Division of Hematology and Hematological Malignancies, Foothills Medical Centre, Calgary, AB, Canada
| | - Keyur P. Patel
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Claude Preudhomme
- Laboratory of Hematology, Biology and Pathology Center, Centre Hospitalier Regional Universitaire de Lille, Lille, France
- Jean-Pierre Aubert Research Center, INSERM, Universitaire de Lille, Lille, France
| | - Hana Raslova
- Institut Gustave Roussy, Université Paris Sud, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France
| | | | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Rachael Schulte
- Division of Pediatric Hematology and Oncology, Riley Children’s Hospital, Indiana University School of Medicine, Indianapolis, IN
| | - Kiran Tawana
- Department of Haematology, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Elvira Velloso
- Service of Hematology, Transfusion and Cell Therapy and Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31) HCFMUSP, University of Sao Paulo Medical School, Sao Paulo, Brazil
- Genetics Laboratory, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Benedict Yan
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Erika Kim
- National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Raman Sood
- Division of Intramural Research, Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | | | - Amy P. Hsu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Steven M. Holland
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Kerry Phillips
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Nicola K. Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Milena Babic
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Andrew H. Wei
- Department of Haematology, Peter McCallum Cancer Centre, Royal Melbourne Hospital, Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, Melbourne, VIC, Australia
| | - Cecily Forsyth
- Central Coast Haematology, North Gosford, NSW, Australia
| | - Helen Mar Fan
- Department of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Ian D. Lewis
- Adelaide Oncology & Haematology, North Adelaide, SA, Australia
| | - Julian Cooney
- Department of Haematology, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Rachel Susman
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
| | - Lucy C. Fox
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Piers Blombery
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Deepak Singhal
- Department of Haematology, SA Pathology, Adelaide, SA, Australia
| | - Devendra Hiwase
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, SA Pathology, Adelaide, SA, Australia
| | - Belinda Phipson
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Paediatrics and Department of Molecular Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andreas W. Schreiber
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, SA, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Hamish S. Scott
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Paul Liu
- Division of Intramural Research, Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Lucy A. Godley
- Departments of Medicine and Human Genetics, Section of Hematology/Oncology, Center for Clinical Cancer Genetics, and The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL
| | - Anna L. Brown
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
2
|
Ma M, Liu F, Miles HN, Kim EJ, Fields L, Xu W, Li L. Proteome-wide Profiling of Asymmetric Dimethylated Arginine in Human Breast Tumors. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1692-1700. [PMID: 37463068 PMCID: PMC10726702 DOI: 10.1021/jasms.3c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Arginine methylation catalyzed by protein arginine methyltransferases (PRMTs) is a prevalent post-translational modification (PTM) that regulates diverse cellular processes. Aberrant expression of type I PRMTs that catalyze asymmetric arginine dimethylation (ADMA) is often found in cancer, though little is known about the ADMA status of substrate proteins in tumors. Using LC-MS/MS along with pan-specific ADMA antibodies, we performed global mapping of ADMA in five patient-derived xenograft (PDX) tumors representing different subtypes of human breast cancer. In total, 403 methylated sites from 213 proteins were identified, including 322 novel sites when compared to the PhosphositesPlus database. Moreover, using peptide arrays in vitro, approximately 70% of the putative substrates were validated to be methylated by PRMT1, PRMT4, and PRMT6. Notably, when compared with our previously identified ADMA sites from breast cancer cell lines, only 75 ADMA sites overlapped between cell lines and PDX tumors. Collectively, this study provides a useful resource for both PRMT and breast cancer communities for further exploitation of the functions of PRMT dysregulation during breast cancer progression.
Collapse
Affiliation(s)
- Min Ma
- School of Pharmacy, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Fabao Liu
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, 53705, United States
- Advanced Medical Research Institute, Shandong University, Shandong, 250012, PR China
| | - Hannah N. Miles
- School of Pharmacy, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Eui-Jun Kim
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, 53705, United States
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin–Madison, Madison, Wisconsin, United States
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| |
Collapse
|
3
|
Khan AS, Campbell KJ, Cameron ER, Blyth K. The RUNX/CBFβ Complex in Breast Cancer: A Conundrum of Context. Cells 2023; 12:641. [PMID: 36831308 PMCID: PMC9953914 DOI: 10.3390/cells12040641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Dissecting and identifying the major actors and pathways in the genesis, progression and aggressive advancement of breast cancer is challenging, in part because neoplasms arising in this tissue represent distinct diseases and in part because the tumors themselves evolve. This review attempts to illustrate the complexity of this mutational landscape as it pertains to the RUNX genes and their transcription co-factor CBFβ. Large-scale genomic studies that characterize genetic alterations across a disease subtype are a useful starting point and as such have identified recurring alterations in CBFB and in the RUNX genes (particularly RUNX1). Intriguingly, the functional output of these mutations is often context dependent with regards to the estrogen receptor (ER) status of the breast cancer. Therefore, such studies need to be integrated with an in-depth understanding of both the normal and corrupted function in mammary cells to begin to tease out how loss or gain of function can alter the cell phenotype and contribute to disease progression. We review how alterations to RUNX/CBFβ function contextually ascribe to breast cancer subtypes and discuss how the in vitro analyses and mouse model systems have contributed to our current understanding of these proteins in the pathogenesis of this complex set of diseases.
Collapse
Affiliation(s)
- Adiba S. Khan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; (A.S.K.); (K.J.C.)
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Kirsteen J. Campbell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; (A.S.K.); (K.J.C.)
| | - Ewan R. Cameron
- School of Biodiversity One Health & Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK;
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; (A.S.K.); (K.J.C.)
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
4
|
Ariffin NS. Healthcare Resource Utilization and Costs of Steroid-Associated Complications in Patients With Graft-Versus-Host Disease. Clin Breast Cancer 2022; 22:499-506. [DOI: 10.1016/j.clbc.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/03/2022] [Accepted: 04/18/2022] [Indexed: 11/03/2022]
|
5
|
Li Q, Lai Q, He C, Zhang H, Pan X, Li H, Yan Q, Fang Y, Liu S, Li A. RUNX1 regulates the proliferation and chemoresistance of colorectal cancer through the Hedgehog signaling pathway. J Cancer 2021; 12:6363-6371. [PMID: 34659526 PMCID: PMC8489138 DOI: 10.7150/jca.51338] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/17/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Chemoresistance is one of the main causes of recurrence in colorectal cancer (CRC) patients and leads to a poor prognosis. To characterize RUNX1 expression in colorectal cancer (CRC) and elucidate its mechanistic involvement in the tumor biology of this disease. Methods: The expression of RUNX1 in CRC and normal tissues was detected by bioinformatics analysis. Cell proliferation was measured by CCK-8 and clonogenic assays. In vivo tumor progression was assessed with a xenograft mouse model. Cell drug sensitivity tests and flow cytometry were performed to analyze CRC cell chemoresistance. RUNX1, key molecules of the Hedgehog signaling pathway, and ABCG2 were detected by qRT-PCR and Western blotting. Results: RUNX1 expression is upregulated in CRC tissues. RUNX1 enhanced CRC cell resistance to 5-fluorouracil (5-FU), promoted proliferation, and inhibited 5-FU-induced apoptosis. Mechanistically, RUNX1 can activate the Hedgehog signaling pathway and promote the expression of ABCG2 in CRC cells. Conclusions: Our study demonstrated that RUNX1 promotes CRC proliferation and chemoresistance by activating the Hedgehog signaling pathway and ABCG2 expression.
Collapse
Affiliation(s)
- Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiuhua Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chengcheng He
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Haonan Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xingzhu Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Haolin Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Qun Yan
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuxin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Thakuri BKC, Zhang J, Zhao J, Nguyen LN, Nguyen LNT, Schank M, Khanal S, Dang X, Cao D, Lu Z, Wu XY, Jiang Y, El Gazzar M, Ning S, Wang L, Moorman JP, Yao ZQ. HCV-Associated Exosomes Upregulate RUNXOR and RUNX1 Expressions to Promote MDSC Expansion and Suppressive Functions through STAT3-miR124 Axis. Cells 2020; 9:cells9122715. [PMID: 33353065 PMCID: PMC7766103 DOI: 10.3390/cells9122715] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
RUNX1 overlapping RNA (RUNXOR) is a long non-coding RNA and plays a pivotal role in the differentiation of myeloid cells via targeting runt-related transcription factor 1 (RUNX1). We and others have previously reported that myeloid-derived suppressor cells (MDSCs) expand and inhibit host immune responses during chronic viral infections; however, the mechanisms responsible for MDSC differentiation and suppressive functions, in particular the role of RUNXOR–RUNX1, remain unclear. Here, we demonstrated that RUNXOR and RUNX1 expressions are significantly upregulated and associated with elevated levels of immunosuppressive molecules, such as arginase 1 (Arg1), inducible nitric oxide synthase (iNOS), signal transducer and activator of transcription 3 (STAT3), and reactive oxygen species (ROS) in MDSCs during chronic hepatitis C virus (HCV) infection. Mechanistically, we discovered that HCV-associated exosomes (HCV-Exo) can induce the expressions of RUNXOR and RUNX1, which in turn regulates miR-124 expression via STAT3 signaling, thereby promoting MDSC differentiation and suppressive functions. Importantly, overexpression of RUNXOR in healthy CD33+ myeloid cells promoted differentiation and suppressive functions of MDSCs. Conversely, silencing RUNXOR or RUNX1 expression in HCV-derived CD33+ myeloid cells significantly inhibited their differentiation and expressions of suppressive molecules and improved the function of co-cultured autologous CD4 T cells. Taken together, these results indicate that the RUNXOR–RUNX1–STAT3–miR124 axis enhances the differentiation and suppressive functions of MDSCs and could be a potential target for immunomodulation in conjunction with antiviral therapy during chronic HCV infection.
Collapse
Affiliation(s)
- Bal Krishna Chand Thakuri
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Jinyu Zhang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Juan Zhao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Lam N. Nguyen
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Lam N. T. Nguyen
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Madison Schank
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Sushant Khanal
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Xindi Dang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Dechao Cao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Zeyuan Lu
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Xiao Y. Wu
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Yong Jiang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
| | - Mohamed El Gazzar
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
| | - Shunbin Ning
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Ling Wang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Jonathan P. Moorman
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
| | - Zhi Q. Yao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
- Correspondence: ; Tel.: +1-423-439-8029; Fax: +1-423-439-7010
| |
Collapse
|
7
|
Kiely M, Tse LA, Koka H, Wang D, Lee P, Wang F, Wu C, Tsang KH, Chan WC, Law SH, Zhang H, Karlins E, Zhu B, Hutchinson A, Hicks B, Zhu B, Yang XR. Age-related DNA methylation in paired normal and tumour breast tissue in Chinese breast cancer patients. Epigenetics 2020; 16:677-691. [PMID: 32970968 PMCID: PMC8143246 DOI: 10.1080/15592294.2020.1819661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Age-related DNA methylation is a potential mechanism contributing to breast cancer development. Studies of primarily Caucasian women have identified many CpG sites of age-related methylation in non-diseased breast tissue possibly driving cancer development over time. There is a paucity of studies involving Asian women whose ages at breast cancer onset are usually younger than Caucasians. We identified the 181 most consistent age-related methylation events in non-diseased breast tissue across published studies. Age-related methylation events were measured in adjacent normal and breast tumour tissue in an exclusively Asian population at the previously identified age-related methylation sites. Age-related methylation was found in 118 probes in adjacent normal breast tissue. Methylation of 99% of these sites was increased with age and predominantly located on CpG islands in promoter regions. To ascertain biological relevance to breast cancer, we focused on the 37 sites with overall higher methylation in tumour compared to adjacent normal samples. Some sites positively related to age, including AQP5 and CORO6, inversely correlated with gene expression. Several others have known involvement in suppression of carcinogenesis including GPC5 and SST, suggesting that perturbation of epigenetic regulation at these sites due to ageing may contribute to the progression of carcinogenesis. This study highlights an age-related methylation landscape in non-tumour tissue, consistent not just across studies, but also across different populations. We present candidate age-related methylation sites warranting further investigation as potential epigenetic drivers of breast cancer. They may serve as potential targets of site-specific demethylation intervention strategies for the prevention of age-related breast cancer.
Collapse
Affiliation(s)
- Maeve Kiely
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Lap Ah Tse
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Hela Koka
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Difei Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA.,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Priscilla Lee
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Feng Wang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Cherry Wu
- North District Hospital, Hong Kong, China
| | | | | | | | - Han Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Eric Karlins
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA.,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA.,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA.,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA.,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
8
|
Ran R, Harrison H, Syamimi Ariffin N, Ayub R, Pegg HJ, Deng W, Mastro A, Ottewell PD, Mason SM, Blyth K, Holen I, Shore P. A role for CBFβ in maintaining the metastatic phenotype of breast cancer cells. Oncogene 2020; 39:2624-2637. [PMID: 32005976 PMCID: PMC7082223 DOI: 10.1038/s41388-020-1170-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/04/2019] [Accepted: 01/20/2020] [Indexed: 11/09/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is a dynamic process that drives cancer cell plasticity and is thought to play a major role in metastasis. Here we show, using MDA-MB-231 cells as a model, that the plasticity of at least some metastatic breast cancer cells is dependent on the transcriptional co-regulator CBFβ. We demonstrate that CBFβ is essential to maintain the mesenchymal phenotype of triple-negative breast cancer cells and that CBFβ-depleted cells undergo a mesenchymal to epithelial transition (MET) and re-organise into acini-like structures, reminiscent of those formed by epithelial breast cells. We subsequently show, using an inducible CBFβ system, that the MET can be reversed, thus demonstrating the plasticity of CBFβ-mediated EMT. Moreover, the MET can be reversed by expression of the EMT transcription factor Slug whose expression is dependent on CBFβ. Finally, we demonstrate that loss of CBFβ inhibits the ability of metastatic breast cancer cells to invade bone cell cultures and suppresses their ability to form bone metastases in vivo. Together our findings demonstrate that CBFβ can determine the plasticity of the metastatic cancer cell phenotype, suggesting that its regulation in different micro-environments may play a key role in the establishment of metastatic tumours.
Collapse
Affiliation(s)
- Ran Ran
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Hannah Harrison
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Nur Syamimi Ariffin
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Rahna Ayub
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Henry J Pegg
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Wensheng Deng
- Wuhan University of Science and Technology, Jishi Rd, Hongshan Qu, Wuhan Shi, Hubei Sheng, 430065, China
| | - Andrea Mastro
- Penn State University, 428 South Frear Laboratory, University Park, Philadelphia, PA, 16802, USA
| | - Penny D Ottewell
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Susan M Mason
- CRUK Beatson Institute, Garscube Estate, Bearsden, Glasgow, G61 1BD, UK
| | - Karen Blyth
- CRUK Beatson Institute, Garscube Estate, Bearsden, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Ingunn Holen
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
| | - Paul Shore
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
9
|
Sweeney K, Cameron ER, Blyth K. Complex Interplay between the RUNX Transcription Factors and Wnt/β-Catenin Pathway in Cancer: A Tango in the Night. Mol Cells 2020; 43:188-197. [PMID: 32041394 PMCID: PMC7057843 DOI: 10.14348/molcells.2019.0310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022] Open
Abstract
Cells are designed to be sensitive to a myriad of external cues so they can fulfil their individual destiny as part of the greater whole. A number of well-characterised signalling pathways dictate the cell's response to the external environment and incoming messages. In healthy, well-ordered homeostatic systems these signals are tightly controlled and kept in balance. However, given their powerful control over cell fate, these pathways, and the transcriptional machinery they orchestrate, are frequently hijacked during the development of neoplastic disease. A prime example is the Wnt signalling pathway that can be modulated by a variety of ligands and inhibitors, ultimately exerting its effects through the β-catenin transcription factor and its downstream target genes. Here we focus on the interplay between the three-member family of RUNX transcription factors with the Wnt pathway and how together they can influence cell behaviour and contribute to cancer development. In a recurring theme with other signalling systems, the RUNX genes and the Wnt pathway appear to operate within a series of feedback loops. RUNX genes are capable of directly and indirectly regulating different elements of the Wnt pathway to either strengthen or inhibit the signal. Equally, β-catenin and its transcriptional co-factors can control RUNX gene expression and together they can collaborate to regulate a large number of third party co-target genes.
Collapse
Affiliation(s)
- Kerri Sweeney
- CRUK Beatson Institute, Garscube Estate, Glasgow G6 BD, UK
| | - Ewan R. Cameron
- Glasgow Veterinary School, University of Glasgow, Glasgow G61 1QH, UK
| | - Karen Blyth
- CRUK Beatson Institute, Garscube Estate, Glasgow G6 BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
10
|
Alexandrova E, Giurato G, Saggese P, Pecoraro G, Lamberti J, Ravo M, Rizzo F, Rocco D, Tarallo R, Nyman TA, Collina F, Cantile M, Di Bonito M, Botti G, Nassa G, Weisz A. Interaction Proteomics Identifies ERbeta Association with Chromatin Repressive Complexes to Inhibit Cholesterol Biosynthesis and Exert An Oncosuppressive Role in Triple-negative Breast Cancer. Mol Cell Proteomics 2020; 19:245-260. [PMID: 31792072 PMCID: PMC7000115 DOI: 10.1074/mcp.ra119.001817] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/27/2019] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by poor response to therapy and low overall patient survival. Recently, Estrogen Receptor beta (ERβ) has been found to be expressed in a fraction of TNBCs where, because of its oncosuppressive actions on the genome, it represents a potential therapeutic target, provided a better understanding of its actions in these tumors becomes available. To this end, the cell lines Hs 578T, MDA-MB-468 and HCC1806, representing the claudin-low, basal-like 1 and 2 TNBC molecular subtypes respectively, were engineered to express ERβ under the control of a Tetracycline-inducible promoter and used to investigate the effects of this transcription factor on gene activity. The antiproliferative effects of ERβ in these cells were confirmed by multiple functional approaches, including transcriptome profiling and global mapping of receptor binding sites in the genome, that revealed direct negative regulation by ERβ of genes, encoding for key components of cellular pathways associated to TNBC aggressiveness representing novel therapeutic targets such as angiogenesis, invasion, metastasis and cholesterol biosynthesis. Supporting these results, interaction proteomics by immunoprecipitation coupled to nano LC-MS/MS mass spectrometry revealed ERβ association with several potential nuclear protein partners, including key components of regulatory complexes known to control chromatin remodeling, transcriptional and post-transcriptional gene regulation and RNA splicing. Among these, ERβ association with the Polycomb Repressor Complexes 1 and 2 (PRC1/2), known for their central role in gene regulation in cancer cells, was confirmed in all three TNBC subtypes investigated, suggesting its occurrence independently from the cellular context. These results demonstrate a significant impact of ERβ in TNBC genome activity mediated by its cooperation with regulatory multiprotein chromatin remodeling complexes, providing novel ground to devise new strategies for the treatment of these diseases based on ligands affecting the activity of this nuclear receptor or some of its protein partners.
Collapse
Affiliation(s)
- Elena Alexandrova
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi (SA), 84081, Italy; Genomix4Life Srl, Spin-Off of the Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi (SA), 84081, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi (SA), 84081, Italy; Genomix4Life Srl, Spin-Off of the Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi (SA), 84081, Italy
| | - Pasquale Saggese
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi (SA), 84081, Italy; Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, 90095
| | - Giovanni Pecoraro
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi (SA), 84081, Italy
| | - Jessica Lamberti
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi (SA), 84081, Italy
| | - Maria Ravo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi (SA), 84081, Italy; Genomix4Life Srl, Spin-Off of the Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi (SA), 84081, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi (SA), 84081, Italy
| | - Domenico Rocco
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi (SA), 84081, Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi (SA), 84081, Italy
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, 0424 Oslo, Norway
| | - Francesca Collina
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples (NA), 80131 Italy
| | - Monica Cantile
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples (NA), 80131 Italy
| | - Maurizio Di Bonito
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples (NA), 80131 Italy
| | - Gerardo Botti
- Scientific Direction, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples (NA), 80131, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi (SA), 84081, Italy.
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi (SA), 84081, Italy.
| |
Collapse
|
11
|
Nie Y, Zhou L, Wang H, Chen N, Jia L, Wang C, Wang Y, Chen J, Wen X, Niu C, Li H, Guo R, Zhang S, Cui J, Hoffman AR, Hu JF, Li W. Profiling the epigenetic interplay of lncRNA RUNXOR and oncogenic RUNX1 in breast cancer cells by gene in situ cis-activation. Am J Cancer Res 2019; 9:1635-1649. [PMID: 31497347 PMCID: PMC6726995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023] Open
Abstract
RUNX1 is frequently mutated as chromosomal translocations in a variety of hematological malignancies. Recent studies show that RUNX1 is also mutated somatically in many solid tumors. We have recently identified a 260 kb un-spliced intragenic overlapping long noncoding RNA RUNXOR in the RUNX1 locus, yet its role as an epigenetic regulator in tumors remains to be characterized. To delineate this RUNXOR-RUNX1 regulatory interplay in breast cancer cells, we devised a novel "gene in situ cis-activation" approach to activate the endogenous RUNXOR gene. We found that the in situ activation of RUNXOR lncRNA upregulated RUNX1 in cis from the P1 promoter. The preferred activation of the P1 promoter caused a shift to the RUNX1c isoform expression. Using a chromatin conformation capture (3C) approach, we showed that RUNXOR lncRNA epigenetically activated the RUNX1 P1 promoter in cis by altering the local chromatin structure. The binding of RUNXOR lncRNA triggered DNA demethylation and induced active histone modification markers in the P1 CpG island. Changes in RUNX1 isoform composition correlated with a trend to cell cycle arrest at G0/G1, although cell proliferation rate, apoptosis, and migration ability were not significantly changed. Our results reveal an underlying epigenetic mechanism by which the lncRNA regulates in cis the RUNX1 promoter usage in breast cancer cells, thereby shedding light on potential genetic therapies in malignancies in which RUNX1 loss-of-function mutations frequently occur.
Collapse
Affiliation(s)
- Yuanyuan Nie
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
- Stanford University Medical School, VA Palo Alto Health Care SystemPalo Alto, CA 94304, USA
| | - Lei Zhou
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
| | - Hong Wang
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
| | - Naifei Chen
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
| | - Lin Jia
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
- Stanford University Medical School, VA Palo Alto Health Care SystemPalo Alto, CA 94304, USA
| | - Cong Wang
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
- Stanford University Medical School, VA Palo Alto Health Care SystemPalo Alto, CA 94304, USA
| | - Yichen Wang
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
- Stanford University Medical School, VA Palo Alto Health Care SystemPalo Alto, CA 94304, USA
| | - Jingcheng Chen
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
- Stanford University Medical School, VA Palo Alto Health Care SystemPalo Alto, CA 94304, USA
| | - Xue Wen
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
| | - Chao Niu
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
| | - Hui Li
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
| | - Rui Guo
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
| | - Songling Zhang
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
| | - Jiuwei Cui
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
| | - Andrew R Hoffman
- Stanford University Medical School, VA Palo Alto Health Care SystemPalo Alto, CA 94304, USA
| | - Ji-Fan Hu
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
- Stanford University Medical School, VA Palo Alto Health Care SystemPalo Alto, CA 94304, USA
| | - Wei Li
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
| |
Collapse
|
12
|
Li Q, Lai Q, He C, Fang Y, Yan Q, Zhang Y, Wang X, Gu C, Wang Y, Ye L, Han L, Lin X, Chen J, Cai J, Li A, Liu S. RUNX1 promotes tumour metastasis by activating the Wnt/β-catenin signalling pathway and EMT in colorectal cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:334. [PMID: 31370857 PMCID: PMC6670220 DOI: 10.1186/s13046-019-1330-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/15/2019] [Indexed: 02/08/2023]
Abstract
Background Runt-related transcription factor 1 (RUNX1) plays the roles of an oncogene and an anti-oncogene in epithelial tumours, and abnormally elevated RUNX1 has been suggested to contribute to the carcinogenesis of colorectal cancer (CRC). However, the mechanism remains unclear. Methods The expression of RUNX1 in CRC and normal tissues was detected by real-time quantitative PCR and Western blotting. The effect of RUNX1 on CRC migration and invasion was conducted by functional experiments in vitro and in vivo. Chromatin Immunoprecipitation assay verified the direct regulation of RUNX1 on the promoter of the KIT, which leads to the activation of Wnt/β-catenin signaling. Results RUNX1 expression is upregulated in CRC tissues. Upregulated RUNX1 promotes cell metastasis and epithelial to mesenchymal transition (EMT) of CRC both in vitro and in vivo. Furthermore, RUNX1 can activate Wnt/β-catenin signalling in CRC cells by directly interacting with β-catenin and targeting the promoter and enhancer regions of KIT to promote KIT transcription. These observations demonstrate that RUNX1 upregulation is a common event in CRC specimens and is closely correlated with cancer metastasis and that RUNX1 promotes EMT of CRC cells by activating Wnt/β-catenin signalling. Moreover, RUNX1 is regulated by Wnt/β-catenin. Conclusion Our findings first demonstrate that RUNX1 promotes CRC metastasis by activating the Wnt/β-catenin signalling pathway and EMT. Electronic supplementary material The online version of this article (10.1186/s13046-019-1330-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, Guangdong, People's Republic of China
| | - Qiuhua Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, Guangdong, People's Republic of China
| | - Chengcheng He
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, Guangdong, People's Republic of China
| | - Yuxin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, Guangdong, People's Republic of China
| | - Qun Yan
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, Guangdong, People's Republic of China
| | - Yue Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, Guangdong, People's Republic of China
| | - Xinke Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, Guangdong, People's Republic of China
| | - Chuncai Gu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, Guangdong, People's Republic of China
| | - Yiqing Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liangying Ye
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, Guangdong, People's Republic of China
| | - Lu Han
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, Guangdong, People's Republic of China
| | - Xin Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, Guangdong, People's Republic of China
| | - Junsheng Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, Guangdong, People's Republic of China
| | - Jianqun Cai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, Guangdong, People's Republic of China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, Guangdong, People's Republic of China.
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
13
|
Association between AXIN1 Gene Polymorphisms and Bladder Cancer in Chinese Han Population. DISEASE MARKERS 2019; 2019:3949343. [PMID: 31143301 PMCID: PMC6501201 DOI: 10.1155/2019/3949343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 02/05/2023]
Abstract
Background Previous evidence has indicated that the reduction of axis inhibition protein 1 (AXIN1) expression is related with the poor differentiation of non-small-cell lung cancer (NSCLC). However, the potential association between AXIN1 and bladder cancer (BC) is unknown. We aimed to initially explore the relevance of AXIN1 gene polymorphisms (rs12921862 C/A, rs1805105 T/C, and rs370681 C/T) and BC. Methods Three hundred and sixteen BC patients and 419 healthy controls had been enrolled. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was used for genotyping three tag single-nucleotide polymorphisms (SNPs) of AXIN1. The SNPstats online analysis software and SPSS software were used for statistical analysis. Results Our data revealed that three tag SNPs were associated with an increased risk of BC (rs12921862: P < 0.001, OR (95%CI) = 4.61 (3.13-6.81); rs1805105: P = 0.046, OR (95%CI) = 1.35 (1.00-1.82); and rs370681: P = 0.004, OR (95%CI) = 1.56 (1.15-2.10)). For rs12921862, A allele was an independently protective factor which correlated with a better prognosis in non-muscle-invasive bladder cancer (NMIBC) patients (P = 0.03, OR (95%CI) = 0.10 (0.01-0.84)). Stratification analysis demonstrated that rs370681 polymorphism was related with high-grade bladder cancer (P = 0.04, OR (95%CI) = 1.85 (1.04-3.23)). Conclusion The AXIN1 gene polymorphisms might implicate in BC risk, and rs12921862 could be a potential forecasting factor for prognosis of BC patients.
Collapse
|
14
|
Li K, Zhong Y, Peng Y, Zhou B, Wang Y, Li Q, Zhang Y, Song H, Rao L. Association Between AXIN1 Gene Polymorphisms and Dilated Cardiomyopathy in a Chinese Han Population. DNA Cell Biol 2019; 38:436-442. [PMID: 30810360 DOI: 10.1089/dna.2018.4567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a common type of cardiomyopathy. The pathogenesis of DCM remains unclear and involves varied genes. AXIN1 is a crucial gene in regulating various functions in cells, it encodes protein Axin1, which regulates the assembly and disassembly of β-catenin destruction complex. In addition, Wnt/β-catenin signaling pathway plays an important role in cardiogenesis. We aimed to detect whether AXIN1 polymorphisms contribute to the susceptibility and prognosis of DCM in a Chinese Han population. A total of 340 DCM patients and 430 controls were enrolled, and patients who had complete contact information were followed up for a median period of 49 months. Polymerase chain reaction-restriction fragment length polymorphism was carried out to genotype the two AXIN1 tag single nucleotide polymorphisms (SNPs) (rs12921862 and rs1805105). All data were analyzed using the statistical software package, SPSS 21.0. The frequencies of allele A in rs12921862 and allele C in rs1805015 were increased in DCM patients compared with healthy controls (p < 0.001). Genotypic frequencies of rs12921862 and rs1805105 were associated with the susceptibility of DCM in codominant, dominant, and overdominant models (p < 0.01). AA/AC and AC genotypes of rs12921862 in the dominant and the overdominant genetic models also presented a correlation with poor prognosis of DCM in both univariate (p < 0.01) and multivariate analyses (p < 0.01) after adjusting for age, gender, left ventricular (LV) end-diastolic diameter, and LV ejection fraction. Our results suggest that AXIN1 polymorphisms are associated with the susceptibility and prognosis of DCM in a Chinese Han population.
Collapse
Affiliation(s)
- Kai Li
- 1 Department of Cardiology, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Yue Zhong
- 1 Department of Cardiology, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Ying Peng
- 1 Department of Cardiology, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Bin Zhou
- 2 Laboratory of Molecular Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Center of Translational Medicine, Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, P.R. China
| | - Yanyun Wang
- 2 Laboratory of Molecular Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Center of Translational Medicine, Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, P.R. China
| | - Qin Li
- 2 Laboratory of Molecular Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Center of Translational Medicine, Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, P.R. China.,3 Department of Immunology, West China School of Preclinical and Forensic Medicine of Sichuan University, Chengdu, P.R. China
| | - Yan Zhang
- 2 Laboratory of Molecular Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Center of Translational Medicine, Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, P.R. China.,4 Department of Pathology, West China Second University Hospital of Sichuan University, Chengdu, P.R. China
| | - Huizi Song
- 5 Department of Critical Care Medicine, Peking University Third Hospital, Beijing, P.R. China
| | - Li Rao
- 1 Department of Cardiology, West China Hospital of Sichuan University, Chengdu, P.R. China
| |
Collapse
|
15
|
Runt-Related Transcription Factor 1 (RUNX1) Promotes TGF-β-Induced Renal Tubular Epithelial-to-Mesenchymal Transition (EMT) and Renal Fibrosis through the PI3K Subunit p110δ. EBioMedicine 2018; 31:217-225. [PMID: 29759484 PMCID: PMC6013935 DOI: 10.1016/j.ebiom.2018.04.023] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023] Open
Abstract
Renal fibrosis is widely considered a common mechanism leading to end-stage renal failure. Epithelial-to-mesenchymal transition (EMT) plays important roles in the pathogenesis of renal fibrosis. Runt-related transcription factor 1(RUNX1) plays a vital role in hematopoiesis via Endothelial-to-Hematopoietic Transition (EHT), a process that is conceptually similar to EMT, but its role in EMT and renal fibrosis is unclear. Here, we demonstrate that RUNX1 is overexpressed in the processes of TGF-β-induced partial EMT and renal fibrosis and that the expression level of RUNX1 is SMAD3-dependent. Knockdown of RUNX1 attenuated both TGF-β-induced phenotypic changes and the expression levels of EMT marker genes in renal tubular epithelial cells (RTECs). In addition, overexpression of RUNX1 promoted the expression of EMT marker genes in renal tubular epithelial cells. Moreover, RUNX1 promoted TGF-β-induced partial EMT by increasing transcription of the PI3K subunit p110δ, which mediated Akt activation. Specific deletion of Runx1 in mouse RTECs attenuated renal fibrosis, which was induced by both unilateral ureteral obstruction (UUO) and folic acid (FA) treatment. These findings suggest that RUNX1 is a potential target for preventing renal fibrosis. RUNX1 is required for TGF-β induced renal tubular EMT, which increases p110δ transcription for Akt activation. Ablation of RUNX1 in mouse RTECs inhibits renal fibrosis induced by unilateral ureteral obstruction or folic acid. These findings suggest that RUNX1 might be used as a potential target to prevent renal fibrosis.
Kidney fibrosis is a critical pathologic step during the development of renal failure, while epithelial-to-mesenchymal transition (EMT) contributes to the pathogenesis of renal fibrosis. Exploring the new effectors as potential targets to inhibit renal fibrosis is currently under extensive investigation. This manuscript has identified that RUNX1 is required for TGF-β induced renal tubular EMT via increasing expression levels of the PI3K subunit p110δ and Akt activation. Importantly, ablation of Runx1 in mouse renal tubular epithelial cells or the RUNX1 inhibitor could reduce renal fibrosis in response to unilateral ureteral obstruction or under the treatment of folic acid. These findings suggest that the RUNX1 inhibitor might be used to prevent renal fibrosis.
Collapse
|
16
|
Dey N, Krie A, Klein J, Williams K, McMillan A, Elsey R, Sun Y, Williams C, De P, Leyland-Jones B. Down's Syndrome and Triple Negative Breast Cancer: A Rare Occurrence of Distinctive Clinical Relationship. Int J Mol Sci 2017; 18:ijms18061218. [PMID: 28590426 PMCID: PMC5486041 DOI: 10.3390/ijms18061218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 02/05/2023] Open
Abstract
Down’s syndrome (DS), the most common genetic cause of significant intellectual disability in children and adults is caused by the trisomy of either all or a part of human chromosome 21 (HSA21). Patients with DS mostly suffer from characteristic tumor types. Although individual patients of DS are at a higher risk for acute leukemia and testicular cancers, other types of solid tumors including breast cancers are mostly uncommon and have significantly lower-than-expected age-adjusted incidence rates. Except for an increased risk of retinoblastomas, and lymphomas, the risk of developing solid tumors has been found to be lower in both children and adults, and breast cancer was found to be almost absent (Hasle H., The Lancet Oncology, 2001). A study conducted in the United States found only one death when 11.65 were expected (Scholl T et al., Dev Med Child Neurol. 1982). A recent study examined mammogram reports of women with DS treated in the largest medical facility specifically serving adults with DS in the United States. It was found that only 0.7% women with DS had been diagnosed with breast cancers (Chicoine B et al., Intellect Dev Disabil. 2015). Here we describe a case of breast cancer in a 25-year-old patient with DS. The disease was presented as lymph node positive carcinoma with alterations of tumor suppressor genes characteristic to the triple negative breast cancer subtype. Comprehensive Genomic Profiling (CGP) revealed a wild-type status for BRCA1. The CGP report showed a frameshift mutation, A359fs*10 of the tumor suppressor gene INPP4B and another frameshift mutation, R282fs*63 of tumor suppressor gene TP53 in the tumor biopsy as characteristically found in triple-negative breast cancers. The VUS (Variance of Unknown Significance) alteration(s) were identified in ASXL1 (L1395V), NTRK1 (G18E), DDR2 (I159T), RUNX1 (amplification), ERG (amplification), SOX2 (T26A), FAM123B (G1031D), and HNF1A (A301T). Bonafide cancer-related genes of chromosome 21 amplified in the patient’s tumor are RUNX1 and ERG genes. After the completion of the radiation, the patient was placed on everolimus which was based on the result of her CGP report. Thus, post-mastectomy radiation therapy was completed with a recommendation for everolimus for one year. During the time of writing of this report, no metastatic lesions were identified. The patient currently has no evidence of disease.
Collapse
Affiliation(s)
- Nandini Dey
- Center for Precision Oncology, Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, SD 57105, USA.
- Departmental of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA.
| | - Amy Krie
- Center for Precision Oncology, Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, SD 57105, USA.
| | - Jessica Klein
- Center for Precision Oncology, Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, SD 57105, USA.
| | - Kirstin Williams
- Center for Precision Oncology, Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, SD 57105, USA.
| | - Amanda McMillan
- Center for Precision Oncology, Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, SD 57105, USA.
| | - Rachel Elsey
- Center for Precision Oncology, Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, SD 57105, USA.
| | - Yuliang Sun
- Center for Precision Oncology, Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, SD 57105, USA.
| | - Casey Williams
- Center for Precision Oncology, Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, SD 57105, USA.
- Departmental of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA.
| | - Pradip De
- Center for Precision Oncology, Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, SD 57105, USA.
- Departmental of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA.
| | - Brian Leyland-Jones
- Center for Precision Oncology, Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, SD 57105, USA.
| |
Collapse
|