1
|
Lu-Jiao D, Zhi-Juan L, Ying-Li S, Hua F, Wen-Qian L, Hui-Ning Z, Jun P, Zhi-Jing X. Mink enteritis virus infection induced cell cycle arrest and autophagy for its replication. Vet Microbiol 2025; 302:110374. [PMID: 39798449 DOI: 10.1016/j.vetmic.2025.110374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/02/2025] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Mink enteritis virus (MEV) is an important pathogen causing mink viral enteritis. The mechanisms of cell cycle arrest induced by MEV infection and the roles of autophagy in MEV replication remain unclear. In this study, the roles of MEV NS1 protein in inducing cell cycle arrest were investigated, using the in vitro CRFK cell models. As a result, MEV infection increased the proportion of the cells in S phase, inducing S phase arrest. MEV NS1 protein also led to cycle arrest in S phase. And the deletions of NLS and TAD significantly weakened the ability of NS1 protein to cause cycle arrest in S phase, and NLS and TAD were the indispensable domains of NS1 protein. Furthermore, proteome profiling of the cells infected with MEV at the early stage demonstrated that the autophagy-related protein TRIM23 was significantly up-regulated during MEV infection. To investigate the effects of TRIM23 on MEV replication, the cell models were established, using siRNAs targeting TRIM23. The knockdown of TRIM23 resulted in the decreases in the levels of TBK1 protein and the phosphorylated p62 protein, and an increase in the level of p62 protein in the cells infected with MEV, indirectly influencing virus replication. The findings implied that S phase arrest and the up-regulated TRIM23 induced by MEV infection played the important roles in MEV replication.
Collapse
Affiliation(s)
- Dong Lu-Jiao
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong Province 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Li Zhi-Juan
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong Province 271018, China; Jinan Animal Disease Prevention and Control Center, Jinan, Shandong Province 250099, China
| | - Sun Ying-Li
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong Province 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Fan Hua
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong Province 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Li Wen-Qian
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong Province 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Zhang Hui-Ning
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong Province 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Peng Jun
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong Province 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Xie Zhi-Jing
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong Province 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province 271018, China.
| |
Collapse
|
2
|
Wu J, Zhao B, Luo W, Chen X, Zhao Q, Ren F, Zheng H, Huang J. Arthroscopy combined with high tibial osteotomy promotes cartilage regeneration in osteoarthritis. J Orthop Surg (Hong Kong) 2023; 31:10225536231165357. [PMID: 36946572 DOI: 10.1177/10225536231165357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND To investigate the effect of arthroscopy combined with high tibial osteotomy (HTO) on cartilage regeneration in patients with knee osteoarthritis. METHODS A retrospective analysis of 50 patients with varus and medial compartment osteoarthritis of the knee treated by arthroscopy combined with HTO. One year after the operation, a second-look arthroscopy was performed to observe the cartilage regeneration. The regeneration of cartilage was evaluated by different pathological staining of some of the new cartilage. Finally, part of the new cartilages (n = 6) were taken for quantitative real-time PCR and western blotting experiments to display the mechanism of cartilage regeneration. RESULTS One year after arthroscopy combined with HTO, the results of arthroscopy revealed the formation of new tissue in the defect area of the medial compartment's cartilage in the knee joint. In addition, different pathological staining results indicated that the new tissue was cartilage-like tissue. Furthermore, HTO potently up-regulated the expression of p-ERK1/2 at the protein level in knee osteoarthritis patients compared with control group. However, there was no significant difference in the relative expression of collagen II at mRNA and protein level between control group and knee osteoarthritis patients. CONCLUSION Arthroscopy combined with HTO can promote cartilage regeneration in patients with knee osteoarthritis.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Arthroscopy, 74768Tianjin Hospital, Tianjin, China
| | - Bin Zhao
- Department of Arthroscopy, 74768Tianjin Hospital, Tianjin, China
| | - Wei Luo
- Department of Arthroscopy, 74768Tianjin Hospital, Tianjin, China
| | - Xiao Chen
- Department of Arthroscopy, 74768Tianjin Hospital, Tianjin, China
| | - Qian Zhao
- Department of Arthroscopy, 74768Tianjin Hospital, Tianjin, China
| | - Fuji Ren
- Department of Arthroscopy, 74768Tianjin Hospital, Tianjin, China
| | - Huifeng Zheng
- Department of Arthroscopy, 74768Tianjin Hospital, Tianjin, China
| | - Jingmin Huang
- Department of Arthroscopy, 74768Tianjin Hospital, Tianjin, China
| |
Collapse
|
3
|
Piewbang C, Wardhani SW, Phongroop K, Lohavicharn P, Sirivisoot S, Kasantikul T, Techangamsuwan S. Naturally acquired feline bocavirus type 1 and 3 infections in cats with neurologic deficits. Transbound Emerg Dis 2022; 69:e3076-e3087. [DOI: 10.1111/tbed.14664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Chutchai Piewbang
- Department of Pathology Faculty of Veterinary Science Chulalongkorn University Bangkok 10330 Thailand
- Animal Virome and Diagnostic Development Research Group Faculty of Veterinary Science Chulalongkorn University Bangkok 10330 Thailand
| | - Sabrina Wahyu Wardhani
- Animal Virome and Diagnostic Development Research Group Faculty of Veterinary Science Chulalongkorn University Bangkok 10330 Thailand
- The International Graduate course of Veterinary Science and Technology (VST) Faculty of Veterinary Science Chulalongkorn University Bangkok 10330 Thailand
| | - Kannika Phongroop
- Department of Companion Animal and Wildlife Clinic Faculty of Veterinary Medicine Chiang Mai University Chiang Mai 50100 Thailand
| | - Pattiya Lohavicharn
- Department of Pathology Faculty of Veterinary Science Chulalongkorn University Bangkok 10330 Thailand
- Animal Virome and Diagnostic Development Research Group Faculty of Veterinary Science Chulalongkorn University Bangkok 10330 Thailand
| | - Sirintra Sirivisoot
- Department of Pathology Faculty of Veterinary Science Chulalongkorn University Bangkok 10330 Thailand
| | - Tanit Kasantikul
- Clemson Veterinary Diagnostic Center Clemson University Columbia South Carolina 29229 United States of America
| | - Somporn Techangamsuwan
- Department of Pathology Faculty of Veterinary Science Chulalongkorn University Bangkok 10330 Thailand
- Animal Virome and Diagnostic Development Research Group Faculty of Veterinary Science Chulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
4
|
Evidence of cell cycle re-entry in post-mitotic, terminally differentiated feline neurons. Histochem Cell Biol 2022; 158:193-198. [PMID: 35551458 PMCID: PMC9338102 DOI: 10.1007/s00418-022-02112-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 02/08/2023]
Abstract
Parvovirus infections in dogs and cats are restricted to highly mitotically active tissues, predominantly to the epithelium of the gastrointestinal tract and, in cases of prenatal infections in cats, also to Purkinje cell neuroblasts. The evidence of parvovirus-infected mature feline neurons gave rise to reconsider the dogma of post-mitotically fixed and terminally differentiated neurons in the adult central nervous system. To elucidate the postulated capability of certain terminally differentiated feline neurons to re-enter the cell cycle, immunohistochemical double labeling using the transcription factor Sox2 and the tumor suppressor and cell cycle regulator retinoblastoma protein in its phosphorylated state (pRb) was performed. Formalin-fixed and paraffin-embedded brain tissue negative for parvovirus-antigen from 14 cats was compared to brain tissue from 13 cats with immunohistochemically confirmed cerebral parvovirus infection; the 27 cats were aged between 50 days of gestation (E50) and 5 years. Both groups revealed nuclear Sox2 and pRb immunosignals in numerous neurons, suggesting a more active state than mature neurons should have. Accordingly, parvovirus is not exclusively involved in the reactivation of the cell cycle machinery in those post-mitotic, terminally differentiated feline neurons.
Collapse
|
5
|
Zhang X, Angelova A, Sun W, Zhang F, Li N, Zou A. A Lipidated Peptide with Mitochondrial Membrane Localization in Human A549 Lung Cells: From Enhanced Cell-Penetrating Properties to Biological Activity Mechanism. ACS APPLIED BIO MATERIALS 2021; 4:8277-8290. [PMID: 35005910 DOI: 10.1021/acsabm.1c00815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here, a lipidated peptide Pal-pHK-pKV with self-assembly properties and the ability to provoke the disruption of the mitochondrial voltage-dependent anion channel-1 protein (VDAC1)-hexokinase-II (HK-II) complex is reported. The effects of the peptide pHK (N-terminal 15-amino acid fragment of HK-II that specifically binds VDAC1) are compared to those of a designed biomimetic amphiphilic pHK-pKV conjugate (pHK coupled with a cell-penetrating peptide pKV) and Pal-pHK-pKV (a lipidated conjugate modified with a hydrophobic palmitic (Pal) alkyl chain). The Pal-pHK-pKV exhibits a stronger interaction with the membrane as compared to pHK-pKV, which is demonstrated by the Langmuir-Blodgett technique and two-photon excitation microscopy. The amphiphilic peptide derivatives are cytotoxic to the A549 cells, but Pal-pHK-pKV is more cytotoxic. The inhibitory effects of the pHK derivatives on the A549 cells growth are investigated through induced apoptosis pathway, depolarized mitochondrial membrane potential, inhibited glycolysis, and activated caspase. The results of the immunofluorescence evidence the specific mitochondrial targeting by those derivatives.
Collapse
Affiliation(s)
- Xinlei Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay UMR8612, Châtenay-Malabry F-92296, France
| | - Wanfeng Sun
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Fan Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Na Li
- National Facility for Protein Science in Shanghai Zhangjiang Laboratory, Shanghai Advanced Research Institute, CAS, No.333, Haike Road, Shanghai 20124, People's Republic of China
| | - Aihua Zou
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China.,College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, People's Republic of China
| |
Collapse
|
6
|
Luo T, Yu Q, Dong W, Gong Z, Tan Y, Liu W, Zou H, Gu J, Yuan Y, Bian J, Shao C, Zhu J, Liu Z. Effect of cell cycle synchronization on cadmium-induced apoptosis and necrosis in NRK-52E cells. Cell Cycle 2020; 19:3386-3397. [PMID: 33222613 DOI: 10.1080/15384101.2020.1848065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Heavy metal pollution is a problem that cannot be ignored. Due to the prevalence of cadmium in the environment and its harmful effects on humans, cadmium pollution has become a research hotspot recently. The mechanism of cadmium-induced toxicity has also drawn much attention and most studies have been conducted using whole cells, but the toxicological mechanism of cadmium remains unclear. In this study, we aimed to obtain NRK-52E cells at different growth stages by various methods and analyze the differences in cadmium toxicity. The results show that the cadmium sensitivity of cells in each phase was different and the late apoptotic rate was increased significantly after 5 µM Cd treatment. In addition, cadmium easily induces apoptosis of G0- and S-phase cells, as well as necrosis of S- and M-phase cells, but has no significant effect on G1-phase cells. Overall, we first explored the differences in the effects of cadmium on NRK-52E cells at various growth phases. Besides, the findings of this study might provide a theoretical basis for further exploration of the toxicological mechanism of cadmium.Abbreviations Cd: cadmium; CDK: cyclin-dependent kinases; DAPI 2-(4-amidinophenyl)-1H-indole-6-carboxamidine; TBST: Tris-buffered saline with Tween-20; PI: propidium iodide; DMEM: Dulbecco's Modified Eagle Medium; BCA: bicinchoninic acid.
Collapse
Affiliation(s)
- Tongwang Luo
- College of Veterinary Medicine, Yangzhou University , Yangzhou, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, P.R. China.,Yangzhou University , Yangzhou, P.R. China.,College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University , Hangzhou, P.R. China
| | - Qi Yu
- College of Veterinary Medicine, Yangzhou University , Yangzhou, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, P.R. China.,Yangzhou University , Yangzhou, P.R. China
| | - Wenxuan Dong
- College of Veterinary Medicine, Yangzhou University , Yangzhou, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, P.R. China.,Yangzhou University , Yangzhou, P.R. China
| | - Zhonggui Gong
- College of Veterinary Medicine, Yangzhou University , Yangzhou, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, P.R. China.,Yangzhou University , Yangzhou, P.R. China
| | - Yun Tan
- College of Veterinary Medicine, Yangzhou University , Yangzhou, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, P.R. China.,Yangzhou University , Yangzhou, P.R. China
| | - Wenjing Liu
- College of Veterinary Medicine, Yangzhou University , Yangzhou, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, P.R. China.,Yangzhou University , Yangzhou, P.R. China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University , Yangzhou, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, P.R. China.,Yangzhou University , Yangzhou, P.R. China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University , Yangzhou, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, P.R. China.,Yangzhou University , Yangzhou, P.R. China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University , Yangzhou, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, P.R. China.,Yangzhou University , Yangzhou, P.R. China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University , Yangzhou, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, P.R. China.,Yangzhou University , Yangzhou, P.R. China
| | - Chunyan Shao
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University , Hangzhou, P.R. China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University , Yangzhou, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, P.R. China.,Yangzhou University , Yangzhou, P.R. China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University , Yangzhou, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, P.R. China.,Yangzhou University , Yangzhou, P.R. China
| |
Collapse
|
7
|
Wang X, Li F, Han M, Jia S, Wang L, Qiao X, Jiang Y, Cui W, Tang L, Li Y, Xu YG. Cloning, Prokaryotic Soluble Expression, and Analysis of Antiviral Activity of Two Novel Feline IFN-ω Proteins. Viruses 2020; 12:v12030335. [PMID: 32204464 PMCID: PMC7150924 DOI: 10.3390/v12030335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/15/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cats are becoming more popular as household companions and pets, forming close relationships with humans. Although feline viral diseases can pose serious health hazards to pet cats, commercialized preventative vaccines are lacking. Interferons (IFNs), especially type I IFNs (IFN-α, IFN-β, and interferon omega (IFN-ω)), have been explored as effective therapeutic drugs against viral diseases in cats. Nevertheless, there is limited knowledge regarding feline IFN-ω (feIFN-ω), compared to IFN-α and IFN-β. In this study, we cloned the genes encoding feIFN-ωa and feIFN-ωb from cat spleen lymphocytes. Homology and phylogenetic tree analysis revealed that these two genes belonged to new subtypes of feIFN-ω. The recombinant feIFN-ωa and feIFN-ωb proteins were expressed in their soluble forms in Escherichia coli, followed by purification. Both proteins exhibited effective anti-vesicular stomatitis virus (VSV) activity in Vero, F81 (feline kidney cell), Madin-Darby bovine kidney (MDBK), Madin-Darby canine kidney (MDCK), and porcine kidney (PK-15) cells, showing broader cross-species antiviral activity than the INTERCAT IFN antiviral drug. Furthermore, the recombinant feIFN-ωa and feIFN-ωb proteins demonstrated antiviral activity against VSV, feline coronavirus (FCoV), canine parvovirus (CPV), bovine viral diarrhea virus (BVDV), and porcine epidemic diarrhea virus (PEDV), indicating better broad-spectrum antiviral activity than the INTERCAT IFN. The two novel feIFN-ω proteins (feIFN-ωa and feIFN-ωb) described in this study show promising potential to serve as effective therapeutic agents for treating viral infections in pet cats.
Collapse
Affiliation(s)
- Xiaona Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (F.L.); (M.H.); (S.J.); (L.W.); (X.Q.); (Y.J.); (W.C.); (L.T.); (Y.L.)
| | - Fengsai Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (F.L.); (M.H.); (S.J.); (L.W.); (X.Q.); (Y.J.); (W.C.); (L.T.); (Y.L.)
| | - Meijing Han
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (F.L.); (M.H.); (S.J.); (L.W.); (X.Q.); (Y.J.); (W.C.); (L.T.); (Y.L.)
| | - Shuo Jia
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (F.L.); (M.H.); (S.J.); (L.W.); (X.Q.); (Y.J.); (W.C.); (L.T.); (Y.L.)
| | - Li Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (F.L.); (M.H.); (S.J.); (L.W.); (X.Q.); (Y.J.); (W.C.); (L.T.); (Y.L.)
| | - Xinyuan Qiao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (F.L.); (M.H.); (S.J.); (L.W.); (X.Q.); (Y.J.); (W.C.); (L.T.); (Y.L.)
| | - Yanping Jiang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (F.L.); (M.H.); (S.J.); (L.W.); (X.Q.); (Y.J.); (W.C.); (L.T.); (Y.L.)
| | - Wen Cui
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (F.L.); (M.H.); (S.J.); (L.W.); (X.Q.); (Y.J.); (W.C.); (L.T.); (Y.L.)
| | - Lijie Tang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (F.L.); (M.H.); (S.J.); (L.W.); (X.Q.); (Y.J.); (W.C.); (L.T.); (Y.L.)
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China
| | - Yijing Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (F.L.); (M.H.); (S.J.); (L.W.); (X.Q.); (Y.J.); (W.C.); (L.T.); (Y.L.)
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China
| | - Yi-Gang Xu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (F.L.); (M.H.); (S.J.); (L.W.); (X.Q.); (Y.J.); (W.C.); (L.T.); (Y.L.)
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China
- Correspondence: ; Tel.: +86-451-55190824
| |
Collapse
|
8
|
Analysis of the microRNA expression profiles in feline kidney cell line infected with feline panleukopenia virus. INFECTION GENETICS AND EVOLUTION 2019; 75:103945. [PMID: 31265913 DOI: 10.1016/j.meegid.2019.103945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/23/2019] [Accepted: 06/28/2019] [Indexed: 01/26/2023]
Abstract
MicroRNAs (miRNAs) play crucial roles in post-transcriptional regulation of gene expression in many biological processes. Feline panleukopenia virus (FPV) is a highly infectious pathogen that can cause severe disease in pets, economically important animals and wildlife. In this study, miRNAs associated with FPV infection were identified using high-throughput sequencing. Our results showed that 673 known miRNAs and 278 novel miRNAs were identified and 57 significantly differential expression miRNAs were found post-FPV infection in feline kidney cell line. Stem-loop qRT-PCR was applied to validate the expression of the randomly selected miRNAs; the results were consistent with the sequencing data. Furthermore, the target genes of differential expression miRNAs were analyzed and predicated by GO and KEGG pathway. Altogether, our analysis provides a potential link between miRNA expression and the pathogenesis of FPV infection.
Collapse
|
9
|
Kokosinska A, Maboni G, Kelly KM, Molesan A, Sanchez S, Saliki JT, Rissi DR. Lymphoplasmacytic Meningoencephalitis and Neuronal Necrosis Associated With Parvoviral Infection in Cats. Vet Pathol 2019; 56:604-608. [PMID: 30917745 DOI: 10.1177/0300985819837723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurologic manifestations other than cerebellar hypoplasia are rarely associated with feline panleukopenia virus (FPV) infection in cats. Here the authors describe lymphoplasmacytic meningoencephalitis and neuronal necrosis in 2 cats autopsied after exhibiting ataxia and nystagmus. Gross changes consisted of cerebellar herniation through the foramen magnum, with flattening of cerebrocortical gyri and narrowing of sulci. Histologically, lymphoplasmacytic meningoencephalitis, extensive neuronal necrosis, and neuroaxonal degeneration with digestion chambers were present in the telencephalon and brain stem in both cats. Frozen brain tissue of both cats was positive for parvoviral antigen via fluorescent antibody testing, and formalin-fixed, paraffin-embedded tissue sections of brain were immunoreactive for parvovirus antigen and positive for parvoviral DNA on in situ hybridization. Frozen brain tissue from 1 case was positive for parvovirus NS1 and VP2 genes using conventional polymerase chain reaction, and subsequent DNA sequencing and phylogenetic analysis revealed that the viral strain was a FPV. Reverse transcription quantitative polymerase chain reaction on formalin-fixed, paraffin-embedded brain tissue revealed high levels of parvovirus in both cases, supporting an acute and active viral infection. Although rare, FPV infection should be considered in cases of lymphoplasmacytic meningoencephalitis and neuronal necrosis in cats.
Collapse
Affiliation(s)
- Anna Kokosinska
- 1 Department of Pathology and Athens Veterinary Diagnostic Laboratory, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Grazieli Maboni
- 1 Department of Pathology and Athens Veterinary Diagnostic Laboratory, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Kathleen M Kelly
- 2 Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Alex Molesan
- 2 Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Susan Sanchez
- 1 Department of Pathology and Athens Veterinary Diagnostic Laboratory, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Jeremiah T Saliki
- 1 Department of Pathology and Athens Veterinary Diagnostic Laboratory, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Daniel R Rissi
- 1 Department of Pathology and Athens Veterinary Diagnostic Laboratory, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| |
Collapse
|
10
|
Pfankuche VM, Jo WK, van der Vries E, Jungwirth N, Lorenzen S, Osterhaus ADME, Baumgärtner W, Puff C. Neuronal Vacuolization in Feline Panleukopenia Virus Infection. Vet Pathol 2017; 55:294-297. [PMID: 29157191 DOI: 10.1177/0300985817738096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Feline panleukopenia virus (FPV) infections are typically associated with anorexia, vomiting, diarrhea, neutropenia, and lymphopenia. In cases of late prenatal or early neonatal infections, cerebellar hypoplasia is reported in kittens. In addition, single cases of encephalitis are described. FPV replication was recently identified in neurons, although it is mainly found in cells with high mitotic activity. A female cat, 2 months old, was submitted to necropsy after it died with neurologic deficits. Besides typical FPV intestinal tract changes, multifocal, randomly distributed intracytoplasmic vacuoles within neurons of the thoracic spinal cord were found histologically. Next-generation sequencing identified FPV-specific sequences within the central nervous system. FPV antigen was detected within central nervous system cells, including the vacuolated neurons, via immunohistochemistry. In situ hybridization confirmed the presence of FPV DNA within the vacuolated neurons. Thus, FPV should be considered a cause for neuronal vacuolization in cats presenting with ataxia.
Collapse
Affiliation(s)
- Vanessa M Pfankuche
- 1 Department of Pathology, University of Veterinary Medicine, Hannover, Germany.,2 Center for Systems Neuroscience, Hannover, Germany.,Both of these authors contributed equally to this work
| | - Wendy K Jo
- 2 Center for Systems Neuroscience, Hannover, Germany.,3 Research Center for Emerging Infections and Zoonoses (RIZ), Hannover, Germany.,Both of these authors contributed equally to this work
| | | | - Nicole Jungwirth
- 1 Department of Pathology, University of Veterinary Medicine, Hannover, Germany.,2 Center for Systems Neuroscience, Hannover, Germany
| | - Stephan Lorenzen
- 4 Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Albert D M E Osterhaus
- 2 Center for Systems Neuroscience, Hannover, Germany.,3 Research Center for Emerging Infections and Zoonoses (RIZ), Hannover, Germany.,5 Artemis One Health, Utrecht, Netherlands
| | - Wolfgang Baumgärtner
- 1 Department of Pathology, University of Veterinary Medicine, Hannover, Germany.,2 Center for Systems Neuroscience, Hannover, Germany
| | - Christina Puff
- 1 Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
11
|
Zhao B, Zhao Z, Sun X, Zhang Y, Guo Y, Tian P, Ma J, Ma X. Effect of micro strain stress on proliferation of endothelial progenitor cells in vitro by the MAPK-ERK1/2 signaling pathway. Biochem Biophys Res Commun 2017; 492:206-211. [DOI: 10.1016/j.bbrc.2017.08.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/13/2017] [Indexed: 10/19/2022]
|
12
|
Kang H, Liu D, Tian J, Hu X, Zhang X, Yin H, Wu H, Liu C, Guo D, Li Z, Jiang Q, Liu J, Qu L. Feline Panleucopenia Virus NS2 Suppresses the Host IFN-β Induction by Disrupting the Interaction between TBK1 and STING. Viruses 2017; 9:v9010023. [PMID: 28125002 PMCID: PMC5294992 DOI: 10.3390/v9010023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 12/24/2022] Open
Abstract
Feline panleucopenia virus (FPV) is a highly infectious pathogen that causes severe diseases in pets, economically important animals and wildlife in China. Although FPV was identified several years ago, little is known about how it overcomes the host innate immunity. In the present study, we demonstrated that infection with the FPV strain Philips-Roxane failed to activate the interferon β (IFN-β) pathway but could antagonize the induction of IFN stimulated by Sendai virus (SeV) in F81 cells. Subsequently, by screening FPV nonstructural and structural proteins, we found that only nonstructural protein 2 (NS2) significantly suppressed IFN expression. We demonstrated that the inhibition of SeV-induced IFN-β production by FPV NS2 depended on the obstruction of the IFN regulatory factor 3 (IRF3) signaling pathway. Further, we verified that NS2 was able to target the serine/threonine-protein kinase TBK1 and prevent it from being recruited by stimulator of interferon genes (STING) protein, which disrupted the phosphorylation of the downstream protein IRF3. Finally, we identified that the C-terminus plus the coiled coil domain are the key domains of NS2 that are required for inhibiting the IFN pathway. Our study has yielded strong evidence for the FPV mechanisms that counteract the host innate immunity.
Collapse
Affiliation(s)
- Hongtao Kang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping road, Xiangfang District, Harbin 150000, China.
| | - Dafei Liu
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping road, Xiangfang District, Harbin 150000, China.
| | - Jin Tian
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping road, Xiangfang District, Harbin 150000, China.
| | - Xiaoliang Hu
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping road, Xiangfang District, Harbin 150000, China.
| | - Xiaozhan Zhang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping road, Xiangfang District, Harbin 150000, China.
| | - Hang Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China.
| | - Hongxia Wu
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping road, Xiangfang District, Harbin 150000, China.
| | - Chunguo Liu
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping road, Xiangfang District, Harbin 150000, China.
| | - Dongchun Guo
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping road, Xiangfang District, Harbin 150000, China.
| | - Zhijie Li
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping road, Xiangfang District, Harbin 150000, China.
| | - Qian Jiang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping road, Xiangfang District, Harbin 150000, China.
| | - Jiasen Liu
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping road, Xiangfang District, Harbin 150000, China.
| | - Liandong Qu
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping road, Xiangfang District, Harbin 150000, China.
| |
Collapse
|