1
|
Nazari A, Osati P, Seifollahy Fakhr S, Faghihkhorasani F, Ghanaatian M, Faghihkhorasani F, Rezaei-Tazangi F, Pazhouhesh Far N, Shourideh A, Ebrahimi N, Aref AR. New Emerging Therapeutic Strategies Based on Manipulation of the Redox Regulation Against Therapy Resistance in Cancer. Antioxid Redox Signal 2024. [PMID: 39506926 DOI: 10.1089/ars.2023.0491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Background: Resistance to standard therapeutic methods, including chemotherapy, immunotherapy, and targeted therapy, remains a critical challenge in effective cancer treatment. Redox homeostasis modification has emerged as a promising approach to address medication resistance. Objective: This review aims to explore the mechanisms of redox alterations and signaling pathways contributing to treatment resistance in cancer. Methods: In this study, a comprehensive review of the molecular mechanisms underlying drug resistance governed by redox signaling was conducted. Emphasis was placed on understanding how tumor cells manage increased reactive oxygen species (ROS) levels through upregulated antioxidant systems, enabling resistance across multiple therapeutic pathways. Results: Key mechanisms identified include alterations in drug efflux, target modifications, metabolic changes, enhanced DNA damage repair, stemness preservation, and tumor microenvironment remodeling. These pathways collectively facilitate tumor cells' adaptive response and resistance to various cancer treatments. Conclusion: Developing a detailed understanding of the interrelationships between these redox-regulated mechanisms and therapeutic resistance holds potential to improve treatment effectiveness, offering valuable insights for both fundamental and clinical cancer research. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Ahmad Nazari
- Tehran University of Medical Science, Tehran, Iran
| | - Parisa Osati
- Department of Chemical Engineering, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Siavash Seifollahy Fakhr
- Department of Biotechnology, Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Hamar, Norway
| | - Ferdos Faghihkhorasani
- Department of Cardiology, Internal Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, Shaanxi Province, 710061, China
| | - Masoud Ghanaatian
- Master 1 Bio-Santé-Parcours Toulouse Graduate School of Cancer, Ageing and Rejuvenation (CARe), Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Fereshteh Faghihkhorasani
- General Physician in Medicine Program,General Doctorate Degree of Yazd Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Nazanin Pazhouhesh Far
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Amir Shourideh
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | - Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Amir Reza Aref
- Mass General Cancer Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA and Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Pimentel JM, Zhou JY, Wu GS. Autophagy and cancer therapy. Cancer Lett 2024; 605:217285. [PMID: 39395780 DOI: 10.1016/j.canlet.2024.217285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Autophagy is an intracellular degradation process that sequesters cytoplasmic components in double-membrane vesicles known as autophagosomes, which are degraded upon fusion with lysosomes. This pathway maintains the integrity of proteins and organelles while providing energy and nutrients to cells, particularly under nutrient deprivation. Deregulation of autophagy can cause genomic instability, low protein quality, and DNA damage, all of which can contribute to cancer. Autophagy can also be overactivated in cancer cells to aid in cancer cell survival and drug resistance. Emerging evidence indicates that autophagy has functions beyond cargo degradation, including roles in tumor immunity and cancer stem cell survival. Additionally, autophagy can also influence the tumor microenvironment. This feature warrants further investigation of the role of autophagy in cancer, in which autophagy manipulation can improve cancer therapies, including cancer immunotherapy. This review discusses recent findings on the regulation of autophagy and its role in cancer therapy and drug resistance.
Collapse
Affiliation(s)
- Julio M Pimentel
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA; Institutional Research Academic Career Development Award Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jun Ying Zhou
- Molecular Therapeutics Program, Karmanos Cancer Institute, Detroit, MI, 48201, USA; Department of Oncology, Wayne State University, Detroit, MI, 48201, USA
| | - Gen Sheng Wu
- Molecular Therapeutics Program, Karmanos Cancer Institute, Detroit, MI, 48201, USA; Department of Oncology, Wayne State University, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
3
|
Lee SH, Khoo ASB, Griffiths JR, Mat Lazim N. Metabolic regulation of the tumour and its microenvironment: The role of Epstein-Barr virus. Int J Cancer 2024. [PMID: 39291683 DOI: 10.1002/ijc.35192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
The Epstein-Barr virus (EBV), the first identified human tumour virus, infects over 95% of the individuals globally and has the potential to induce different types of cancers. It is increasingly recognised that EBV infection not only alters cellular metabolism, contributing to neoplastic transformation, but also utilises several non-cell autonomous mechanisms to shape the metabolic milieu in the tumour microenvironment (TME) and its constituent stromal and immune cells. In this review, we explore how EBV modulates metabolism to shape the interactions between cancer cells, stromal cells, and immune cells within a hypoxic and acidic TME. We highlight how metabolites resulting from EBV infection act as paracrine factors to regulate the TME, and how targeting them can disrupt barriers to immunotherapy.
Collapse
Affiliation(s)
- Shen-Han Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Alan Soo-Beng Khoo
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
- Department of Medical Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - John R Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Norhafiza Mat Lazim
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
4
|
Eskandari-Malayeri F, Rezeai M, Narimani T, Esmaeil N, Azizi M. Investigating the effect of Fusobacterium nucleatum on the aggressive behavior of cancer-associated fibroblasts in colorectal cancer. Discov Oncol 2024; 15:292. [PMID: 39030445 PMCID: PMC11264641 DOI: 10.1007/s12672-024-01156-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024] Open
Abstract
Fusobacterium nucleatum, (F. nucleatum) as a known factor in inducing oncogenic, invasive, and inflammatory responses, can lead to an increase in the incidence and progression of colorectal cancer (CRC). Cancer-associated fibroblasts (CAF) are also one of the key components of the tumor microenvironment (TME), which lead to resistance to treatment, metastasis, and disease recurrence with their markers, secretions, and functions. This study aimed to investigate the effect of F. nucleatum on the invasive phenotype and function of fibroblast cells isolated from normal and cancerous colorectal tissue. F. nucleatum bacteria were isolated from deep periodontal pockets and confirmed by various tests. CAF cells from tumor tissue and normal fibroblasts (NF) from a distance of 10 cm of tumor tissue were isolated from 5 patients by the explant method and were exposed to secretions and ghosts of F. nucleatum. The expression level of two markers, fibroblast activation protein (FAP), and α-smooth muscle actin (α-SMA), and the amount of production of two cytokines TGF-β and IL-6 from fibroblast cells were measured by flow cytometry and ELISA test, respectively before and after exposure to different bacterial components. The expression of the FAP marker was significantly higher in CAF cells compared to NF cells (P < 0.05). Also, the expression of IL-6 in CAF cells was higher than that of NF cells. In investigating the effect of bacterial components on the function of fibroblastic cells, after comparing the amount of IL-6 produced between the normal tissue of each patient and his tumoral tissue under 4 treated conditions, it was found that the amount of IL-6 production from the CAF cells of patients in the control group, treated with heat-killed ghosts and treated with paraformaldehyde-fixed ghosts had a significant increase compared to NF cells (P < 0.05). Due to the significant increase in FAP marker expression in fibroblast cells of tumor tissue compared to normal tissue, it seems that FAP can be used as a very good therapeutic marker, especially in patients with high levels of CAF cells. Various components of F. nucleatum could affect fibroblast cells differentially and at least part of the effect of this bacterium in the TME is mediated by CAF cells.
Collapse
Affiliation(s)
| | - Marzieh Rezeai
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Tahmineh Narimani
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Azizi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Wahyudianingsih R, Sanjaya A, Jonathan T, Pranggono EH, Achmad D, Hernowo BS. Chemotherapy's effects on autophagy in the treatment of Hodgkin's lymphoma: a scoping review. Discov Oncol 2024; 15:269. [PMID: 38976168 PMCID: PMC11231119 DOI: 10.1007/s12672-024-01142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Classical Hodgkin Lymphomas (HL) are a unique malignant growth with an excellent initial prognosis. However, 10-30% of patients will still relapse after remission. One primary cellular function that has been the focus of tumor progression is autophagy. This process can preserve cellular homeostasis under stressful conditions. Several studies have shown that autophagy may play a role in developing HL. Therefore, this review aimed to explore chemotherapy's effect on autophagy in HL, and the effects of autophagy on HL. METHODS A scoping review in line with the published PRISMA extension for scoping reviews (PRISMA-ScR) was conducted. A literature search was conducted on the MEDLINE database and the Cochrane Central Register of Controlled Trials (CENTRAL). All results were retrieved and screened, and the resulting articles were synthesized narratively. RESULTS The results showed that some cancer chemotherapy also induces autophagic flux. Although the data on HL is limited, since the mechanisms of action of these drugs are similar, we can infer a similar relationship. However, this increased autophagy activity may reflect a mechanism for increasing tumor growth or a cellular compensation to inhibit its growth. Although evidence supports both views, we argued that autophagy allowed cancer cells to resist cell death, mainly due to DNA damage caused by cytotoxic drugs. CONCLUSION Autophagy reflects the cell's adaptation to survive and explains why chemotherapy generally induces autophagy functions. However, further research on autophagy inhibition is needed as it presents a viable treatment strategy, especially against drug-resistant populations that may arise from HL chemotherapy regimens.
Collapse
Affiliation(s)
- Roro Wahyudianingsih
- Postgraduate Program of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
- Department of Anatomical Pathology, Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia
| | - Ardo Sanjaya
- Department of Anatomy, Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia.
| | - Timothy Jonathan
- Undergraduate Program in Medicine, Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia
| | - Emmy Hermiyanti Pranggono
- Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran/Rumah Sakit Hasan Sadikin, Bandung, West Java, Indonesia
| | - Dimyati Achmad
- Department of Oncological Surgery, Faculty of Medicine, Universitas Padjadjaran/Rumah Sakit Hasan Sadikin, Bandung, West Java, Indonesia
| | - Bethy Suryawathy Hernowo
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran/Rumah Sakit Hasan Sadikin, Bandung, West Java, Indonesia
| |
Collapse
|
6
|
Liu M, Jiang H, Momeni MR. Epigenetic regulation of autophagy by non-coding RNAs and exosomal non-coding RNAs in colorectal cancer: A narrative review. Int J Biol Macromol 2024; 273:132732. [PMID: 38823748 DOI: 10.1016/j.ijbiomac.2024.132732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024]
Abstract
One of the major diseases affecting people globally is colorectal cancer (CRC), which is primarily caused by a lack of effective medical treatment and a limited understanding of its underlying mechanisms. Cellular autophagy functions to break down and eliminate superfluous proteins and substances, thereby facilitating the continual replacement of cellular elements and generating vital energy for cell processes. Non-coding RNAs and exosomal ncRNAs have a crucial impact on regulating gene expression and essential cellular functions such as autophagy, metastasis, and treatment resistance. The latest research has indicated that specific ncRNAs and exosomal ncRNA to influence the process of autophagy in CRC cells, which could have significant consequences for the advancement and treatment of this disease. It has been determined that a variety of ncRNAs have a vital function in regulating the genes essential for the formation and maturation of autophagosomes. Furthermore, it has been confirmed that ncRNAs have a considerable influence on the signaling pathways associated with autophagy, such as those involving AMPK, AKT, and mTOR. Additionally, numerous ncRNAs have the potential to affect specific genes involved in autophagy. This study delves into the control mechanisms of ncRNAs and exosomal ncRNAs and examines how they simultaneously influence autophagy in CRC.
Collapse
Affiliation(s)
- Minghua Liu
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Hongfang Jiang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China.
| | - Mohammad Reza Momeni
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
7
|
Yang Z, Zhang X, Bai X, Xi X, Liu W, Zhong W. Anti-angiogenesis in colorectal cancer therapy. Cancer Sci 2024; 115:734-751. [PMID: 38233340 PMCID: PMC10921012 DOI: 10.1111/cas.16063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/16/2023] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
The morbidity of colorectal cancer (CRC) has risen to third place among malignant tumors worldwide. In addition, CRC is a common cancer in China whose incidence increases annually. Angiogenesis plays an important role in the development of tumors because it can bring the nutrients that cancer cells need and take away metabolic waste. Various mechanisms are involved in the formation of neovascularization, and vascular endothelial growth factor is a key mediator. Meanwhile, angiogenesis inhibitors and drug resistance (DR) are challenges to consider when formulating treatment strategies for patients with different conditions. Thus, this review will discuss the molecules, signaling pathways, microenvironment, treatment, and DR of angiogenesis in CRC.
Collapse
Affiliation(s)
- Zhenni Yang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xuqian Zhang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyChina Aerospace Science and Industry CorporationBeijingChina
| | - Xiaozhe Bai
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xiaonan Xi
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| | - Wentian Liu
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| | - Weilong Zhong
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| |
Collapse
|
8
|
Mathur A, Ritu, Chandra P, Das A. Autophagy: a necessary evil in cancer and inflammation. 3 Biotech 2024; 14:87. [PMID: 38390576 PMCID: PMC10879063 DOI: 10.1007/s13205-023-03864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/21/2023] [Indexed: 02/24/2024] Open
Abstract
Autophagy, a highly regulated cellular process, assumes a dual role in the context of cancer. On the one hand, it functions as a crucial homeostatic pathway, responsible for degrading malfunctioning molecules and organelles, thereby maintaining cellular health. On the other hand, its involvement in cancer development and regression is multifaceted, contingent upon a myriad of factors. This review meticulously examines the intricacies of autophagy, from its molecular machinery orchestrated by Autophagy-Related Genes (ATG) initially discovered in yeast to the various modes of autophagy operative within cells. Beyond its foundational role in cellular maintenance, autophagy reveals context-specific functions in processes like angiogenesis and inflammation. Our analysis delves into how autophagy-related factors directly impact inflammation, underscoring their profound implications for cancer dynamics. Additionally, we extend our inquiry to explore autophagy's associations with cardiovascular conditions, neurodegenerative disorders, and autoimmune diseases, illuminating the broader medical relevance of this process. Furthermore, this review elucidates how autophagy contributes to sustaining hallmark cancer features, including stem cell maintenance, proliferation, angiogenesis, metastasis, and metabolic reprogramming. Autophagy emerges as a pivotal process that necessitates careful consideration in cancer treatment strategies. To this end, we investigate innovative approaches, ranging from enzyme-based therapies to MTOR inhibitors, lysosomal blockers, and nanoparticle-enabled interventions, all aimed at optimizing cancer treatment outcomes by targeting autophagy pathways. In summary, this comprehensive review provides a nuanced perspective on the intricate and context-dependent role of autophagy in cancer biology. Our exploration not only deepens our understanding of this fundamental process but also highlights its potential as a therapeutic target. By unraveling the complex interplay between autophagy and cancer, we pave the way for more precise and effective cancer treatments, promising better outcomes for patients.
Collapse
Affiliation(s)
- Amit Mathur
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042 India
| | - Ritu
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042 India
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042 India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042 India
| |
Collapse
|
9
|
Yan L, Zheng J, Wang Q, Hao H. Role of cancer-associated fibroblasts in colorectal cancer and their potential as therapeutic targets. Biochem Biophys Res Commun 2023; 681:127-135. [PMID: 37774570 DOI: 10.1016/j.bbrc.2023.09.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are mesenchymal cells in the tumor microenvironment (TME). CAFs are the most abundant cellular components in the TME of solid tumors. They affect the progression and course of chemotherapy and radiotherapy in various types of tumors including colorectal cancer (CRC). CAFs can promote tumor proliferation, invasion, and metastasis; protect tumor cells from immune surveillance; and resist tumor cell apoptosis caused by chemotherapy, resulting in drug resistance to chemotherapy. In recent years, researchers have become increasingly interested CAF functions and have conducted extensive research. However, compared to other types of malignancies, our understanding of the interaction between CRC cells and CAFs remains limited. Therefore, we searched the relevant literature published in the past 10 years, and reviewed the origin, biological characteristics, heterogeneity, role in the TME, and potential therapeutic targets of CAFs, to aid future research on CAFs and tumors.
Collapse
Affiliation(s)
- Liping Yan
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Jian Zheng
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, PR China
| | - Qingyu Wang
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, PR China.
| |
Collapse
|
10
|
Guil-Luna S, Sanchez-Montero MT, Rodríguez-Ariza A. S-Nitrosylation at the intersection of metabolism and autophagy: Implications for cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:189012. [PMID: 37918453 DOI: 10.1016/j.bbcan.2023.189012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Metabolic plasticity, which determines tumour growth and metastasis, is now understood to be a flexible and context-specific process in cancer metabolism. One of the major pathways contributing to metabolic adaptations in eucaryotic cells is autophagy, a cellular degradation and recycling process that is activated during periods of starvation or stress to maintain metabolite and biosynthetic intermediate levels. Consequently, there is a close association between the metabolic adaptive capacity of tumour cells and autophagy-related pathways in cancer. Additionally, nitric oxide regulates protein function and signalling through S-nitrosylation, a post-translational modification that can also impact metabolism and autophagy. The primary objective of this review is to provide an up-to-date overview of the role of S-nitrosylation at the intersection of metabolism and autophagy in cancer. First, we will outline the involvement of S-nitrosylation in the metabolic adaptations that occur in tumours. Then, we will discuss the multifaceted role of autophagy in cancer, the interplay between metabolism and autophagy during tumour progression, and the contribution of S-nitrosylation to autophagic dysregulation in cancer. Finally, we will present insights into relevant therapeutic aspects and discuss prospects for the future.
Collapse
Affiliation(s)
- Silvia Guil-Luna
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain; Department of Comparative Anatomy and Pathology, Faculty of Veterinary Medicine of Córdoba, University of Córdoba, Córdoba, Spain
| | | | - Antonio Rodríguez-Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain; Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain.
| |
Collapse
|
11
|
Jin C, Wang T, Yang Y, Zhou P, Li J, Wu W, Lv X, Ma G, Wang A. Rational targeting of autophagy in colorectal cancer therapy: From molecular interactions to pharmacological compounds. ENVIRONMENTAL RESEARCH 2023; 227:115721. [PMID: 36965788 DOI: 10.1016/j.envres.2023.115721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
The abnormal progression of tumors has been a problem for treatment of cancer and therapeutic should be directed towards targeting main mechanisms involved in tumorigenesis in tumors. The genomic mutations can result in changes in biological mechanisms in human cancers. Colorectal cancer is one of the most malignant tumors of gastrointestinal tract and its treatment has been faced some difficulties due to development of resistance in tumor cells and also, their malignant behavior. Hence, new therapeutic modalities for colorectal cancer are being investigated. Autophagy is a "self-digestion" mechanism that is responsible for homeostasis preserving in cells and its aberrant activation/inhibition can lead to tumorigenesis. The current review focuses on the role of autophagy mechanism in colorectal cancer. Autophagy may be associated with increase/decrease in progression of colorectal cancer due to mutual function of this molecular mechanism. Pro-survival autophagy inhibits apoptosis to increase proliferation and survival rate of colorectal tumor cells and it is also involved in cancer metastasis maybe due to EMT induction. In contrast, pro-death autophagy decreases growth and invasion of colorectal tumor cells. The status of autophagy (upregulation and down-regulation) is a determining factor for therapy response in colorectal tumor cells. Therefore, targeting autophagy can increase sensitivity of colorectal tumor cells to chemotherapy and radiotherapy. Interestingly, nanoparticles can be employed for targeting autophagy in cancer therapy and they can both induce/suppress autophagy in tumor cells. Furthermore, autophagy modulators can be embedded in nanostructures in improving tumor suppression and providing cancer immunotherapy.
Collapse
Affiliation(s)
- Canhui Jin
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Tianbao Wang
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Yanhui Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Pin Zhou
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Juncheng Li
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Wenhao Wu
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Xin Lv
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Guoqing Ma
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Aihong Wang
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China.
| |
Collapse
|
12
|
Chen Y, Zhang X, Yang H, Liang T, Bai X. The "Self-eating" of cancer-associated fibroblast: A potential target for cancer. Biomed Pharmacother 2023; 163:114762. [PMID: 37100015 DOI: 10.1016/j.biopha.2023.114762] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023] Open
Abstract
Autophagy helps maintain energy homeostasis and protect cells from stress effects by selectively removing misfolded/polyubiquitylated proteins, lipids, and damaged mitochondria. Cancer-associated fibroblasts (CAFs) are cellular components of tumor microenvironment (TME). Autophagy in CAFs inhibits tumor development in the early stages; however, it has a tumor-promoting effect in advanced stages. In this review, we aimed to summarize the modulators responsible for the induction of autophagy in CAFs, such as hypoxia, nutrient deprivation, mitochondrial stress, and endoplasmic reticulum stress. In addition, we aimed to present autophagy-related signaling pathways in CAFs, and role of autophagy in CAF activation, tumor progression, tumor immune microenvironment. Autophagy in CAFs may be an emerging target for tumor therapy. In summary, autophagy in CAFs is regulated by a variety of modulators and can reshape tumor immune microenvironment, affecting tumor progression and treatment.
Collapse
Affiliation(s)
- Yan Chen
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
13
|
Zhang Z, Zhu H, Zhao C, Liu D, Luo J, Ying Y, Zhong Y. DDIT4 promotes malignancy of head and neck squamous cell carcinoma. Mol Carcinog 2023; 62:332-347. [PMID: 36453700 DOI: 10.1002/mc.23489] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/21/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
This study investigated the cancer-promoting effect of ferroptosis regulator DNA damage-inducible transcript 4 (DDIT4) and its relevant mechanisms. Vital ferroptosis-related genes were identified using bioinformatic methods on the basis of data collected from TCGA and seven other online databases. Cell Counting Kit-8 (CCK8), colony formation, wound-healing and transwell assays, and western blot analysis were conducted for verifying the biological role of DDIT4 in vitro. The immune score and tumor purity were calculated using R package "estimate." The relationship was identified between DDIT4 expression and immune cell infiltration using ssGSEA and CIBERSORT algorithms. R package "Seurat" was used to perform unsupervised clustering of the single cells, and "SingleR" was utilized for annotation. R package "STUtility" was employed to plot the spatial expression of DDIT4. For trajectory analysis, monocle was used to predict cell differentiation and demonstrate the expression of DDIT4 at each state. Here, DDIT4 overexpression was observed in Head and Neck Squamous Cell Carcinoma (HNSCC) cohort, and DDIT4 upregulation showed a positive correlation with larger tumor size, lymph node metastasis, more advanced TNM stage and higher tumor mutational burden (TMB). Moreover, DDIT4 knockdown could markedly inhibit the proliferation, colony formation, invasion and migration of HNSCC cells, as well as suppress the expression of HIF-1a, VEGF and vimentin. In comparison, DDIT4 overexpression showed a negative correlation with immune score and infiltrations of several immune cells. DDIT4 played crucial roles in the differentiation of CAFs and T cells. Collectively, this study demonstrates that DDIT4 contributes a critical role in HNSCC progression. The positive feedback regulation between DDIT4 and HIF-1a may be a potential target for HNSCC treatment.
Collapse
Affiliation(s)
- Zhenxing Zhang
- Department of Stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Haoran Zhu
- Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Chifeng Zhao
- Department of Stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Dong Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jun Luo
- Department of Stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Yukang Ying
- Department of Stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Yuan Zhong
- Department of Stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| |
Collapse
|
14
|
Liang Q, Zhou XH, Shen GF, Zhu F, Lian HF, Li X, Zheng JY, Li JP, Deng SM, Huang R. Role of cancer-associated fibroblasts in colorectal cancer. Shijie Huaren Xiaohua Zazhi 2023; 31:129-137. [DOI: 10.11569/wcjd.v31.i4.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2023] Open
Abstract
Colorectal cancer (CRC) is a malignancy that has a high incidence in all countries around the world. Cancer-associated fibroblasts (CAFs) are a vital component of the tumor microenvironment (TME), playing an important role in the development of CRC. CAFs can release multiple cytokines and exosomes, activating a variety of related signaling pathways and boosting the processes of the invasion, metastasis, metabolism, drug resistance, and immunosuppression in CRC. Thus, CAFs are a prognostic marker and therapeutic target for CRC. Understanding the role and mechanism of CAFs can provide new insights for the treatment of CRC.
Collapse
Affiliation(s)
- Qiao Liang
- Graduate School of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Xi-Han Zhou
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical College Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Gao-Fei Shen
- Department of Gastroenterology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710000, Shaanxi Province, China
| | - Fei Zhu
- Department of Gastroenterology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710000, Shaanxi Province, China
| | - Hui-Fen Lian
- Department of Gastroenterology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710000, Shaanxi Province, China
| | - Xin Li
- Department of Gastroenterology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710000, Shaanxi Province, China
| | - Jun-Yi Zheng
- Department of Gastroenterology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710000, Shaanxi Province, China
| | - Jin-Peng Li
- Department of Gastroenterology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710000, Shaanxi Province, China
| | - Shui-Miao Deng
- Department of Gastroenterology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710000, Shaanxi Province, China
| | - Rui Huang
- Department of Gastroenterology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710000, Shaanxi Province, China
| |
Collapse
|
15
|
Liang Q, Zhou XH. Role of cancer-associated fibroblasts in colorectal cancer. Shijie Huaren Xiaohua Zazhi 2023; 31:134-142. [DOI: 10.11569/wcjd.v31.i4.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2023] Open
Abstract
Colorectal cancer (CRC) is a malignancy that has a high incidence in all countries around the world. Cancer-associated fibroblasts (CAFs) are a vital component of the tumor microenvironment (TME), playing an important role in the development of CRC. CAFs can release multiple cytokines and exosomes, activating a variety of related signaling pathways and boosting the processes of the invasion, metastasis, metabolism, drug resistance, and immunosuppression in CRC. Thus, CAFs are a prognostic marker and therapeutic target for CRC. Understanding the role and mechanism of CAFs can provide new insights for the treatment of CRC.
Collapse
Affiliation(s)
- Qiao Liang
- Graduate School of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Xi-Han Zhou
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical College Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
16
|
Asl ER, Rostamzadeh D, Duijf PHG, Mafi S, Mansoori B, Barati S, Cho WC, Mansoori B. Mutant P53 in the formation and progression of the tumor microenvironment: Friend or foe. Life Sci 2023; 315:121361. [PMID: 36608871 DOI: 10.1016/j.lfs.2022.121361] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
TP53 is the most frequently mutated gene in human cancer. It encodes the tumor suppressor protein p53, which suppresses tumorigenesis by acting as a critical transcription factor that can induce the expression of many genes controlling a plethora of fundamental cellular processes, including cell cycle progression, survival, apoptosis, and DNA repair. Missense mutations are the most frequent type of mutations in the TP53 gene. While these can have variable effects, they typically impair p53 function in a dominant-negative manner, thereby altering intra-cellular signaling pathways and promoting cancer development. Additionally, it is becoming increasingly apparent that p53 mutations also have non-cell autonomous effects that influence the tumor microenvironment (TME). The TME is a complex and heterogeneous milieu composed of both malignant and non-malignant cells, including cancer-associated fibroblasts (CAFs), adipocytes, pericytes, different immune cell types, such as tumor-associated macrophages (TAMs) and T and B lymphocytes, as well as lymphatic and blood vessels and extracellular matrix (ECM). Recently, a large body of evidence has demonstrated that various types of p53 mutations directly affect TME. They fine-tune the inflammatory TME and cell fate reprogramming, which affect cancer progression. Notably, re-educating the p53 signaling pathway in the TME may be an effective therapeutic strategy in combating cancer. Therefore, it is timely to here review the recent advances in our understanding of how TP53 mutations impact the fate of cancer cells by reshaping the TME.
Collapse
Affiliation(s)
- Elmira Roshani Asl
- Department of Biochemistry, Saveh University of Medical Sciences, Saveh, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran; Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Pascal H G Duijf
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia; Cancer and Aging Research Program, Queensland University of Technology, Brisbane, QLD, Australia; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Sahar Mafi
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran; Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Behnaz Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, PA, United States.
| |
Collapse
|
17
|
Kasprzak A. Autophagy and the Insulin-like Growth Factor (IGF) System in Colonic Cells: Implications for Colorectal Neoplasia. Int J Mol Sci 2023; 24:ijms24043665. [PMID: 36835075 PMCID: PMC9959216 DOI: 10.3390/ijms24043665] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common human malignancies worldwide. Along with apoptosis and inflammation, autophagy is one of three important mechanisms in CRC. The presence of autophagy/mitophagy in most normal mature intestinal epithelial cells has been confirmed, where it has mainly protective functions against reactive oxygen species (ROS)-induced DNA and protein damage. Autophagy regulates cell proliferation, metabolism, differentiation, secretion of mucins and/or anti-microbial peptides. Abnormal autophagy in intestinal epithelial cells leads to dysbiosis, a decline in local immunity and a decrease in cell secretory function. The insulin-like growth factor (IGF) signaling pathway plays an important role in colorectal carcinogenesis. This is evidenced by the biological activities of IGFs (IGF-1 and IGF-2), IGF-1 receptor type 1 (IGF-1R) and IGF-binding proteins (IGF BPs), which have been reported to regulate cell survival, proliferation, differentiation and apoptosis. Defects in autophagy are found in patients with metabolic syndrome (MetS), inflammatory bowel diseases (IBD) and CRC. In neoplastic cells, the IGF system modulates the autophagy process bidirectionally. In the current era of improving CRC therapies, it seems important to investigate the exact mechanisms not only of apoptosis, but also of autophagy in different populations of tumor microenvironment (TME) cells. The role of the IGF system in autophagy in normal as well as transformed colorectal cells still seems poorly understood. Hence, the aim of the review was to summarize the latest knowledge on the role of the IGF system in the molecular mechanisms of autophagy in the normal colon mucosa and in CRC, taking into account the cellular heterogeneity of the colonic and rectal epithelium.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland
| |
Collapse
|
18
|
Xu M, Zhang T, Xia R, Wei Y, Wei X. Targeting the tumor stroma for cancer therapy. Mol Cancer 2022; 21:208. [PMID: 36324128 PMCID: PMC9628074 DOI: 10.1186/s12943-022-01670-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Tumors are comprised of both cancer cells and surrounding stromal components. As an essential part of the tumor microenvironment, the tumor stroma is highly dynamic, heterogeneous and commonly tumor-type specific, and it mainly includes noncellular compositions such as the extracellular matrix and the unique cancer-associated vascular system as well as a wide variety of cellular components including activated cancer-associated fibroblasts, mesenchymal stromal cells, pericytes. All these elements operate with each other in a coordinated fashion and collectively promote cancer initiation, progression, metastasis and therapeutic resistance. Over the past few decades, numerous studies have been conducted to study the interaction and crosstalk between stromal components and neoplastic cells. Meanwhile, we have also witnessed an exponential increase in the investigation and recognition of the critical roles of tumor stroma in solid tumors. A series of clinical trials targeting the tumor stroma have been launched continually. In this review, we introduce and discuss current advances in the understanding of various stromal elements and their roles in cancers. We also elaborate on potential novel approaches for tumor-stroma-based therapeutic targeting, with the aim to promote the leap from bench to bedside.
Collapse
Affiliation(s)
- Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Tao Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Ruolan Xia
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China.
| |
Collapse
|
19
|
Moss DY, McCann C, Kerr EM. Rerouting the drug response: Overcoming metabolic adaptation in KRAS-mutant cancers. Sci Signal 2022; 15:eabj3490. [PMID: 36256706 DOI: 10.1126/scisignal.abj3490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mutations in guanosine triphosphatase KRAS are common in lung, colorectal, and pancreatic cancers. The constitutive activity of mutant KRAS and its downstream signaling pathways induces metabolic rewiring in tumor cells that can promote resistance to existing therapeutics. In this review, we discuss the metabolic pathways that are altered in response to treatment and those that can, in turn, alter treatment efficacy, as well as the role of metabolism in the tumor microenvironment (TME) in dictating the therapeutic response in KRAS-driven cancers. We highlight metabolic targets that may provide clinical opportunities to overcome therapeutic resistance and improve survival in patients with these aggressive cancers.
Collapse
Affiliation(s)
- Deborah Y Moss
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE Northern Ireland, UK
| | - Christopher McCann
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE Northern Ireland, UK
| | - Emma M Kerr
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE Northern Ireland, UK
| |
Collapse
|
20
|
Eskandari-Malayeri F, Rezaei M. Immune checkpoint inhibitors as mediators for immunosuppression by cancer-associated fibroblasts: A comprehensive review. Front Immunol 2022; 13:996145. [PMID: 36275750 PMCID: PMC9581325 DOI: 10.3389/fimmu.2022.996145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
The tumor microenvironment (TME) is a significant contributor to cancer progression containing complex connections between cellular and chemical components and provides a suitable substrate for tumor growth and development. Growing evidence shows targeting tumor cells while ignoring the surrounding TME is not effective enough to overcome the cancer disease. Fibroblasts are essential sentinels of the stroma that due to certain conditions in TME, such as oxidative stress and local hypoxia, become activated, and play the prominent role in the physical support of tumor cells and the enhancement of tumorigenesis. Activated fibroblasts in TME, defined as cancer-associated fibroblasts (CAFs), play a crucial role in regulating the biological behavior of tumors, such as tumor metastasis and drug resistance. CAFs are highly heterogeneous populations that have different origins and, in addition to their role in supporting stromal cells, have multiple immunosuppressive functions via a membrane and secretory patterns. The secretion of different cytokines/chemokines, interactions that mediate the recruitment of regulatory immune cells and the reprogramming of an immunosuppressive function in immature myeloid cells are just a few examples of how CAFs contribute to the immune escape of tumors through various direct and indirect mechanisms on specific immune cell populations. Moreover, CAFs directly abolish the role of cytotoxic lymphocytes. The activation and overexpression of inhibitory immune checkpoints (iICPs) or their ligands in TME compartments are one of the main regulatory mechanisms that inactivate tumor-infiltrating lymphocytes in cancer lesions. CAFs are also essential players in the induction or expression of iICPs and the suppression of immune response in TME. Based on available studies, CAF subsets could modulate immune cell function in TME through iICPs in two ways; direct expression of iICPs by activated CAFs and indirect induction by production soluble and then upregulation of iICPs in TME. With a focus on CAFs’ direct and indirect roles in the induction of iICPs in TME as well as their use in immunotherapy and diagnostics, we present the evolving understanding of the immunosuppressive mechanism of CAFs in TME in this review. Understanding the complete picture of CAFs will help develop new strategies to improve precision cancer therapy.
Collapse
|
21
|
Fotsitzoudis C, Koulouridi A, Messaritakis I, Konstantinidis T, Gouvas N, Tsiaoussis J, Souglakos J. Cancer-Associated Fibroblasts: The Origin, Biological Characteristics and Role in Cancer-A Glance on Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14184394. [PMID: 36139552 PMCID: PMC9497276 DOI: 10.3390/cancers14184394] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Tumor microenvironment is a major contributor to tumor growth, metastasis and resistance to therapy. It consists of many cancer-associated fibroblasts (CAFs), which derive from different types of cells. CAFs detected in different tumor types are linked to poor prognosis, as in the case of colorectal cancer. Although their functions differ according to their subtype, their detection is not easy, and there are no established markers for such detection. They are possible targets for therapeutic treatment. Many trials are ongoing for their use as a prognostic factor and as a treatment target. More research remains to be carried out to establish their role in prognosis and treatment. Abstract The therapeutic approaches to cancer remain a considerable target for all scientists around the world. Although new cancer treatments are an everyday phenomenon, cancer still remains one of the leading mortality causes. Colorectal cancer (CRC) remains in this category, although patients with CRC may have better survival compared with other malignancies. Not only the tumor but also its environment, what we call the tumor microenvironment (TME), seem to contribute to cancer progression and resistance to therapy. TME consists of different molecules and cells. Cancer-associated fibroblasts are a major component. They arise from normal fibroblasts and other normal cells through various pathways. Their role seems to contribute to cancer promotion, participating in tumorigenesis, proliferation, growth, invasion, metastasis and resistance to treatment. Different markers, such as a-SMA, FAP, PDGFR-β, periostin, have been used for the detection of cancer-associated fibroblasts (CAFs). Their detection is important for two main reasons; research has shown that their existence is correlated with prognosis, and they are already under evaluation as a possible target for treatment. However, extensive research is warranted.
Collapse
Affiliation(s)
- Charalampos Fotsitzoudis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Asimina Koulouridi
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Ippokratis Messaritakis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
- Correspondence: ; Tel.: +30-2810-394926
| | | | | | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - John Souglakos
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
- Department of Medical Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
| |
Collapse
|
22
|
Chen J, Zhu H, Yin Y, Jia S, Luo X. Colorectal cancer: Metabolic interactions reshape the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2022; 1877:188797. [DOI: 10.1016/j.bbcan.2022.188797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 02/07/2023]
|
23
|
Metabolic targeting of malignant tumors: a need for systemic approach. J Cancer Res Clin Oncol 2022; 149:2115-2138. [PMID: 35925428 DOI: 10.1007/s00432-022-04212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE Dysregulated metabolism is now recognized as a fundamental hallmark of carcinogenesis inducing aggressive features and additional hallmarks. In this review, well-established metabolic changes displayed by tumors are highlighted in a comprehensive manner and corresponding therapeutical targets are discussed to set up a framework for integrating basic research findings with clinical translation in oncology setting. METHODS Recent manuscripts of high research impact and relevant to the field from PubMed (2000-2021) have been reviewed for this article. RESULTS Metabolic pathway disruption during tumor evolution is a dynamic process potentiating cell survival, dormancy, proliferation and invasion even under dismal conditions. Apart from cancer cells, though, tumor microenvironment has an acting role as extracellular metabolites, pH alterations and stromal cells reciprocally interact with malignant cells, ultimately dictating tumor-promoting responses, disabling anti-tumor immunity and promoting resistance to treatments. CONCLUSION In the field of cancer metabolism, there are several emerging prognostic and therapeutic targets either in the form of gene expression, enzyme activity or metabolites which could be exploited for clinical purposes; both standard-of-care and novel treatments may be evaluated in the context of metabolism rewiring and indeed, synergistic effects between metabolism-targeting and other therapies would be an attractive perspective for further research.
Collapse
|
24
|
Papait A, Romoli J, Stefani FR, Chiodelli P, Montresor MC, Agoni L, Silini AR, Parolini O. Fight the Cancer, Hit the CAF! Cancers (Basel) 2022; 14:cancers14153570. [PMID: 35892828 PMCID: PMC9330284 DOI: 10.3390/cancers14153570] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In the last 20 years, the tumor microenvironment (TME) has raised an increasing interest from the therapeutic point of view. Indeed, different strategies targeting either the endothelial or the immune component have been implemented. Furthermore, cancer-associated fibroblasts (CAF) have attracted even more interest due to their ability to prime the TME in order to favor tumor progression and metastasis. This current review provides a comprehensive overview on the latest discoveries regarding CAF, more specifically on their complex characterization and on preclinical studies and clinical trials that target CAF within the TME. Abstract The tumor microenvironment (TME) is comprised of different cellular components, such as immune and stromal cells, which co-operate in unison to promote tumor progression and metastasis. In the last decade, there has been an increasing focus on one specific component of the TME, the stromal component, often referred to as Cancer-Associated Fibroblasts (CAF). CAF modulate the immune response and alter the composition of the extracellular matrix with a decisive impact on the response to immunotherapies and conventional chemotherapy. The most recent publications based on single-cell analysis have underlined CAF heterogeneity and the unique plasticity that strongly impact the TME. In this review, we focus not only on the characterization of CAF based on the most recent findings, but also on their impact on the immune system. We also discuss clinical trials and preclinical studies where targeting CAF revealed controversial results. Therefore, future efforts should focus on understanding the functional properties of individual subtypes of CAF, taking into consideration the peculiarities of each pathological context.
Collapse
Affiliation(s)
- Andrea Papait
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (J.R.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy
| | - Jacopo Romoli
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (J.R.)
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (F.R.S.); (P.C.); (A.R.S.)
| | - Francesca Romana Stefani
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (F.R.S.); (P.C.); (A.R.S.)
| | - Paola Chiodelli
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (F.R.S.); (P.C.); (A.R.S.)
| | | | - Lorenzo Agoni
- Obstetrics and Gynecology Unit, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy;
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (F.R.S.); (P.C.); (A.R.S.)
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (J.R.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy
- Correspondence: ; Tel.: +39-0630154464
| |
Collapse
|
25
|
Manzoor S, Muhammad JS, Maghazachi AA, Hamid Q. Autophagy: A Versatile Player in the Progression of Colorectal Cancer and Drug Resistance. Front Oncol 2022; 12:924290. [PMID: 35912261 PMCID: PMC9329589 DOI: 10.3389/fonc.2022.924290] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is among the topmost malignancies for both genders. Despite the high incidence rate and advances in diagnostic tools, treatment in many cases is still ineffective. Most cancerous lesions in CRC begin as benign, followed by the development of invasive forms and metastases. The development of CRC has been linked to defects in autophagy, which plays both a pro-and anti-tumor role and is mainly context-dependent. Autophagy suppression could enhance apoptosis via p53 activation, or autophagy also promotes tumor progression by maintaining tumor growth and increasing resistance to chemotherapy. Autophagy promotes the invasion and metastasis of CRC cells via increased epithelial-mesenchymal transition (EMT). Moreover, dysbiosis of gut microbiota upregulated autophagy and metastasis markers. Autophagy responses may also modulate the tumor microenvironment (TME) via regulating the differentiation process of several innate immune cells. Treatments that promote tumor cell death by stimulating or inhibiting autophagy could be beneficial if used as an adjunct treatment, but the precise role of various autophagy-modulating drugs in CRC patients is needed to be explored. In this article, we present an overview of the autophagy process and its role in the pathogenesis and therapeutic resistance of CRC. Also, we focused on the current understanding of the role of the EMT and TME, including its relation to gut microbiota and immune cells, in autophagic manipulation of CRC. We believe that there is a potential link between autophagy, TME, EMT, and drug resistance, suggesting that further studies are needed to explore this aspect.
Collapse
Affiliation(s)
- Shaista Manzoor
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Azzam A. Maghazachi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- *Correspondence: Qutayba Hamid,
| |
Collapse
|
26
|
Hu Y, Xue Z, Qiu C, Feng Z, Qi Q, Wang J, Jin W, Zhong Z, Liu X, Li W, Zhang Q, Huang B, Chen A, Wang J, Yang N, Zhou W. Knockdown of NUSAP1 inhibits cell proliferation and invasion through downregulation of TOP2A in human glioblastoma. Cell Cycle 2022; 21:1842-1855. [PMID: 35532155 PMCID: PMC9359390 DOI: 10.1080/15384101.2022.2074199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Nucleolar and spindle associated protein 1 (NUSAP1), an indispensable mitotic regulator, has been reported to be involved in the development, progression, and metastasis of several types of cancer. Here, we investigated the expression and biological function of NUSAP1 in human glioblastoma (GBM), an aggressive brain tumor type with largely ineffective treatment options. Analysis of the molecular data in CGGA, TCGA and Rembrandt datasets demonstrated that NUSAP1 was significantly upregulated in GBM relative to low grade gliomas and non-neoplastic brain tissue samples. Kaplan-Meier analysis indicated that patients with tumors showing high NUSAP1 expression exhibited significantly poorer survival in both CGGA (P = 0.002) and Rembrandt cohorts (P = 0.017). Analysis of RNA sequencing data from P3-cells with stable knockdown of NUSAP1 revealed topoisomerase 2A (TOP2A) as a possible molecule downregulated by the loss of NUSAP1. Molecular analysis of the CGGA data revealed a strong correlation between NUSAP1 and TOP2A expression in primary gliomas and recurrent gliomas samples. SiRNA knockdown of either NUSAP1 or TOP2A in U251, T98 and GBM derived patient P3 cells inhibited GBM cell proliferation and invasion, and induced cell apoptosis. Finally, stable knockdown of NUSAP1 with shRNA led to decreased tumor growth in an orthotopic xenograft model of GBM in mice. Taken together, NUSAP1 gene silencing induced apoptosis possibly through the downregulation of the candidate downstream molecule TOP2A. Interference with the expression of NUSAP1 might therefore inhibit malignant progression in GBM, and NUSAP1 might thus serve as a promising molecular target for GBM treatment.
Collapse
Affiliation(s)
- Yaotian Hu
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Zhiyi Xue
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Chen Qiu
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China.,Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zichao Feng
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qichao Qi
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jiwei Wang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenxing Jin
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Zhaoyang Zhong
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Xiaofei Liu
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Qing Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China.,Department of Biomedicine, University of Bergen, Norway
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Wenjing Zhou
- Department of Blood Transfusion, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
27
|
In Vitro Human Cancer Models for Biomedical Applications. Cancers (Basel) 2022; 14:cancers14092284. [PMID: 35565413 PMCID: PMC9099454 DOI: 10.3390/cancers14092284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/16/2022] [Accepted: 04/30/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Cancer is a leading cause of death worldwide. While numerous studies have been conducted on cancer treatment, clinical treatment options for cancers are still limited. To date, animal cancer models for cancer therapeutic studies have faced multiple challenges, including inaccuracy in the representation of human cancers, high cost and ethical concerns. Therefore, lab-grown human cancer models are being developed quickly to fulfill the increasing demand for more relevant models in order to improve knowledge of human cancers and to find novel treatments. This review summarizes the development of lab-grown human cancer models for biomedical applications, including cancer therapeutic development, assessment of human tumor biology and discovery of key cancer markers. Abstract Cancer is one of the leading causes of death worldwide, and its incidence is steadily increasing. Although years of research have been conducted on cancer treatment, clinical treatment options for cancers are still limited. Animal cancer models have been widely used for studies of cancer therapeutics, but these models have been associated with many concerns, including inaccuracy in the representation of human cancers, high cost and ethical issues. Therefore, in vitro human cancer models are being developed quickly to fulfill the increasing demand for more relevant models in order to get a better knowledge of human cancers and to find novel treatments. This review summarizes the development of in vitro human cancer models for biomedical applications. We first review the latest development in the field by detailing various types of in vitro human cancer models, including transwell-based models, tumor spheroids, microfluidic tumor-microvascular systems and scaffold-based models. The advantages and limitations of each model, as well as their biomedical applications, are summarized, including therapeutic development, assessment of tumor cell migration, metastasis and invasion and discovery of key cancer markers. Finally, the existing challenges and future perspectives are briefly discussed.
Collapse
|
28
|
Feng B, Wu J, Shen B, Jiang F, Feng J. Cancer-associated fibroblasts and resistance to anticancer therapies: status, mechanisms, and countermeasures. Cancer Cell Int 2022; 22:166. [PMID: 35488263 PMCID: PMC9052457 DOI: 10.1186/s12935-022-02599-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are critical components of the tumor microenvironment (TME) with diverse functions such as extracellular matrix (ECM) remodeling, modulation of metabolism and angiogenesis, and crosstalk with both cancer cells and infiltrating immune cells by production of growth factors, cytokines, and chemokines. Within the TME milieu, CAFs exhibit morphological and functional transitions with relatively specific markers and hold tremendous potential to facilitate tumorigenesis, development, and resistance towards multiple therapeutic strategies including chemotherapy, radiotherapy, targeted therapy, anti-angiogenesis therapy, immunotherapy, and endocrine therapy. Accordingly, CAFs themselves and the downstream effectors and/or signaling pathways are potential targets for optimizing the sensitivity of anti-cancer therapies. This review aims to provide a detailed landscape of the role that CAFs play in conferring therapeutic resistance in different cancers and the underlying mechanisms. The translational and therapeutic perspectives of CAFs in the individualized treatment of malignant tumors are also discussed.
Collapse
Affiliation(s)
- Bing Feng
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Jianzhong Wu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Bo Shen
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Feng Jiang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China.
| | - Jifeng Feng
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China.
| |
Collapse
|
29
|
Guan XY, Guan XL, Jiao ZY. Improving therapeutic resistance: beginning with targeting the tumor microenvironment. J Chemother 2021; 34:492-516. [PMID: 34873999 DOI: 10.1080/1120009x.2021.2011661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cancer is a serious threat to human health and life. The tumor microenvironment (TME) not only plays a key role in the occurrence, development and metastasis of cancer, but also has a profound impact on treatment resistance. To improve and solve this problem, an increasing number of strategies targeting the TME have been proposed, and great progress has been made in recent years. This article reviews the characteristics and functions of the main matrix components of the TME and the mechanisms by which each component affects drug resistance. Furthermore, this article elaborates on targeting the TME as a strategy to treat acquired drug resistance, reduce tumor metastasis, recurrence, and improve efficacy.
Collapse
Affiliation(s)
- Xiao-Ying Guan
- Pathology Department, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiao-Li Guan
- General Medicine Department, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zuo-Yi Jiao
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
30
|
Zhang P, Cheng S, Sheng X, Dai H, He K, Du Y. The role of autophagy in regulating metabolism in the tumor microenvironment. Genes Dis 2021; 10:447-456. [DOI: 10.1016/j.gendis.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/23/2021] [Accepted: 10/24/2021] [Indexed: 10/19/2022] Open
|
31
|
Kamali Zonouzi S, Pezeshki PS, Razi S, Rezaei N. Cancer-associated fibroblasts in colorectal cancer. Clin Transl Oncol 2021; 24:757-769. [PMID: 34839457 DOI: 10.1007/s12094-021-02734-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/06/2021] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of mortality among cancers. Many aspects of this cancer are under investigation to find established markers of diagnosis, prognosis, and also potential drug targets. In this review article, we are going to discuss the possible solution to all these aims by investigating the literature about cancer-associated fibroblasts (CAFs) involved in CRC. Moreover, we are going to review their interaction with the tumor microenvironment (TME) and vitamin D and their role in tumorigenesis and metastasis. Moreover, we are going to expand more on some markers produced by them or related to them including FAP, a-SMA, CXCL12, TGF- β, POSTN, and β1-Integrin. Some signaling pathways related to CAFs are as follows: FAK, AKT, activin A, and YAP/TAZ. Some genes related to the CAFs which are found to be possible therapeutic targets include COL3A1, JAM3, AEBP1 and, CAF-derived TGFB3, WNT2, and WNT54.
Collapse
Affiliation(s)
- S Kamali Zonouzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - P S Pezeshki
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - S Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - N Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
32
|
Deng L, Jiang N, Zeng J, Wang Y, Cui H. The Versatile Roles of Cancer-Associated Fibroblasts in Colorectal Cancer and Therapeutic Implications. Front Cell Dev Biol 2021; 9:733270. [PMID: 34660589 PMCID: PMC8517274 DOI: 10.3389/fcell.2021.733270] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
The tumor microenvironment (TME) is populated by abundant cancer-associated fibroblasts (CAFs) that radically influence the disease progression across many cancers, including the colorectal cancer (CRC). In theory, targeting CAFs holds great potential in optimizing CRC treatment. However, attempts to translate the therapeutic benefit of CAFs into clinic practice face many obstacles, largely due to our limited understanding of the heterogeneity in their origins, functions, and mechanisms. In recent years, accumulating evidence has uncovered some cellular precursors and molecular markers of CAFs and also revealed their versatility in impacting various hallmarks of CRC, together helping us to better define the population of CAFs and also paving the way toward their future therapeutic targeting for CRC treatment. In this review, we outline the emerging concept of CAFs in CRC, with an emphasis on their origins, biomarkers, prognostic significance, as well as their functional roles and underlying mechanisms in CRC biology. At last, we discuss the prospect of harnessing CAFs as promising therapeutic targets for the treatment of patients with CRC.
Collapse
Affiliation(s)
- Longfei Deng
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Nianfen Jiang
- Health Management Center, Southwest University Hospital, Chongqing, China
| | - Jun Zeng
- Department of Genetics and Cell Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yi Wang
- Department of General Surgery, The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Department of General Surgery, The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
33
|
Chen L, Zhang K, Sun J, Tang J, Zhou J. Development and Validation of an Autophagy-Stroma-Based Microenvironment Gene Signature for Risk Stratification in Colorectal Cancer. Onco Targets Ther 2021; 14:3503-3515. [PMID: 34103941 PMCID: PMC8180295 DOI: 10.2147/ott.s312003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/10/2021] [Indexed: 01/08/2023] Open
Abstract
Background Colorectal cancer is the fourth most common cancer and the second leading cause of cancer-related death in the USA. The aim of this study was to establish a tumor gene signature based on tumor stromal cell and autophagy for predicting the risk of recurrence in patients with colorectal cancer. Methods We used “Rtsne” and “xCell” R packages to estimate autophagy and stroma status, respectively. The discovery cohort used microarray gene expression data retrieved from the GSE39582 dataset. The Cox regression model and Least Absolute Shrinkage and Selection Operator (LASSO) were used to identify prognostic genes and to construct an autophagy-stroma-based gene signature. Moreover, external validation was conducted using GSE17538, GSE38832, TCGA database, and patient data obtained from the First Hospital of China Medical University (CMU). Results The LASSO model identified three genes (TNS1, TAGLN, and SFRP4) which were used to develop a risk stratification gene signature. The autophagy-stroma-based gene signature was identified as an independent prognostic factor by multivariate analysis (p = 0.0023). The results were validated in GSE17538 (p=0.0062), GSE38832 (p=0.028), TCGA (p=0.046) database, and patient data obtained from the First Hospital of China Medical University (CMU) (p=0.027). Conclusion We have established and verified a feasible prognostic model of colorectal cancer based on autophagy and stromal cell characteristics of patients. The model can be used to evaluate recurrence risk of cancer patients, and the hub genes in the model provide potential targets for targeted colorectal cancer treatment.
Collapse
Affiliation(s)
- Lin Chen
- Department of gastrointestinal surgery of the First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Kunzi Zhang
- Department of gastrointestinal surgery of the First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Jian Sun
- Department of gastrointestinal surgery of the First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Jingtong Tang
- Department of gastrointestinal surgery of the First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Jianping Zhou
- Department of gastrointestinal surgery of the First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| |
Collapse
|
34
|
Jena BC, Rout L, Dey A, Mandal M. Active autophagy in cancer-associated fibroblasts: Recent advances in understanding the novel mechanism of tumor progression and therapeutic response. J Cell Physiol 2021; 236:7887-7902. [PMID: 34008184 DOI: 10.1002/jcp.30419] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022]
Abstract
Autophagy is primarily a homeostatic and catabolic process that is increasingly being recognized to have a pivotal role in the initiation and maintenance of cancer cells, as well as in the emergence of therapeutic resistance. Moreover, in the tumor microenvironment (TME) autophagy plays a crucial and sometimes dichotomous role in tumor progression. Recent studies show that during the early stages of tumor initiation, autophagy suppresses tumorigenesis. However, in the advanced stage of tumorigenesis, autophagy promotes cancer progression by protecting cancer cells against stressful conditions and therapeutic assault. Specifically, in cancer-associated fibroblasts (CAFs), autophagy promotes tumorigenesis not only by providing nutrients to the cancerous cells but also by inducing epithelial to mesenchymal transition, angiogenesis, stemness, and metastatic dissemination of the cancer cells, whereas in the immune cells, autophagy induces the tumor-localized immune response. In the TME, CAFs play a crucial role in cancer cell metabolism, immunoreaction, and growth. Therefore, targeting autophagy in CAFs by several pharmacological inducers like rapamycin or the inhibitor such as chloroquine has gained importance in preclinical and clinical trials. In the present review, we summarized the basic mechanism of autophagy in CAFs along with its role in driving tumorigenic progression through several emerging as well as classical hallmarks of cancer. We also addressed various autophagy inducers as well as inhibitors of autophagy for more efficient cancer management. Eventually, we prioritized some of the outstanding issues that must be addressed with utmost priority in the future to elucidate the role of autophagy in CAFs on tumor progression and therapeutic intervention.
Collapse
Affiliation(s)
- Bikash Chandra Jena
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Lipsa Rout
- Department of Chemistry, Institute of Technical Education and Research, Siksha'O'Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Ankita Dey
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Mahitosh Mandal
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
35
|
Kim B, Seo Y, Kwon JH, Shin Y, Kim S, Park SJ, Park JJ, Cheon JH, Kim WH, Il Kim T. IL-6 and IL-8, secreted by myofibroblasts in the tumor microenvironment, activate HES1 to expand the cancer stem cell population in early colorectal tumor. Mol Carcinog 2021; 60:188-200. [PMID: 33544929 DOI: 10.1002/mc.23283] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/24/2022]
Abstract
Interaction between a tumor and its microenvironment is important for tumor initiation and progression. Cancer stem cells (CSCs) within the tumor interact with a microenvironmental niche that controls their maintenance and differentiation. We investigated the CSC-promoting effect of factors released from myofibroblasts into the microenvironment of early colorectal cancer tumors and its molecular mechanism. By messenger RNA microarray analysis, expression of HES1, a Notch signaling target, significantly increased in Caco-2 cells cocultured with 18Co cells (pericryptal myofibroblasts), compared to its expression in Caco-2 cells cultured alone. Caco-2 cells cultured in 18Co-conditioned media (CM) showed a significant increase in CD133+CD44+ cells and HES1 expression compared to that in Caco-2 cells cultured in regular media. Significant amounts of interleukin-6 (IL-6) and IL-8 were detected in 18Co-CM compared to levels in regular media. The 18Co-CM-induced increase in CD133+CD44+ cells was attenuated by IL-6- and IL-8-neutralizing antibodies. Furthermore, these neutralizing antibodies and inhibitors of STAT3 and gamma-secretase reduced the expression of HES1 induced in Caco-2 cells cultured in 18Co-CM. Immunohistochemical analysis of human tissues revealed that IL-6, IL-8, and HES1 expression increased from normal to adenoma, and from adenoma to cancer tissues. In addition, IL-6 and HES1 expression was positively correlated in early colorectal cancer tissues. In conclusion, the increase of CSCs by myofibroblasts could be mediated by IL-6/IL-8-induced HES1 activation in the tumor microenvironment. Based on these data, the IL-6/IL-8-mediated Notch/HES1 and STAT3 pathway, through which CSCs interact with their microenvironment, might be a potential target for the prevention and treatment of colorectal tumors.
Collapse
Affiliation(s)
- Bun Kim
- Department of Medicine, The Graduate School, Yonsei University College of Medicine, Seoul, Korea.,Division of Translational Science, Center for Colon Cancer, Center for Cancer Prevention and Detection, National Cancer Center, Goyang, Korea.,Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Yoojeong Seo
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Ji-Hee Kwon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Youmi Shin
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Suhyun Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Jung Park
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Jun Park
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Yonsei Cancer Prevention Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Won Ho Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Il Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea.,Yonsei Cancer Prevention Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Buoso E, Masi M, Racchi M, Corsini E. Endocrine-Disrupting Chemicals' (EDCs) Effects on Tumour Microenvironment and Cancer Progression: Emerging Contribution of RACK1. Int J Mol Sci 2020; 21:E9229. [PMID: 33287384 PMCID: PMC7729595 DOI: 10.3390/ijms21239229] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Endocrine disruptors (EDCs) can display estrogenic and androgenic effects, and their exposure has been linked to increased cancer risk. EDCs have been shown to directly affect cancer cell regulation and progression, but their influence on tumour microenvironment is still not completely elucidated. In this context, the signalling hub protein RACK1 (Receptor for Activated C Kinase 1) could represent a nexus between cancer and the immune system due to its roles in cancer progression and innate immune activation. Since RACK1 is a relevant EDCs target that responds to steroid-active compounds, it could be considered a molecular bridge between the endocrine-regulated tumour microenvironment and the innate immune system. We provide an analysis of immunomodulatory and cancer-promoting effects of different EDCs in shaping tumour microenvironment, with a final focus on the scaffold protein RACK1 as a pivotal molecular player due to its dual role in immune and cancer contexts.
Collapse
Affiliation(s)
- Erica Buoso
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
| | - Mirco Masi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
- Classe di Scienze Umane e della Vita (SUV), Scuola Universitaria Superiore IUSS, Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Marco Racchi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
| | - Emanuela Corsini
- Laboratory of Toxicology, Dipartimento di Scienze Politiche ed Ambientali, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy;
| |
Collapse
|
37
|
Cioce M, Pulito C, Strano S, Blandino G, Fazio VM. Metformin: Metabolic Rewiring Faces Tumor Heterogeneity. Cells 2020; 9:E2439. [PMID: 33182253 PMCID: PMC7695274 DOI: 10.3390/cells9112439] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/13/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor heterogeneity impinges on all the aspects of tumor history, from onset to metastasis and relapse. It is growingly recognized as a propelling force for tumor adaptation to environmental and micro-environmental cues. Metabolic heterogeneity perfectly falls into this process. It strongly contributes to the metabolic plasticity which characterizes cancer cell subpopulations-capable of adaptive switching under stress conditions, between aerobic glycolysis and oxidative phosphorylation-in both a convergent and divergent modality. The mitochondria appear at center-stage in this adaptive process and thus, targeting mitochondria in cancer may prove of therapeutic value. Metformin is the oldest and most used anti-diabetic medication and its relationship with cancer has witnessed rises and falls in the last 30 years. We believe it is useful to revisit the main mechanisms of action of metformin in light of the emerging views on tumor heterogeneity. We first analyze the most consolidated view of its mitochondrial mechanism of action and then we frame the latter in the context of tumor adaptive strategies, cancer stem cell selection, metabolic zonation of tumors and the tumor microenvironment. This may provide a more critical point of view and, to some extent, may help to shed light on some of the controversial evidence for metformin's anticancer action.
Collapse
Affiliation(s)
- Mario Cioce
- Department of Medicine, R.U. in Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, 00128 Rome, Italy;
| | - Claudio Pulito
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.P.); (G.B.)
| | - Sabrina Strano
- SAFU Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.P.); (G.B.)
| | - Vito Michele Fazio
- Department of Medicine, R.U. in Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, 00128 Rome, Italy;
- Institute of Translation Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy
| |
Collapse
|
38
|
Lin PW, Chu ML, Liu HS. Autophagy and metabolism. Kaohsiung J Med Sci 2020; 37:12-19. [PMID: 33021078 DOI: 10.1002/kjm2.12299] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/03/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolism consists of diverse life-sustaining chemical reactions in living organisms. Autophagy is a highly conservative process that responds to various internal and external stresses. Both processes utilize surrounding resources to provide energy and nutrients for the cell. Autophagy progression may proceed to the degradative or secretory pathway determined by Rab family proteins. The former is a degradative and lysosome-dependent catabolic process that produces energy and provides nutrients for the synthesis of essential proteins. The degradative pathway also balances the energy source of the cell and regulates tissue homeostasis. The latter is a newly discovered pathway in which the autophagosome is fused with the plasma membrane. Secretory autophagy participates in diverse functions and diseases ranging from the spread of viral particles to cancer and neurodegenerative diseases. Aberrant metabolism in the body causes various metabolic syndromes. This review explores the relationships among autophagy, metabolism, and related diseases.
Collapse
Affiliation(s)
- Pei-Wen Lin
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Man-Ling Chu
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiao-Sheng Liu
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
39
|
Long J, He Q, Yin Y, Lei X, Li Z, Zhu W. The effect of miRNA and autophagy on colorectal cancer. Cell Prolif 2020; 53:e12900. [PMID: 32914514 PMCID: PMC7574865 DOI: 10.1111/cpr.12900] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/29/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) has become a concern because of its high recurrence rate and metastasis rate, low early diagnosis rate and poor therapeutic effect. At present, various studies have shown that autophagy is closely connected with the occurrence and progression of CRC. Autophagy is a highly cytosolic catabolic process involved in lysosomes in biological evolution. Cells degrade proteins and damaged organelles by autophagy to achieve material circulation and maintain cell homeostasis. Moreover, microRNAs are key regulators of autophagy, and their mediated regulation of transcriptional and post-transcriptional levels plays an important role in autophagy in CRC cells. This review focuses on the recent research advances of how autophagy and related microRNAs are involved in affecting occurrence and progression of CRC and provides a new perspective for the study of CRC treatment strategies.
Collapse
Affiliation(s)
- Jiali Long
- Department of PathologyGuangdong Medical UniversityDongguanChina
- Department of Pathologythe Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| | - Qinglian He
- Department of PathologyGuangdong Medical UniversityDongguanChina
| | - Yuting Yin
- Department of PathologyGuangdong Medical UniversityDongguanChina
| | - Xue Lei
- Department of PathologyGuangdong Medical UniversityDongguanChina
| | - Ziqi Li
- Department of PathologyGuangdong Medical UniversityDongguanChina
| | - Wei Zhu
- Department of PathologyGuangdong Medical UniversityDongguanChina
| |
Collapse
|
40
|
Shoucair I, Weber Mello F, Jabalee J, Maleki S, Garnis C. The Role of Cancer-Associated Fibroblasts and Extracellular Vesicles in Tumorigenesis. Int J Mol Sci 2020; 21:ijms21186837. [PMID: 32957712 PMCID: PMC7555043 DOI: 10.3390/ijms21186837] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) play a key role in the communication between cancer cells and stromal components of the tumor microenvironment (TME). In this context, cancer cell-derived EVs can regulate the activation of a CAF phenotype in TME cells, which can be mediated by several EV cargos (e.g., miRNA, proteins, mRNA and lncRNAs). On the other hand, CAF-derived EVs can mediate several processes during tumorigenesis, including tumor growth, invasion, metastasis, and therapy resistance. This review aimed to discuss the molecular aspects of EV-based cross-talk between CAFs and cancer cells during tumorigenesis, in addition to assessing the roles of EV cargo in therapy resistance and pre-metastatic niche formation.
Collapse
Affiliation(s)
- Issraa Shoucair
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
| | - Fernanda Weber Mello
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
- Postgraduate Program in Dentistry, Federal University of Santa Catarina, Florianópolis 88.040-370, Brazil
| | - James Jabalee
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
| | - Saeideh Maleki
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
| | - Cathie Garnis
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Correspondence:
| |
Collapse
|
41
|
Melissari MT, Chalkidi N, Sarris ME, Koliaraki V. Fibroblast Reprogramming in Gastrointestinal Cancer. Front Cell Dev Biol 2020; 8:630. [PMID: 32760726 PMCID: PMC7373725 DOI: 10.3389/fcell.2020.00630] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/23/2020] [Indexed: 12/27/2022] Open
Abstract
Gastrointestinal cancers are a significant cause of cancer mortality worldwide and have been strongly linked with chronic inflammation. Current therapies focus on epithelial/cancer cells; however, the importance of the tumor microenvironment in the development and treatment of the disease is also now well established. Cancer-associated fibroblasts (CAFs) are a major component of the tumor microenvironment, and are actively participating in tumor initiation, promotion and metastasis. They structurally and functionally affect cancer cell proliferation, tumor immunity, angiogenesis, extracellular matrix remodeling and metastasis through a variety of signaling pathways. CAFs originate predominantly from resident mesenchymal cells, which are activated and reprogrammed in response to cues from cancer cells. In recent years, chronic inflammation of the gastrointestinal tract has also proven an important driver of mesenchymal cell activation and subsequent CAF development, which in turn are capable of regulating the transition from acute to chronic inflammation and cancer. In this review, we will provide a concise overview of the mechanisms that drive fibroblast reprogramming in cancer and the recent advances on the downstream signaling pathways that regulate the functional properties of the activated mesenchyme. This new mechanistic insight could pave the way for new therapeutic strategies and better prognosis for cancer patients.
Collapse
Affiliation(s)
- Maria-Theodora Melissari
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Niki Chalkidi
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Michalis E Sarris
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Vasiliki Koliaraki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| |
Collapse
|
42
|
Neitzel C, Demuth P, Wittmann S, Fahrer J. Targeting Altered Energy Metabolism in Colorectal Cancer: Oncogenic Reprogramming, the Central Role of the TCA Cycle and Therapeutic Opportunities. Cancers (Basel) 2020; 12:E1731. [PMID: 32610612 PMCID: PMC7408264 DOI: 10.3390/cancers12071731] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is among the most frequent cancer entities worldwide. Multiple factors are causally associated with CRC development, such as genetic and epigenetic alterations, inflammatory bowel disease, lifestyle and dietary factors. During malignant transformation, the cellular energy metabolism is reprogrammed in order to promote cancer cell growth and proliferation. In this review, we first describe the main alterations of the energy metabolism found in CRC, revealing the critical impact of oncogenic signaling and driver mutations in key metabolic enzymes. Then, the central role of mitochondria and the tricarboxylic acid (TCA) cycle in this process is highlighted, also considering the metabolic crosstalk between tumor and stromal cells in the tumor microenvironment. The identified cancer-specific metabolic transformations provided new therapeutic targets for the development of small molecule inhibitors. Promising agents are in clinical trials and are directed against enzymes of the TCA cycle, including isocitrate dehydrogenase, pyruvate dehydrogenase kinase, pyruvate dehydrogenase complex (PDC) and α-ketoglutarate dehydrogenase (KGDH). Finally, we focus on the α-lipoic acid derivative CPI-613, an inhibitor of both PDC and KGDH, and delineate its anti-tumor effects for targeted therapy.
Collapse
Affiliation(s)
| | | | | | - Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany; (C.N.); (P.D.); (S.W.)
| |
Collapse
|
43
|
Fong EJ, Strelez C, Mumenthaler SM. A Perspective on Expanding Our Understanding of Cancer Treatments by Integrating Approaches from the Biological and Physical Sciences. SLAS DISCOVERY 2020; 25:672-683. [PMID: 32297829 PMCID: PMC7372587 DOI: 10.1177/2472555220915830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multicellular systems such as cancer suffer from immense complexity. It is imperative to capture the heterogeneity of these systems across scales to achieve a deeper understanding of the underlying biology and develop effective treatment strategies. In this perspective article, we will discuss how recent technologies and approaches from the biological and physical sciences have transformed traditional ways of measuring, interpreting, and treating cancer. During the SLAS 2019 Annual Meeting, SBI2 hosted a Special Interest Group (SIG) on this topic. Academic and industry leaders engaged in discussions surrounding what biological model systems are appropriate to study cancer complexity, what assays are necessary to interrogate this complexity, and how physical sciences approaches may be useful to detangle this complexity. In particular, we examined the utility of mathematical models in predicting cancer progression and treatment response when tightly integrated with reproducible, quantitative, and dynamic biological measurements achieved using high-content imaging and analysis. The dialogue centered around the impetus for convergent biosciences, bringing new perspectives to cancer research to further understand this complex adaptive system and successfully intervene therapeutically.
Collapse
Affiliation(s)
- Emma J Fong
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carly Strelez
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
44
|
Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, Kolahian S, Javaheri T, Zare P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal 2020; 18:59. [PMID: 32264958 PMCID: PMC7140346 DOI: 10.1186/s12964-020-0530-4] [Citation(s) in RCA: 888] [Impact Index Per Article: 222.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
The dynamic interactions of cancer cells with their microenvironment consisting of stromal cells (cellular part) and extracellular matrix (ECM) components (non-cellular) is essential to stimulate the heterogeneity of cancer cell, clonal evolution and to increase the multidrug resistance ending in cancer cell progression and metastasis. The reciprocal cell-cell/ECM interaction and tumor cell hijacking of non-malignant cells force stromal cells to lose their function and acquire new phenotypes that promote development and invasion of tumor cells. Understanding the underlying cellular and molecular mechanisms governing these interactions can be used as a novel strategy to indirectly disrupt cancer cell interplay and contribute to the development of efficient and safe therapeutic strategies to fight cancer. Furthermore, the tumor-derived circulating materials can also be used as cancer diagnostic tools to precisely predict and monitor the outcome of therapy. This review evaluates such potentials in various advanced cancer models, with a focus on 3D systems as well as lab-on-chip devices. Video abstract.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khaled Seidi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committees, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognitive, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Kolahian
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tuebingen, Tuebingen, Germany
| | - Tahereh Javaheri
- Health Informatics Lab, Metropolitan College, Boston University, Boston, USA
| | - Peyman Zare
- Dioscuri Center of Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland
| |
Collapse
|
45
|
Wu X, Zhou Z, Xu S, Liao C, Chen X, Li B, Peng J, Li D, Yang L. Extracellular vesicle packaged LMP1-activated fibroblasts promote tumor progression via autophagy and stroma-tumor metabolism coupling. Cancer Lett 2020; 478:93-106. [PMID: 32160975 DOI: 10.1016/j.canlet.2020.03.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022]
Abstract
Several reports have demonstrated that Epstein-Barr virus (EBV) encoded latent membrane protein 1 (LMP1), which is transferred by extracellular vesicles (EVs) or exosomes, can promote cancer progression. However, its mechanism is still not fully understood. In the present study, we demonstrated that EV packaged LMP1 can activate normal fibroblasts (NFs) into cancer-associated fibroblasts (CAFs). The NF-κB p65 pathway is the key signal that promotes the activation of NFs to CAFs in nasopharyngeal carcinoma (NPC). In activated CAFs, aerobic glycolysis and autophagy were increased. Moreover, glucose uptake and lactate production were decreased, and mitochondrial activity in tumor cells was enhanced, which supported the Reverse Warburg Effect (RWE). During this process, upregulation of MCT4 in CAFs and MCT1 in tumor cells was observed. The NF-κB p65 pathway also plays an important role in the regulation of MCT4. Furthermore, co-culture with CAFs promoted the proliferation, migration and radiation resistance of NPC cells. And EV packaged LMP1 promoted tumor proliferation and pre-metastatic niche formation by activating CAFs in vivo. Our findings indicate that EV packaged LMP1-activated CAFs promote tumor progression via autophagy and stroma-tumor metabolism coupling.
Collapse
Affiliation(s)
- Xia Wu
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, China; Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, China
| | - Zhuan Zhou
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, China; Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, China
| | - San Xu
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, China; Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, China
| | - Chaoliang Liao
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, China; Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, China
| | - Xi Chen
- Institute of Molecular Medicine and Oncology, College of Biology, Hunan University, Changsha, China
| | - Bo Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Li
- Institute of Molecular Medicine and Oncology, College of Biology, Hunan University, Changsha, China.
| | - Lifang Yang
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, China; Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, China.
| |
Collapse
|
46
|
Salimifard S, Masjedi A, Hojjat-Farsangi M, Ghalamfarsa G, Irandoust M, Azizi G, Mohammadi H, Keramati MR, Jadidi-Niaragh F. Cancer associated fibroblasts as novel promising therapeutic targets in breast cancer. Pathol Res Pract 2020; 216:152915. [PMID: 32146002 DOI: 10.1016/j.prp.2020.152915] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is one of the most important women-related malignancies, which is incurable (particularly in advanced stages) and tumor microenvironment is a number one accused part in the inefficiency of current anti-breast cancer therapeutic strategies. The tumor microenvironment is composed of various cellular and acellular components, which provide an optimum condition for freely expanding cancer cells in various cancer types, particularly breast cancer. Cancer-associated fibroblasts (CAFs) are one of the main cell types in the breast tumor region, which can promote various tumor-promoting processes such as expansion, angiogenesis, metastasis and drug resistance. CAFs directly (by cell-to-cell communication) and indirectly (through secreting soluble factors) can exert their tumorigenic functions. We try to elucidate the immunobiology of CAFs, their origin, function, and heterogeneity in association with their role in various cancer-promoting processes in breast cancer. Based on current knowledge, we believe that the origin of CAFs, their subsets, and their specific expressed biomarkers determine their pro- or anti-tumor functions. Therefore, targeting CAF without considering their specific functions may lead to a deleterious outcome. We propose to find and characterize each subtype of CAFs in association with its specific function in different stages of breast cancer to develop novel promising therapeutic approaches against the right CAF subtype.
Collapse
Affiliation(s)
- Sevda Salimifard
- Department of Hematology and Blood Transfusion, School of Allied Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Masjedi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden; The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahzad Irandoust
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hamed Mohammadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Reza Keramati
- Department of Hematology and Blood Transfusion, School of Allied Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
47
|
Ho CJ, Gorski SM. Molecular Mechanisms Underlying Autophagy-Mediated Treatment Resistance in Cancer. Cancers (Basel) 2019; 11:E1775. [PMID: 31717997 PMCID: PMC6896088 DOI: 10.3390/cancers11111775] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Despite advances in diagnostic tools and therapeutic options, treatment resistance remains a challenge for many cancer patients. Recent studies have found evidence that autophagy, a cellular pathway that delivers cytoplasmic components to lysosomes for degradation and recycling, contributes to treatment resistance in different cancer types. A role for autophagy in resistance to chemotherapies and targeted therapies has been described based largely on associations with various signaling pathways, including MAPK and PI3K/AKT signaling. However, our current understanding of the molecular mechanisms underlying the role of autophagy in facilitating treatment resistance remains limited. Here we provide a comprehensive summary of the evidence linking autophagy to major signaling pathways in the context of treatment resistance and tumor progression, and then highlight recently emerged molecular mechanisms underlying autophagy and the p62/KEAP1/NRF2 and FOXO3A/PUMA axes in chemoresistance.
Collapse
Affiliation(s)
- Cally J. Ho
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Sharon M. Gorski
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
48
|
de la Cruz-López KG, Castro-Muñoz LJ, Reyes-Hernández DO, García-Carrancá A, Manzo-Merino J. Lactate in the Regulation of Tumor Microenvironment and Therapeutic Approaches. Front Oncol 2019; 9:1143. [PMID: 31737570 PMCID: PMC6839026 DOI: 10.3389/fonc.2019.01143] [Citation(s) in RCA: 525] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022] Open
Abstract
Tumor cells must generate sufficient ATP and biosynthetic precursors in order to maintain cell proliferation requirements. Otto Warburg showed that tumor cells uptake high amounts of glucose producing large volumes of lactate even in the presence of oxygen, this process is known as “Warburg effect or aerobic glycolysis.” As a consequence of such amounts of lactate there is an acidification of the extracellular pH in tumor microenvironment, ranging between 6.0 and 6.5. This acidosis favors processes such as metastasis, angiogenesis and more importantly, immunosuppression, which has been associated to a worse clinical prognosis. Thus, lactate should be thought as an important oncometabolite in the metabolic reprogramming of cancer. In this review, we summarized the role of lactate in regulating metabolic microenvironment of cancer and discuss its relevance in the up-regulation of the enzymes lactate dehydrogenase (LDH) and monocarboxilate transporters (MCTs) in tumors. The goal of this review is to expose that lactate is not only a secondary product of cellular metabolic waste of tumor cells, but also a key molecule involved in carcinogenesis as well as in tumor immune evasion. Finally, the possible targeting of lactate production in cancer treatment is discussed.
Collapse
Affiliation(s)
- Karen G de la Cruz-López
- Programa de Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico.,Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratory of Virus and Cancer, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Leonardo Josué Castro-Muñoz
- Programa de Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico.,Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diego O Reyes-Hernández
- Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Maestría en Investigación Clínica Experimental, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico.,Biological Cancer Causing Agents Group, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Alejandro García-Carrancá
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratory of Virus and Cancer, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Joaquín Manzo-Merino
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Biological Cancer Causing Agents Group, Instituto Nacional de Cancerología, Mexico City, Mexico.,Cátedras CONACyT-Instituto Nacional de Cancerología, Mexico City, Mexico
| |
Collapse
|
49
|
Yan Y, Chen X, Wang X, Zhao Z, Hu W, Zeng S, Wei J, Yang X, Qian L, Zhou S, Sun L, Gong Z, Xu Z. The effects and the mechanisms of autophagy on the cancer-associated fibroblasts in cancer. J Exp Clin Cancer Res 2019; 38:171. [PMID: 31014370 PMCID: PMC6480893 DOI: 10.1186/s13046-019-1172-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/10/2019] [Indexed: 02/08/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) plays an essential role in cancer cell growth, metabolism and immunoreaction. Autophagy is an intracellular self-degradative process that balances cell energy source and regulates tissue homeostasis. Targeting autophagy has gained interest with multiple preclinical and clinical trials, such as the pharmacological inhibitor chloroquine or the inducer rapamycin, especially in exploiting its ability to modulate the secretory capability of CAFs to enhance drug delivery or inhibit it to prevent its influence on cancer cell chemoresistance. In this review, we summarize the reports on autophagy in cancer-associated fibroblasts by detailing the mechanism and role of autophagy in CAFs, including the hypoxic-autophagy positive feedback cycle, the metabolic cross-talk between CAFs and tumors induced by autophagy, CAFs secreted cytokines promote cancer survival by secretory autophagy, CAFs autophagy-induced EMT, stemness, senescence and treatment sensitivity, as well as the research of antitumor chemicals, miRNAs and lncRNAs. Additionally, we discuss the evidence of molecules in CAFs that are relevant to autophagy and the contribution to sensitive treatments as a potential target for cancer treatment.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Zijin Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wenfeng Hu
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Jie Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Xue Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Shuyi Zhou
- Hunan Provincial People's Hospital Xingsha Branch (People's Hospital of Changsha County), Changsha, 410008, Hunan, China
| | - Lunquan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
50
|
Stress responses in stromal cells and tumor homeostasis. Pharmacol Ther 2019; 200:55-68. [PMID: 30998941 DOI: 10.1016/j.pharmthera.2019.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
In most (if not all) solid tumors, malignant cells are outnumbered by their non-malignant counterparts, including immune, endothelial and stromal cells. However, while the mechanisms whereby cancer cells adapt to microenvironmental perturbations have been studied in great detail, relatively little is known on stress responses in non-malignant compartments of the tumor microenvironment. Here, we discuss the mechanisms whereby cancer-associated fibroblasts and other cellular components of the tumor stroma react to stress in the context of an intimate crosstalk with malignant, endothelial and immune cells, and how such crosstalk influences disease progression and response to treatment.
Collapse
|