1
|
Fan W, Liu P, Tan L, Lv H, Zhou H, Tao Z, Xu Y. Tet2 modulates M2 macrophage polarization via mRNA 5-methylcytosine in allergic rhinitis. Int Immunopharmacol 2024; 143:113495. [PMID: 39486186 DOI: 10.1016/j.intimp.2024.113495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Allergic rhinitis (AR) represents a hallmark of obvious hypersensitivity with an imbalance of immune responses, including abnormal macrophage activity in local tissues. It has been reported that alternatively activated macrophages (M2) may contribute to allergic pathogenesis. Ten-eleven translocation (Tet) enzymes can oxidize 5-methylcytosine (m5C) in mRNA, implying the epigenetic regulation of post-transcriptional RNA modification. Our previous study suggested that decreased Tet2 impairs the function of regulatory T cells, failing to exert a protective role in AR. However, the mechanism of Tet2 in macrophage polarization has been little discussed. In this paper, we investigate the regulatory role of Tet2 in macrophage polarization under allergic inflammation. METHODS Macrophage immunofluorescence and eosinophil counts were used to confirm the inflammatory and polarized state in the nasal mucosa of AR patients. Additionally, we used Raw264.7 cells to explore the relationships among mRNA methylation, Tet2 expression, and the macrophage polarization process. Furthermore an Ovalbumin (OVA)-mediated AR mouse model was established with wild-type (WT) and Tet2 gene knockout (Tet2-/-) mice to verify the role of Tet2 in AR severity and macrophage polarization. The final stage comprised RNA sequencing, methylated RNA immunoprecipitation with qPCR (MeRIP-qPCR) using bone marrow-derived macrophages (BMDMs) from WT and Tet2-/- mice to explore the effect of Tet2 deficiency on the mRNA methylation level of M2-related genes under OVA treatment. A two-tailed Student's t-test was used to compare two groups, and Spearman correlation analysis was applied for relationship analysis. RESULTS M2-macrophages were confirmed as the dominant subtype associated with eosinophil levels in AR nasal tissues. In vitro analyses demonstrated that mRNA methylation and Tet2 are linked to M2 macrophages. Additionally, we found that Tet2 influences local allergic severity and macrophage polarization. Specifically, Tet2 deficiency decreased the mRNA m5C demethylation levels of Klf4 and Rock1, contributing to M2 polarization in an allergic state. CONCLUSIONS The findings of this study demonstrate that Tet2 may play a protective role in AR by negatively regulating M2-related factors through mRNA m5C demethylation. These findings provide new insights into AR therapy, suggesting that intervening in macrophage polarization at the post-transcriptional level could be a novel therapeutic strategy.
Collapse
Affiliation(s)
- Wenjun Fan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peiqiang Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu Tan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Lv
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huiqin Zhou
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Ding X, Zhang X, Cao J, Chen S, Chen Y, Yuan K, Chen B, Yang G, Li S, Yang J, Wang G, Tacke F, Lan T. Sphingosine Kinase 1 Aggravates Liver Fibrosis by Mediating Macrophage Recruitment and Polarization. Cell Mol Gastroenterol Hepatol 2024; 18:101406. [PMID: 39305988 PMCID: PMC11541818 DOI: 10.1016/j.jcmgh.2024.101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND & AIMS Sphingosine kinase 1 (SphK1) has distinct roles in the activation of Kupffer cells and hepatic stellate cells in liver fibrosis. Here, we aim to investigate the roles of SphK1 on hepatic macrophage recruitment and polarization in liver fibrosis. METHODS Liver fibrosis was induced by carbon tetrachloride in wild-type and SphK1-/- mice to study the recruitment and polarization of macrophages. The effects of SphK1 originated from macrophages or other liver cell types on liver fibrosis were further strengthened by bone marrow transplantation. The direct effects of SphK1 on macrophage polarization were also investigated in vitro. Expression analysis of SphK1 and macrophage polarization index was conducted with human liver samples. RESULTS SphK1 deletion attenuated the recruitment of hepatic macrophages along with reduced M1 and M2 polarization in mice induced by carbon tetrachloride. SphK1 deficiency in endogenous liver cells attenuated macrophage recruitment via C-C motif chemokine ligand 2. Macrophage SphK1 activated the ASK1-JNK1/2-p38 signaling pathway to promote M1 polarization. Furthermore, macrophage SphK1 downregulated small ubiquitin-like modifier-specific peptidase1 to decrease de-SUMOylation of Kruppel-like factor 4 to promote M2 polarization. Finally, we confirmed that SphK1 expression was elevated and positively correlated with macrophage M1 and M2 polarization in human fibrosis livers. CONCLUSIONS Our findings demonstrated that SphK1 aggravated liver fibrosis by promoting macrophage recruitment and M1/M2 polarization. SphK1 in macrophages is a potential therapeutic target for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xin Ding
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiang Zhang
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and the Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiafan Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shiyun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yinghua Chen
- Organ Transplant, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kai Yuan
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and the Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bo Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guizhi Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shengwen Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jundong Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guixiang Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Tian Lan
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
3
|
Li X, Ding Z, Tong Y. Identification of SUMOylation-related biomarkers in papillary thyroid carcinoma. Cancer Cell Int 2024; 24:149. [PMID: 38671425 PMCID: PMC11055338 DOI: 10.1186/s12935-024-03323-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Small ubiquitin-like modifier (SUMO) modification is increasingly recognized as critical in tumorigenesis and progression. This study identifies biomarkers linked to SUMOylation in papillary thyroid carcinoma (PTC), aiming to advance therapeutic and prognostic strategies. METHODS Employing PTC datasets and SUMO related genes (SRGs), we utilized univariate Cox regression for prognosis-related SRGs, conducted differential expression analyses, and integrated findings to pinpoint candidate genes. These genes underwent further validation through survival, gene set enrichment, immune infiltration, and drug sensitivity analyses, including external validation via quantitative RT-qPCR. In our final step, we conducted immunohistochemical staining on tumor samples from PTC patients at our center and integrated this with their clinical data to validate BMP8A's effectiveness in predicting recurrence in PTC. RESULTS Three biomarkers-BMP8A, RGS8, and SERPIND1-emerged as significant. Gene Set Enrichment Analysis (GSEA) showed their involvement in immune-related pathways, with differential immune infiltration patterns and drug response correlations observed, underscoring their potential for targeted therapy. Lastly, we validated the efficacy of BMP8A in predicting the recurrence of PTC in patients using clinical and pathological data from our center. CONCLUSION The study identifies BMP8A, RGS8, and SERPIND1 as key biomarkers associated with SUMOylation in PTC. Their linkage to immune response and drug sensitivity highlights their importance as targets for therapeutic intervention and prognosis in PTC research.
Collapse
Affiliation(s)
- Xiang Li
- Department of General Surgery, The Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Zigang Ding
- Department of General Surgery, The Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Yun Tong
- Department of Pain, The Affiliated Hospital of Jiujiang University, No. 57 East Xunyang Road, Jiujiang, 332000, Jiangxi, China.
| |
Collapse
|
4
|
Lin CC, Law BF, Hettick JM. 4,4'-Methylene diphenyl diisocyanate exposure induces expression of alternatively activated macrophage-associated markers and chemokines partially through Krüppel-like factor 4 mediated signaling in macrophages. Xenobiotica 2023; 53:653-669. [PMID: 38014489 PMCID: PMC11323807 DOI: 10.1080/00498254.2023.2284867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
Occupational exposure to the most widely used monomeric diisocyanate (dNCO), 4,4'-methylene diphenyl diisocyanate (MDI), may lead to the development of occupational asthma (OA). Alveolar macrophages with alternatively activated (M2) phenotype have been implicated in allergic airway responses and the pathogenesis of asthma. Recent in vivo studies demonstrate that M2 macrophage-associated markers and chemokines are induced by MDI-exposure, however, the underlying molecular mechanism(s) by which this proceeds is unclear.Following MDI exposure (in vivo and in vitro) M2 macrophage-associated transcription factors (TFs), markers, and chemokines were determined by RT-qPCR, western blots, and ELISA.Expression of M2 macrophage-associated TFs and markers including Klf4/KLF4, Cd206/CD206, Tgm2/TGM2, Ccl17/CCL17, Ccl22/CCL22, and CCL24 were induced by MDI/MDI-GSH exposure in bronchoalveolar lavage cells (BALCs)/THP-1 macrophages. The expression of CD206, TGM2, CCL17, CCL22, and CCL24 are upregulated by 3.83-, 7.69-, 6.22-, 6.08-, and 1.90-fold in KLF4-overexpressed macrophages, respectively. Endogenous CD206 and TGM2 were downregulated by 1.65-5.17-fold, and 1.15-1.78-fold, whereas CCL17, CCL22, and CCL24 remain unchanged in KLF4-knockdown macrophages. Finally, MDI-glutathione (GSH) conjugate-treated macrophages show increased chemotactic ability to T-cells and eosinophils, which may be attenuated by KLF4 knockdown.Our data suggest that MDI exposure may induce M2 macrophage-associated markers partially through induction of KLF4.
Collapse
Affiliation(s)
- Chen-Chung Lin
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Brandon F Law
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Justin M Hettick
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| |
Collapse
|
5
|
Žaloudíková M. Mechanisms and Effects of Macrophage Polarization and Its Specifics in Pulmonary Environment. Physiol Res 2023; 72:S137-S156. [PMID: 37565418 PMCID: PMC10660583 DOI: 10.33549/physiolres.935058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 06/09/2023] [Indexed: 12/01/2023] Open
Abstract
Macrophages are a specific group of cells found in all body tissues. They have specific characteristics in each of the tissues that correspond to the functional needs of the specific environment. These cells are involved in a wide range of processes, both pro-inflammatory and anti-inflammatory ("wound healing"). This is due to their specific capacity for so-called polarization, a phenotypic change that is, moreover, partially reversible compared to other differentiated cells of the human body. This promises a wide range of possibilities for its influence and thus therapeutic use. In this article, we therefore review the mechanisms that cause polarization, the basic classification of polarized macrophages, their characteristic markers and the effects that accompany these phenotypic changes. Since the study of pulmonary (and among them mainly alveolar) macrophages is currently the focus of scientific interest of many researchers and these macrophages are found in very specific environments, given mainly by the extremely high partial pressure of oxygen compared to other locations, which specifically affects their behavior, we will focus our review on this group.
Collapse
Affiliation(s)
- M Žaloudíková
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
6
|
Wei D, Tian X, Zhai X, Sun C. Adipose Tissue Macrophage-Mediated Inflammation in Obesity: A Link to Posttranslational Modification. Immunol Invest 2023:1-25. [PMID: 37129471 DOI: 10.1080/08820139.2023.2205883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Adipose tissue macrophages (ATM) are an essential type of immune cells in adipose tissue. Obesity induces the inflammation of adipose tissues, as expressed by ATM accumulation, that is more likely to become a source of systemic metabolic diseases, including insulin resistance. The process is characterized by the transcriptional regulation of inflammatory pathways by virtue of signaling molecules such as cytokines and free fatty acids. Notably, posttranslational modification (PTM) is a key link for these signaling molecules to trigger the proinflammatory or anti-inflammatory phenotype of ATMs. This review focuses on summarizing the functions and molecular mechanisms of ATMs regulating inflammation in obese adipose tissue. Furthermore, the role of PTM is elaborated, hoping to identify new horizons of treatment and prevention for obesity-mediated metabolic disease.
Collapse
Affiliation(s)
- Dongqin Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| | - Xin Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| | - Xiangyun Zhai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| |
Collapse
|
7
|
Li XM, Zhao ZY, Yu X, Xia QD, Zhou P, Wang SG, Wu HL, Hu J. Exploiting E3 ubiquitin ligases to reeducate the tumor microenvironment for cancer therapy. Exp Hematol Oncol 2023; 12:34. [PMID: 36998063 DOI: 10.1186/s40164-023-00394-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
AbstractTumor development relies on a complex and aberrant tissue environment in which cancer cells receive the necessary nutrients for growth, survive through immune escape, and acquire mesenchymal properties that mediate invasion and metastasis. Stromal cells and soluble mediators in the tumor microenvironment (TME) exhibit characteristic anti-inflammatory and protumorigenic activities. Ubiquitination, which is an essential and reversible posttranscriptional modification, plays a vital role in modulating the stability, activity and localization of modified proteins through an enzymatic cascade. This review was motivated by accumulating evidence that a series of E3 ligases and deubiquitinases (DUBs) finely target multiple signaling pathways, transcription factors and key enzymes to govern the functions of almost all components of the TME. In this review, we systematically summarize the key substrate proteins involved in the formation of the TME and the E3 ligases and DUBs that recognize these proteins. In addition, several promising techniques for targeted protein degradation by hijacking the intracellular E3 ubiquitin-ligase machinery are introduced.
Collapse
|
8
|
Bao X, Liu B, Jiang Y, Feng T, Cao W, Shi J, Jiang Y, Chen X, Yang J, Li J, Zhou Z. Loss of SENP3 mediated the formation of nasal polyps in nasal mucosal inflammation by increasing alternative activated macrophage. Immun Inflamm Dis 2023; 11:e781. [PMID: 36840491 PMCID: PMC9910171 DOI: 10.1002/iid3.781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND AND AIM Small ubiquitin-like modifier (SUMO)-specific protease (SENP)3 is a protease molecule that responds to reactive oxygen species (ROS) with high sensitivity. However, the role of ROS and SENP3 in the formation of nasal polyps (NPs) remains unclear. This study aimed to explore how SENP3 influenced the outcome of chronic rhinosinusitis (CRS) by altering macrophage function, that is, the formation of NPs. METHODS The alternative activation of macrophage (M2) was detected with CD68+ CD206+ in humans and CD206+ in mice. The nasal mucosa of patients with CRS was tested using flow cytometry (CD68, CD80, and CD206) and triple-color immunofluorescence staining (CD68, CD206, and SENP3). The bone marrow-derived macrophages from SENP3 knockout and control mice were stimulated with interleukin (IL)-4 and IL-13 to analyze alternative macrophage polarization in vitro. An animal model of allergic rhinitis was constructed using SENP3 knockout mice. CD206 was detected by immunofluorescence staining. The thickening of eosinophil-infiltrated mucosa was detected by Luna staining. RESULTS The number of CD68+ CD206+ M2 increased in the nasal mucosa of patients with CRS with NP (CRSwNP) compared with patients with CRS without NP (CRSsNP), but with no significant difference between the groups. SENP3 knockout increased the polarization of F4/80+ CD206+ M2. Meanwhile, the number of CD206+ M2 significantly increased in the allergic rhinitis model constructed using SENP3 knockout mice and controls, with a more obvious proliferation of the nasal mucosa. CONCLUSION Downregulation of SENP3 promotes the formation of nasal polyps mediated by increasing alternative activated macrophage in nasal mucosal inflammation.
Collapse
Affiliation(s)
- Ximing Bao
- Otorhinolaryngology Department of Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Bin Liu
- Otorhinolaryngology Department of Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Yongquan Jiang
- Otorhinolaryngology Department of Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Tingting Feng
- Otorhinolaryngology Department of Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Wanxin Cao
- Otorhinolaryngology Department of Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Jiali Shi
- Otorhinolaryngology Department of Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Yiming Jiang
- Otorhinolaryngology Department of Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Xiaorui Chen
- Anesthesia Department of Shanghai International Medical CenterShanghaiChina
| | - Jie Yang
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jiping Li
- Otorhinolaryngology Department of Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Zheng Zhou
- Otorhinolaryngology Department of Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
9
|
Wang K, Xiong J, Lu Y, Wang L, Tian T. SENP1-KLF4 signalling regulates LPS-induced macrophage M1 polarization. FEBS J 2023; 290:209-224. [PMID: 35942612 DOI: 10.1111/febs.16589] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 03/19/2022] [Accepted: 08/08/2022] [Indexed: 01/14/2023]
Abstract
Macrophages are very important immune cells and play critical roles in tumour immunity. Macrophage subtypes can be divided into classical polarization (M1 macrophages) and alternative polarization (M2 macrophages) under different microenvironments. Krüppel-like factor 4 (KLF4) is an essential transcription factor for macrophage polarization. Our previous study has shown that KLF4 SUMOylation plays an important role in macrophage M2 polarization. In the present study, small ubiquitin-like modifier (SUMO) specific peptidase (SENP)1 was identified as a specific protease for KLF4 de-SUMOylation, with the SENP1-KLF4 axis playing a vital role in M1 macrophage polarization by affecting the nuclear factor kappa B signalling pathway. Additionally, the activity of tumour cells was weakened by KLF4 SUMOylation deficient macrophages. Hence, the SENP1-KLF4 axis is considered to play a crucial role in regulating lipopolysaccharide-induced macrophage M1 polarization, thereby affecting the activity of tumour cells. Therefore, the SENP1-KLF4 axis has therapeutic potential as a target in cancer therapy.
Collapse
Affiliation(s)
- Kezhou Wang
- Department of Pathology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, Shanghai, China
| | - Jie Xiong
- Department of Gastroenterology and Hepatology, Tongji Hospital, Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yiwen Lu
- Department of Laboratory Medicine, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, Shanghai, China
| | - Lifeng Wang
- Department of Pathology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, Shanghai, China
| | - Tian Tian
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
10
|
Rakib A, Kiran S, Mandal M, Singh UP. MicroRNAs: a crossroad that connects obesity to immunity and aging. Immun Ageing 2022; 19:64. [PMID: 36517853 PMCID: PMC9749272 DOI: 10.1186/s12979-022-00320-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Obesity is characterized by an elevated amount of fat and energy storage in the adipose tissue (AT) and is believed to be the root cause of many metabolic diseases (MDs). Obesity is associated with low-grade chronic inflammation in AT. Like obesity, chronic inflammation and MDs are prevalent in the elderly. The resident immune microenvironment is not only responsible for maintaining AT homeostasis but also plays a crucial role in stemming obesity and related MDs. Mounting evidence suggests that obesity promotes activation in resident T cells and macrophages. Additionally, inflammatory subsets of T cells and macrophages accumulated into the AT in combination with other immune cells maintain low-grade chronic inflammation. microRNAs (miRs) are small non-coding RNAs and a crucial contributing factor in maintaining immune response and obesity in AT. AT resident T cells, macrophages and adipocytes secrete various miRs and communicate with other cells to create a potential effect in metabolic organ crosstalk. AT resident macrophages and T cells-associated miRs have a prominent role in regulating obesity by targeting several signaling pathways. Further, miRs also emerged as important regulators of cellular senescence and aging. To this end, a clear link between miRs and longevity has been demonstrated that implicates their role in regulating lifespan and the aging process. Hence, AT and circulating miRs can be used as diagnostic and therapeutic tools for obesity and related disorders. In this review, we discuss how miRs function as biomarkers and impact obesity, chronic inflammation, and aging.
Collapse
Affiliation(s)
- Ahmed Rakib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Sonia Kiran
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Mousumi Mandal
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA.
| |
Collapse
|
11
|
Zheng S, Liang Y, Tan Y, Li L, Liu Q, Liu T, Lu X. Small Tweaks, Major Changes: Post-Translational Modifications That Occur within M2 Macrophages in the Tumor Microenvironment. Cancers (Basel) 2022; 14:5532. [PMID: 36428622 PMCID: PMC9688270 DOI: 10.3390/cancers14225532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/21/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
The majority of proteins are subjected to post-translational modifications (PTMs), regardless of whether they occur in or after biosynthesis of the protein. Capable of altering the physical and chemical properties and functions of proteins, PTMs are thus crucial. By fostering the proliferation, migration, and invasion of cancer cells with which they communicate in the tumor microenvironment (TME), M2 macrophages have emerged as key cellular players in the TME. Furthermore, growing evidence illustrates that PTMs can occur in M2 macrophages as well, possibly participating in molding the multifaceted characteristics and physiological behaviors in the TME. Hence, there is a need to review the PTMs that have been reported to occur within M2 macrophages. Although there are several reviews available regarding the roles of M2 macrophages, the majority of these reviews overlooked PTMs occurring within M2 macrophages. Considering this, in this review, we provide a review focusing on the advancement of PTMs that have been reported to take place within M2 macrophages, mainly in the TME, to better understand the performance of M2 macrophages in the tumor microenvironment. Incidentally, we also briefly cover the advances in developing inhibitors that target PTMs and the application of artificial intelligence (AI) in the prediction and analysis of PTMs at the end of the review.
Collapse
Affiliation(s)
- Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Yan Liang
- Department of Pathology, Basic Medicine College, Xinjiang Medical University, Urumqi 830017, China
| | - Yiyi Tan
- Department of Pathology, Basic Medicine College, Xinjiang Medical University, Urumqi 830017, China
| | - Lu Li
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Tao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| |
Collapse
|
12
|
Rui Y, Han X, Jiang A, Hu J, Li M, Liu B, Qian F, Huang L. Eucalyptol prevents bleomycin-induced pulmonary fibrosis and M2 macrophage polarization. Eur J Pharmacol 2022; 931:175184. [PMID: 35964659 DOI: 10.1016/j.ejphar.2022.175184] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/23/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrosing interstitial pneumonia with limited therapeutic options. Eucalyptol, a terpenoid oxide isolated from eucalyptus species, reportedly exhibits various biological activities such as anti-inflammatory and antioxidant effects. In the present study, we aimed to determine whether eucalyptol could alleviate bleomycin (BLM)-induced pulmonary fibrosis and inhibit interleukin (IL)-13-induced M2 macrophage polarization. Upon treatment with eucalyptol, BLM-induced pulmonary fibrosis and lung inflammation were significantly reduced. The pulmonary neutrophil accumulation and pulmonary permeability were inhibited and the expression of hydroxyproline, alpha-smooth muscle actin, and fibronectin was significantly down-regulated. Eucalyptol also markedly inhibited the expression of arginase-1, Ym-1, IL-13, and transforming growth factor (TGF)-β1, reduced the production of IL-13, IL-6, tumor necrosis factor (TNF)-α, and attenuated the activity of TGF-β1 in bronchoalveolar lavage fluid (BALF). Furthermore, the in vitro assay revealed that eucalyptol disturbed M2 macrophage polarization and reduced the macrophage-mediated secretion of the profibrotic factor TGF-β1. Eucalyptol inhibited the nuclear location of signal transducer and activator of transcription 6 (STAT6) and the phosphorylation of STAT6 and p38 mitogen-activated protein kinase (p38 MAPK), and reduced the expression of their downstream transcription factors, krupple-like factor 4 (KLF4) and peroxisome proliferator-activated receptor gamma (PPAR-γ). These findings indicated that eucalyptol alleviates BLM-induced pulmonary fibrosis by regulating M2 macrophage polarization, which, in turn, inhibits the activation of signaling molecules (e.g., STAT6 and p38 MAPK) and the expression of transcription factors (e.g., KLF4 and PPAR-γ). Thus, eucalyptol might be a potential therapeutic agent for IPF.
Collapse
Affiliation(s)
- Yan Rui
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250000, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Department of Respiration and Critical Care Medicine, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Xiaojing Han
- Department of Clinical Laboratory Diagnostics, School of Laboratory Medicine, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Anbang Jiang
- Department of Respiration and Critical Care Medicine, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Junfeng Hu
- Department of Respiration and Critical Care Medicine, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Miao Li
- Department of General Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Bangzhu Liu
- Department of Respiratory Medicine, The Second People's Hospital of Anhui, Wuhu, Anhui, 233000, China
| | - Feng Qian
- Department of Clinical Laboratory Diagnostics, School of Laboratory Medicine, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, 233000, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 201100, China
| | - Linian Huang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250000, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Department of Respiration and Critical Care Medicine, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China.
| |
Collapse
|
13
|
Lee SY, Fierro J, Dipasquale J, Bastian A, Tran AM, Hong D, Chin B, Nguyen-Lee PJ, Mazal S, Espinal J, Thomas T, Dou H. Engineering Human Circulating Monocytes/Macrophages by Systemic Deliverable Gene Editing. Front Immunol 2022; 13:754557. [PMID: 35663976 PMCID: PMC9159279 DOI: 10.3389/fimmu.2022.754557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
Delivery of plasmid DNA to transfect human primary macrophages is extremely difficult, especially for genetic engineering. Engineering macrophages is imperative for the treatment of many diseases including infectious diseases, cancer, neurological diseases, and aging. Unfortunately, plasmid does not cross the nuclear membranes of terminally differentiated macrophages to integrate the plasmid DNA (pDNA) into their genome. To address this issue, we have developed a core-shell nanoparticle (NP) using our newly created cationic lipid to deliver the anti-inflammatory cytokine IL-4 pDNA (IL-4pDNA-NPs). Human blood monocyte-derived macrophages (MDM) were effectively transfected with IL-4pDNA-NPs. IL-4pDNA-NPs were internalized in MDM within 30 minutes and delivered into the nucleus within 2 hours. Exogenous IL-4 expression was detected within 1 - 2 days and continued up to 30 days. Functional IL-4 expression led to M2 macrophage polarization in vitro and in an in vivo mouse model of inflammation. These data suggest that these NPs can protect pDNA from degradation by nucleases once inside the cell, and can transport pDNA into the nucleus to enhance gene delivery in macrophages in vitro and in vivo. In this research, we developed a new method to deliver plasmids into the nucleus of monocytes and macrophages for gene-editing. Introducing IL-4 pDNA into macrophages provides a new gene therapy solution for the treatment of various diseases.
Collapse
Affiliation(s)
- So Yoon Lee
- Department of Molecular and Translational Medicine of Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Javier Fierro
- Department of Molecular and Translational Medicine of Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Jake Dipasquale
- Department of Molecular and Translational Medicine of Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Anthony Bastian
- Department of Molecular and Translational Medicine of Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - An M Tran
- Department of Molecular and Translational Medicine of Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Deawoo Hong
- Biomedical Sciences Graduate School, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Brandon Chin
- Biomedical Sciences Graduate School, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Paul J Nguyen-Lee
- Department of Molecular and Translational Medicine of Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Sarah Mazal
- Department of Molecular and Translational Medicine of Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Jamil Espinal
- Biomedical Sciences Graduate School, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Tima Thomas
- Department of Molecular and Translational Medicine of Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Huanyu Dou
- Department of Molecular and Translational Medicine of Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States.,Biomedical Sciences Graduate School, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| |
Collapse
|
14
|
Qin H, Chen Y, Wang S, Ge S, Pang Q. The role of KLF4 in melanogenesis and homeostasis in sheep melanocytes. Acta Histochem 2022; 124:151839. [PMID: 34998218 DOI: 10.1016/j.acthis.2021.151839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 11/01/2022]
Abstract
KLF4 expression has been associated with hair color in mammals and has also been found to regulate melanoma cell growth. Here, we assessed the influence of KLF4 on coat color formation and melanocytes. We found that KLF4 was highly expressed in the black skin of sheep both at the mRNA and protein levels compared with white skin. KLF4 immunostaining further showed that KLF4 protein was mainly expressed in epidermal, outer root, and hair bulb regions. In sheep melanocytes, the proliferation of melanocytes was inhibited by KLF4 overexpression and this decrease in cell proliferation was coupled with induction of the S phase, cell cycle arrest, and apoptosis. In vitro cell migration assays showed that KLF4 suppressed cell migration. In addition, KLF4 overexpression significantly increased melanin production and pigment-related gene expression. Collectively, our findings show that KLF4 is important for coat color formation and melanocyte homeostasis.
Collapse
|
15
|
Dong XC, Chowdhury K, Huang M, Kim HG. Signal Transduction and Molecular Regulation in Fatty Liver Disease. Antioxid Redox Signal 2021; 35:689-717. [PMID: 33906425 PMCID: PMC8558079 DOI: 10.1089/ars.2021.0076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Fatty liver disease is a major liver disorder in the modern societies. Comprehensive understanding of the pathophysiology and molecular mechanisms is essential for the prevention and treatment of the disease. Recent Advances: Remarkable progress has been made in the recent years in basic and translational research in the field of fatty liver disease. Multiple signaling pathways have been implicated in the development of fatty liver disease, including AMP-activated protein kinase, mechanistic target of rapamycin kinase, endoplasmic reticulum stress, oxidative stress, inflammation, transforming growth factor β, and yes1-associated transcriptional regulator/transcriptional coactivator with PDZ-binding motif (YAP/TAZ). In addition, critical molecular regulations at the transcriptional and epigenetic levels have been linked to the pathogenesis of fatty liver disease. Critical Issues: Some critical issues remain to be solved so that research findings can be translated into clinical applications. Robust and reliable biomarkers are needed for diagnosis of different stages of the fatty liver disease. Effective and safe molecular targets remain to be identified and validated. Prevention strategies require solid scientific evidence and population-wide feasibility. Future Directions: As more data are generated with time, integrative approaches are needed to comprehensively understand the disease pathophysiology and mechanisms at multiple levels from population, organismal system, organ/tissue, to cell. The interactions between genes and environmental factors require deeper investigation for the purposes of prevention and personalized treatment of fatty liver disease. Antioxid. Redox Signal. 35, 689-717.
Collapse
Affiliation(s)
- Xiaocheng Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Kushan Chowdhury
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Menghao Huang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hyeong Geug Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
16
|
K. ST, Joshi G, Arya P, Mahajan V, Chaturvedi A, Mishra RK. SUMO and SUMOylation Pathway at the Forefront of Host Immune Response. Front Cell Dev Biol 2021; 9:681057. [PMID: 34336833 PMCID: PMC8316833 DOI: 10.3389/fcell.2021.681057] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/11/2021] [Indexed: 01/14/2023] Open
Abstract
Pathogens pose a continuous challenge for the survival of the host species. In response to the pathogens, the host immune system mounts orchestrated defense responses initiating various mechanisms both at the cellular and molecular levels, including multiple post-translational modifications (PTMs) leading to the initiation of signaling pathways. The network of such pathways results in the recruitment of various innate immune components and cells at the site of infection and activation of the adaptive immune cells, which work in synergy to combat the pathogens. Ubiquitination is one of the most commonly used PTMs. Host cells utilize ubiquitination for both temporal and spatial regulation of immune response pathways. Over the last decade, ubiquitin family proteins, particularly small ubiquitin-related modifiers (SUMO), have been widely implicated in host immune response. SUMOs are ubiquitin-like (Ubl) proteins transiently conjugated to a wide variety of proteins through SUMOylation. SUMOs primarily exert their effect on target proteins by covalently modifying them. However, SUMO also engages in a non-covalent interaction with the SUMO-interacting motif (SIM) in target proteins. Unlike ubiquitination, SUMOylation alters localization, interactions, functions, or stability of target proteins. This review provides an overview of the interplay of SUMOylation and immune signaling and development pathways in general. Additionally, we discuss in detail the regulation exerted by covalent SUMO modifications of target proteins, and SIM mediated non-covalent interactions with several effector proteins. In addition, we provide a comprehensive review of the literature on the importance of the SUMO pathway in the development and maintenance of a robust immune system network of the host. We also summarize how pathogens modulate the host SUMO cycle to sustain infectability. Studies dealing mainly with SUMO pathway proteins in the immune system are still in infancy. We anticipate that the field will see a thorough and more directed analysis of the SUMO pathway in regulating different cells and pathways of the immune system. Our current understanding of the importance of the SUMO pathway in the immune system necessitates an urgent need to synthesize specific inhibitors, bioactive regulatory molecules, as novel therapeutic targets.
Collapse
Affiliation(s)
- Sajeev T. K.
- Nups and SUMO Biology Group, Department of Biological Sciences, IISER Bhopal, Bhopal, India
| | - Garima Joshi
- Nups and SUMO Biology Group, Department of Biological Sciences, IISER Bhopal, Bhopal, India
| | - Pooja Arya
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Vibhuti Mahajan
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Akanksha Chaturvedi
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Ram Kumar Mishra
- Nups and SUMO Biology Group, Department of Biological Sciences, IISER Bhopal, Bhopal, India
| |
Collapse
|
17
|
Xiao M, Bian Q, Lao Y, Yi J, Sun X, Sun X, Yang J. SENP3 loss promotes M2 macrophage polarization and breast cancer progression. Mol Oncol 2021; 16:1026-1044. [PMID: 33932085 PMCID: PMC8847990 DOI: 10.1002/1878-0261.12967] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/06/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
Tumor‐associated macrophages (TAM) play a crucial role in promoting cancer progression. Upon cytokine stimulation, TAM preferentially polarize to the anti‐inflammatory and pro‐tumor M2 subtype. The mechanism underlying such preferential polarization remains elusive. Here, we report that macrophage‐specific deletion of the SUMO‐specific protease Sentrin/SUMO‐specific protease 3 promotes macrophage polarization towards M2 in bone marrow‐derived macrophage (BMDM) induced by interleukin 4 (IL‐4)/IL‐13 and in an ex vivo model (murine Py8119 cell line), as well as in a mouse orthotopic tumor model. Notably, Sentrin/SUMO‐specific protease 3 (SENP3) loss in macrophages accelerated breast cancer malignancy in ex vivo and in vivo models. Mechanistically, we identified Akt Serine/threonine kinase 1 (Akt1) as the substrate of SENP3 and found that the enhanced Akt1 SUMOylation upon SENP3 loss resulted in Akt1 hyper‐phosphorylation and activation, which facilitates M2 polarization. Analysis of clinical data showed that a lower level of SENP3 in TAM has a strong negative correlation with the level of the M2 marker CD206, as well as with a worse clinical outcome. Thus, increased Akt1 SUMOylation as a result of SENP3 deficiency modulates polarization of macrophages to the M2 subtype within a breast cancer microenvironment, which in turn promotes tumor progression.
Collapse
Affiliation(s)
- Ming Xiao
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Qi Bian
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Yimin Lao
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Jing Yi
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Xueqing Sun
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Xuxu Sun
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Jie Yang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
18
|
Yang L, Zhou W, Lin H. Posttranslational Modifications of Smurfs: Emerging Regulation in Cancer. Front Oncol 2021; 10:610663. [PMID: 33718111 PMCID: PMC7950759 DOI: 10.3389/fonc.2020.610663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Smad ubiquitination regulatory factors (Smurfs) belong to the Nedd4 subfamily of HECT-type E3 ubiquitin ligases. Under normal situations, Smurfs are exactly managed by upstream regulators, and thereby strictly control tumor biological processes, including cell growth, differentiation, apoptosis, polarization, epithelial mesenchymal transition (EMT), and invasion. Disruption of Smurf activity has been implicated in cancer progression, and Smurf activity is controlled by a series of posttranslational modifications (PTMs), including phosphorylation, ubiquitination, neddylation, sumoylation, and methylation. The effect and function of Smurfs depend on PTMs and regulate biological processes. Specifically, these modifications regulate the functional expression of Smurfs by affecting protein degradation and protein interactions. In this review, we summarize the complexity and diversity of Smurf PTMs from biochemical and biological perspectives and highlight the understanding of their roles in cancer.
Collapse
Affiliation(s)
- Longtao Yang
- Second Clinical Medical School, Nanchang University, Nanchang, China
| | - Wenwen Zhou
- Second Clinical Medical School, Nanchang University, Nanchang, China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Li X, Xia Q, Mao M, Zhou H, Zheng L, Wang Y, Zeng Z, Yan L, Zhao Y, Shi J. Annexin-A1 SUMOylation regulates microglial polarization after cerebral ischemia by modulating IKKα stability via selective autophagy. SCIENCE ADVANCES 2021; 7:7/4/eabc5539. [PMID: 33523920 PMCID: PMC7817101 DOI: 10.1126/sciadv.abc5539] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/01/2020] [Indexed: 05/31/2023]
Abstract
Annexin-A1 (ANXA1) has recently been proposed to play a role in microglial activation after brain ischemia, but the underlying mechanism remains poorly understood. Here, we demonstrated that ANXA1 is modified by SUMOylation, and SUMOylated ANXA1 could promote the beneficial phenotype polarization of microglia. Mechanistically, SUMOylated ANXA1 suppressed nuclear factor κB activation and the production of proinflammatory mediators. Further study revealed that SUMOylated ANXA1 targeted the IκB kinase (IKK) complex and selectively enhanced IKKα degradation. Simultaneously, we detected that SUMOylated ANXA1 facilitated the interaction between IKKα and NBR1 to promote IKKα degradation through selective autophagy. Further work revealed that the overexpression of SUMOylated ANXA1 in microglia/macrophages resulted in marked improvement in neurological function in a mouse model of cerebral ischemia. Collectively, our study demonstrates a previously unidentified mechanism whereby SUMOylated ANXA1 regulates microglial polarization and strongly indicates that up-regulation of ANXA1 SUMOylation in microglia may provide therapeutic benefits for cerebral ischemia.
Collapse
Affiliation(s)
- Xing Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, Hubei Province, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Qian Xia
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Meng Mao
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, Hubei Province, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Huijuan Zhou
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, Hubei Province, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Lu Zheng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, Hubei Province, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yi Wang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, Hubei Province, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhen Zeng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, Hubei Province, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Lulu Yan
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, Hubei Province, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jing Shi
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, Hubei Province, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
20
|
Maia J, Otake AH, Poças J, Carvalho AS, Beck HC, Magalhães A, Matthiesen R, Strano Moraes MC, Costa-Silva B. Transcriptome Reprogramming of CD11b + Bone Marrow Cells by Pancreatic Cancer Extracellular Vesicles. Front Cell Dev Biol 2020; 8:592518. [PMID: 33330473 PMCID: PMC7729189 DOI: 10.3389/fcell.2020.592518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancers (PC) are highly metastatic with poor prognosis, mainly due to delayed detection. We previously showed that PC-derived extracellular vesicles (EVs) act on macrophages residing in the liver, eliciting extracellular matrix remodeling in this organ and marked hepatic accumulation of CD11b+ bone marrow (BM) cells, which support PC liver metastasis. We here show that PC-EVs also bind to CD11b+ BM cells and induce the expansion of this cell population. Transcriptomic characterization of these cells shows that PC-EVs upregulate IgG and IgA genes, which have been linked to the presence of monocytes/macrophages in tumor microenvironments. We also report here the transcriptional downregulation of genes linked to monocyte/macrophage activation, trafficking, and expression of inflammatory molecules. Together, these results show for the first time the existence of a PC-BM communication axis mediated by EVs with a potential role in PC tumor microenvironments.
Collapse
Affiliation(s)
- Joana Maia
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
- Graduate Program in Areas of Basic and Applied Biology, University of Porto, Porto, Portugal
| | - Andreia Hanada Otake
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Juliana Poças
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Ana Sofia Carvalho
- Computational and Experimental Biology Group, CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Ana Magalhães
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Rune Matthiesen
- Computational and Experimental Biology Group, CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | | | - Bruno Costa-Silva
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
21
|
Wang Z, Li C, Sun X, Li Z, Li J, Wang L, Sun Y. Hypermethylation of miR-181b in monocytes is associated with coronary artery disease and promotes M1 polarized phenotype via PIAS1-KLF4 axis. Cardiovasc Diagn Ther 2020; 10:738-751. [PMID: 32968630 DOI: 10.21037/cdt-20-407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Dysregulated microRNAs are involved in the macrophage polarization and atherosclerotic development. Apart from microRNAs, alteration in DNA methylation is considered as one of the most frequent epigenetic changes. The purpose of the research is to investigate the altered methylation status of miR-181b in the circulating monocytes from patients with coronary artery disease (CAD) and explore the underlying mechanisms. Methods We examined the methylation status of miR-181b in purified circulating monocytes from patients with CAD and healthy controls. We then transfected monocytes with miR-181b mimics and determined the role of miR-181b on the phenotypic switch of macrophages and inflammatory response. DNA methylation levels determined by MethyLight PCR and pyrosequencing at the promoter of miR-181b significantly increased in CAD patients. Based on TargetScan database, we identified PIAS1 as the target gene of miR-181b and explored the interaction of miR-181b and PIAS1 by Dual-Luciferase assay, quantitative PCR and immunoblots. We also investigated the role of miR-181b and PIAS1 on macrophage polarization and inflammation. Results Hypermethylation at the promoter of miR-181b directly contributed to the decrease of miR-181b activity and expression. Overexpression of miR-181b reduced M1 polarization and facilitated M2 polarization determined by quantitative PCR. While knockdown of PIAS1 induced KLF4 degradation and SUMOylation in monocytes, miR-181b mimics reverse the KLF4 SUMOylation via suppression of PIAS1. Moreover, KLF4 SUMOylation by PIAS1 reversed M1 polarization induced by depletion of miR-181b in monocytes. Conclusions Hypermethylation of miR-181b induces M1 polarization and promotes atherosclerosis through activation of PIAS1 and KLF4 SUMOylation in macrophages.
Collapse
Affiliation(s)
- Zhonghua Wang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunlei Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinyong Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhuqin Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lanfeng Wang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanming Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Khan MJ, Singh P, Dohare R, Jha R, Rahmani AH, Almatroodi SA, Ali S, Syed MA. Inhibition of miRNA-34a Promotes M2 Macrophage Polarization and Improves LPS-Induced Lung Injury by Targeting Klf4. Genes (Basel) 2020; 11:genes11090966. [PMID: 32825525 PMCID: PMC7563942 DOI: 10.3390/genes11090966] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/05/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an outcome of an accelerated immune response that starts initially as a defensive measure, however, due to non-canonical signaling, it later proves to be fatal not only to the affected tissue but to the whole organ system. microRNAs are known for playing a decisive role in regulating the expression of genes involved in diverse functions such as lung development, repair, and inflammation. In-silico analyses of clinical data and microRNA databases predicted a probable interaction between miRNA-34a (miR-34a), mitogen-activated protein kinase 1 (ERK), and kruppel like factor 4 (Klf4). Parallel to in silico results, here, we show that intra-tracheal instillation of lipopolysaccharides (LPS) to mice enhanced miR-34a expression in lung macrophages. Inhibition of miR-34a significantly improved lung histology, whereas over-expression of miR-34a worsened the lung injury phenotype. miR-34a over-expression in macrophages were also demonstrated to favour pro-inflammatory M1 phenotype and inhibition of M2 polarization. In a quest to confirm this likely interaction, expression profiles of Klf4 as the putative target were analyzed in different macrophage polarizing conditions. Klf4 expression was found to be prominent in the miR-34a inhibitor-treated group but down-regulated in the miR-34a mimic treated group. Immuno-histopathological analyses of lung tissue from the mice treated with miR-34a inhibitor also showed reduced inflammatory M1 markers as well as enhanced cell proliferation. The present study indicates that miR-34a intensified LPS-induced lung injury and inflammation by regulating Klf4 and macrophage polarization, which may serve as a potential therapeutic target for acute lung injury/ARDS.
Collapse
Affiliation(s)
- Mohd Junaid Khan
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (P.S.); (R.D.); (R.J.)
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (P.S.); (R.D.); (R.J.)
| | - Rishabh Jha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (P.S.); (R.D.); (R.J.)
| | - Arshad H. Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.H.R.); (S.A.A.)
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.H.R.); (S.A.A.)
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences Jamia Hamdard, New Delhi 110025, India;
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India;
- Correspondence: ; Tel.: +91-995-378-6440
| |
Collapse
|
23
|
Coakley G, Volpe B, Bouchery T, Shah K, Butler A, Geldhof P, Hatherill M, Horsnell WGC, Esser-von Bieren J, Harris NL. Immune serum-activated human macrophages coordinate with eosinophils to immobilize Ascaris suum larvae. Parasite Immunol 2020; 42:e12728. [PMID: 32394439 DOI: 10.1111/pim.12728] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
Helminth infection represents a major health problem causing approximately 5 million disability-adjusted life years worldwide. Concerns that repeated anti-helminthic treatment may lead to drug resistance render it important that vaccines are developed but will require increased understanding of the immune-mediated cellular and antibody responses to helminth infection. IL-4 or antibody-activated murine macrophages are known to immobilize parasitic nematode larvae, but few studies have addressed whether this is translatable to human macrophages. In the current study, we investigated the capacity of human macrophages to recognize and attack larval stages of Ascaris suum, a natural porcine parasite that is genetically similar to the human helminth Ascaris lumbricoides. Human macrophages were able to adhere to and trap A suum larvae in the presence of either human or pig serum containing Ascaris-specific antibodies and other factors. Gene expression analysis of serum-activated macrophages revealed that CCL24, a potent eosinophil attractant, was the most upregulated gene following culture with A suum larvae in vitro, and human eosinophils displayed even greater ability to adhere to, and trap, A suum larvae. These data suggest that immune serum-activated macrophages can recruit eosinophils to the site of infection, where they act in concert to immobilize tissue-migrating Ascaris larvae.
Collapse
Affiliation(s)
- Gillian Coakley
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Beatrice Volpe
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Tiffany Bouchery
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Kathleen Shah
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Alana Butler
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Peter Geldhof
- Department of Virology, Parasitology and Immunology, Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mark Hatherill
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - William G C Horsnell
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Julia Esser-von Bieren
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland.,Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Nicola Laraine Harris
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland
| |
Collapse
|
24
|
Abdelaziz MH, Abdelwahab SF, Wan J, Cai W, Huixuan W, Jianjun C, Kumar KD, Vasudevan A, Sadek A, Su Z, Wang S, Xu H. Alternatively activated macrophages; a double-edged sword in allergic asthma. J Transl Med 2020; 18:58. [PMID: 32024540 PMCID: PMC7003359 DOI: 10.1186/s12967-020-02251-w] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Macrophages are heterogenous phagocytic cells with an important role in the innate immunity. They are, also, significant contributors in the adaptive immune system. Macrophages are the most abundant immune cells in the lung during allergic asthma, which is the most common chronic respiratory disease of both adults and children. Macrophages activated by Th1 cells are known as M1 macrophages while those activated by IL-4 and IL-13 are called alternatively activated macrophages (AAM) or M2 cells. AAM are subdivided into four distinct subtypes (M2a, M2b, M2c and M2d), depending on the nature of inducing agent and the expressed markers. BODY: IL-4 is the major effector cytokine in both alternative activation of macrophages and pathogenesis of asthma. Thus, the role of M2a macrophages in asthma is a major concern. However, this is controversial. Therefore, further studies are required to improve our knowledge about the role of IL-4-induced macrophages in allergic asthma, through precisive elucidation of the roles of specific M2a proteins in the pathogenesis of asthma. In the current review, we try to illustrate the different functions of M2a macrophages (protective and pathogenic roles) in the pathogenesis of asthma, including explanation of how different M2a proteins and markers act during the pathogenesis of allergic asthma. These include surface markers, enzymes, secreted proteins, chemokines, cytokines, signal transduction proteins and transcription factors. CONCLUSIONS AAM is considered a double-edged sword in allergic asthma. Finally, we recommend further studies that focus on increased selective expression or suppression of protective and pathogenic M2a markers.
Collapse
Affiliation(s)
- Mohamed Hamed Abdelaziz
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Sayed F Abdelwahab
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Pharmaceutical Technology, Taif University, College of Pharmacy, Taif, 21974, Kingdom of Saudi Arabia.
| | - Jie Wan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wei Cai
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wang Huixuan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Cheng Jianjun
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Kesavan Dinesh Kumar
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Aparna Vasudevan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ahmed Sadek
- Department of Microbiology & Immunology, School of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Zhaoliang Su
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Shengjun Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huaxi Xu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
25
|
Zou H, Chen H, Zhou Z, Wan Y, Liu Z. ATXN3 promotes breast cancer metastasis by deubiquitinating KLF4. Cancer Lett 2019; 467:19-28. [PMID: 31563563 DOI: 10.1016/j.canlet.2019.09.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/24/2022]
Abstract
Krüppel-like factor 4 (KLF4) is an important transcription factor implicated in a variety of essential cellular processes. Aberrant KLF4 expression is closely related to tumourigenesis and tumour progression. The rapid turnover of the KLF4 protein indicates an important role for the posttranslational modifications (PTMs) of KLF4. To date, E3 ligases mediating KLF4 ubiquitination have been widely reported, yet the deubiquitinating mechanism of KLF4 remains largely unknown. We screened a library of 65 deubiquitinating enzymes and identified ATXN3 as a deubiquitinating enzyme of KLF4. Subsequent immunoprecipitation assays confirmed that ATXN3 bound to KLF4, mediating the deubiquitination and stabilization of KLF4 protein levels. Furthermore, we demonstrated that ATXN3 promoted breast cancer cell metastasis via KLF4 in vitro and in vivo. Finally, the protein expression analysis of human breast cancer specimens demonstrated that ATXN3 significantly correlated with KLF4. High ATXN3/KLF4 expression was associated with a poor prognosis in breast cancer patients. Collectively, we identified ATXN3 as a novel deubiquitinating enzyme of KLF4, providing a new explanation for breast cancer metastasis, and proposed ATXN3 as a potential target for breast cancer metastasis treatment.
Collapse
Affiliation(s)
- Haojing Zou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Hongyan Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhuan Zhou
- Department of Obstetrics and Gynecology, Department of Pharmacology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yong Wan
- Department of Obstetrics and Gynecology, Department of Pharmacology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
26
|
Guo H, Xu J, Zheng Q, He J, Zhou W, Wang K, Huang X, Fan Q, Ma J, Cheng J, Mei W, Xing R, Cai R. NRF2 SUMOylation promotes de novo serine synthesis and maintains HCC tumorigenesis. Cancer Lett 2019; 466:39-48. [PMID: 31546024 DOI: 10.1016/j.canlet.2019.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/20/2019] [Accepted: 09/18/2019] [Indexed: 12/23/2022]
Abstract
Nuclear factor erythroid-2 related factor 2 (NRF2) is a pivotal transcription factor that maintains cellular redox homeostasis and facilitates the development of malignant tumor phenotypes. At the molecular level, NRF2 promotes de novo serine synthesis and SUMOylation affects its function. Our results indicated that the SUMO1 acceptor site of NRF2 is the conserved lysine residue 110 (K110), and that NRF2 SUMOylation deficiency inhibited tumorigenesis in hepatocellular carcinoma (HCC). Mechanistically, NRF2 SUMOylation promoted de novo serine synthesis in HCC by enhancing the clearance of intracellular reactive oxygen species (ROS) and up-regulating phosphoglycerate dehydrogenase (PHGDH). More importantly, serine starvation increased the level of NRF2 SUMOylation, leading to sustained HCC growth. Collectively, our results indicate the presence of a novel NRF2 SUMOylation-mediated signaling process that maintains HCC tumorigenesis in normal conditions and in response to metabolic stress.
Collapse
Affiliation(s)
- Haoyan Guo
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Department of Pathophysiology, Dalian Medical University, Dalian, 116085, China; Department of Pathology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Jiaqian Xu
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Quan Zheng
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianli He
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Zhou
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kezhou Wang
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xian Huang
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiuju Fan
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiao Ma
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinke Cheng
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenhan Mei
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Rong Xing
- Department of Pathophysiology, Dalian Medical University, Dalian, 116085, China.
| | - Rong Cai
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
27
|
M2 Macrophages as a Potential Target for Antiatherosclerosis Treatment. Neural Plast 2019; 2019:6724903. [PMID: 30923552 PMCID: PMC6409015 DOI: 10.1155/2019/6724903] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/06/2018] [Accepted: 11/28/2018] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a chronic progressive inflammation course, which could induce life-threatening diseases such as stroke and myocardial infarction. Optimal medical treatments for atherosclerotic risk factors with current antihypertensive and lipid-lowering drugs (for example, statins) are widely used in clinical practice. However, many patients with established disease still continue to have recurrent cardiovascular events in spite of treatment with a state-of-the-art therapy. Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of mortality worldwide. Hence, current treatment of atherosclerosis is still far from being satisfactory. Recently, M2 macrophages have been found associated with atherosclerosis regression. The M2 phenotype can secrete anti-inflammatory factors such as IL-10 and TGF-β, promote tissue remodeling and repairing through collagen formation, and clear dying cells and debris by efferocytosis. Therefore, modulators targeting macrophages' polarization to the M2 phenotype could be another promising treatment strategy for atherosclerosis. Two main signaling pathways, the Akt/mTORC/LXR pathway and the JAK/STAT6 pathway, are found playing important roles in M2 polarization. In addition, researchers have reported several potential approaches to modulate M2 polarization. Inhibiting or activating some kinds of enzymes, affecting transcription factors, or acting on several membrane receptors could regulate the polarization of the M2 phenotype. Besides, biomolecules, for example vitamin D, were found to affect the process of M2 polarization. Pomegranate juice could promote M2 polarization via unclear mechanism. In this review, we will discuss how M2 macrophages affect atherosclerosis regression, signal transduction in M2 polarization, and outline potential targets and compounds that affect M2 polarization, thus controlling the progress of atherosclerosis.
Collapse
|
28
|
Ahmed A, Wang LL, Abdelmaksoud S, Aboelgheit A, Saeed S, Zhang CL. Minocycline modulates microglia polarization in ischemia-reperfusion model of retinal degeneration and induces neuroprotection. Sci Rep 2017; 7:14065. [PMID: 29070819 PMCID: PMC5656679 DOI: 10.1038/s41598-017-14450-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
Retinal ischemia-reperfusion (IR) injury causes irreversible loss of neurons and ultimately leads to permanent visual impairment and blindness. The cellular response under this pathological retinal condition is less clear. Using genetically modified mice, we systematically examined the behavior of microglia/macrophages after injury. We show that IR leads to activation of microglia/macrophages indicated by migration and proliferation of resident microglia and recruitment of circulating monocytes. IR-induced microglia/macrophages associate with apoptotic retinal neurons. Very interestingly, neuron loss can be mitigated by minocycline treatment. Minocycline induces Il4 expression and M2 polarization of microglia/macrophages. IL4 neutralization dampens minocycline-induced M2 polarization and neuroprotection. Given a well-established safety profile as an antibiotic, our results provide a rationale for using minocycline as a therapeutic agent for treating ischemic retinal degeneration.
Collapse
Affiliation(s)
- Amel Ahmed
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA.,Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Lei-Lei Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Safaa Abdelmaksoud
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amal Aboelgheit
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Safaa Saeed
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA. .,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA.
| |
Collapse
|