1
|
Hussein MAF, Lismont C, Costa CF, Li H, Claessens F, Fransen M. Characterization of the Peroxisomal Proteome and Redox Balance in Human Prostate Cancer Cell Lines. Antioxidants (Basel) 2024; 13:1340. [PMID: 39594482 PMCID: PMC11591464 DOI: 10.3390/antiox13111340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Prostate cancer (PCa) is associated with disruptions in cellular redox balance. Given the intricate role of peroxisomes in redox metabolism, we conducted comprehensive proteomics analyses to compare peroxisomal and redox protein profiles between benign (RWPE-1) and malignant (22Rv1, LNCaP, and PC3) prostate cell lines. Our analyses revealed significant enrichment of the "peroxisome" pathway among proteins notably upregulated in androgen receptor (AR)-positive cell lines. In addition, catalase (CAT) activity was consistently higher in these malignant cell lines compared to RWPE-1, which contrasts with previous studies reporting lower CAT levels and increased H2O2 levels in PCa tissues compared to adjacent normal tissues. To mimic this clinical scenario, we used RNA interference to knock down CAT expression. Our results show that reduced CAT levels enhanced 22Rv1 and LNCaP cell proliferation. R1881-induced activation of AR, a key driver of PCa, increased expression of the H2O2-producing peroxisomal β-oxidation enzymes acyl-coenzyme A oxidase 1 and 3, reduced CAT expression and activity, and elevated peroxisomal H2O2 levels. Considering these changes and other antioxidant enzyme profile alterations, we propose that enhanced AR activity in PCa reduces CAT function, leading to increased peroxisomal H2O2 levels that trigger adaptive stress responses to promote cell survival, growth, and proliferation.
Collapse
Affiliation(s)
- Mohamed A. F. Hussein
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (M.A.F.H.); (C.L.); (C.F.C.); (H.L.)
- Department of Biochemistry, Faculty of Pharmacy, Assiut University, Asyut 71515, Egypt
| | - Celien Lismont
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (M.A.F.H.); (C.L.); (C.F.C.); (H.L.)
| | - Cláudio F. Costa
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (M.A.F.H.); (C.L.); (C.F.C.); (H.L.)
| | - Hongli Li
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (M.A.F.H.); (C.L.); (C.F.C.); (H.L.)
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium;
| | - Marc Fransen
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (M.A.F.H.); (C.L.); (C.F.C.); (H.L.)
| |
Collapse
|
2
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
3
|
Kumar R, Sena LA, Denmeade SR, Kachhap S. The testosterone paradox of advanced prostate cancer: mechanistic insights and clinical implications. Nat Rev Urol 2023; 20:265-278. [PMID: 36543976 PMCID: PMC10164147 DOI: 10.1038/s41585-022-00686-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Abstract
The discovery of the benefits of castration for prostate cancer treatment in 1941 led to androgen deprivation therapy, which remains a mainstay of the treatment of men with advanced prostate cancer. However, as early as this original publication, the inevitable development of castration-resistant prostate cancer was recognized. Resistance first manifests as a sustained rise in the androgen-responsive gene, PSA, consistent with reactivation of the androgen receptor axis. Evaluation of clinical specimens demonstrates that castration-resistant prostate cancer cells remain addicted to androgen signalling and adapt to chronic low-testosterone states. Paradoxically, results of several studies have suggested that treatment with supraphysiological levels of testosterone can retard prostate cancer growth. Insights from these studies have been used to investigate administration of supraphysiological testosterone to patients with prostate cancer for clinical benefits, a strategy that is termed bipolar androgen therapy (BAT). BAT involves rapid cycling from supraphysiological back to near-castration testosterone levels over a 4-week cycle. Understanding how BAT works at the molecular and cellular levels might help to rationalize combining BAT with other agents to achieve increased efficacy and tumour responses.
Collapse
Affiliation(s)
- Rajendra Kumar
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Laura A Sena
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Samuel R Denmeade
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Sushant Kachhap
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
4
|
Nicco C, Thomas M, Guillermet J, Havard M, Laurent-Tchenio F, Doridot L, Dautry F, Batteux F, Tchenio T. Mechanistic target of rapamycin (mTOR) regulates self-sustained quiescence, tumor indolence, and late clinical metastasis in a Beclin-1-dependent manner. Cell Cycle 2023; 22:542-564. [PMID: 36123968 PMCID: PMC9928463 DOI: 10.1080/15384101.2022.2123187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Self-sustained quiescence (SSQ) has been characterized as a stable but reversible non-proliferative cellular state that limits the cloning of cultured cancer cells. By developing refined clonogenic assays, we showed here that cancer cells in SSQ can be selected with anticancer agents and that culture at low cell density induced SSQ in pancreas and prostate adenocarcinoma cells. Pre-culture of cells in 3D or their pretreatment with pharmacological inhibitors of mechanistic target of rapamycin (mTOR) synergize with low cell density for induction of SSQ in a Beclin-1-dependent manner. Dissociated pancreatic adenocarcinoma (PAAD) cells rendered defective for SSQ by down-regulating Beclin-1 expression exhibit higher tumor growth rate when injected subcutaneously into mice. Conversely, dissociated PAAD cells in SSQ promote the formation of small indolent tumors that eventually transitioned to a rapid growth phase. Ex vivo clonogenic assays showed that up to 40% of clonogenic cancer cells enzymatically dissociated from resected fast-growing tumors could enter SSQ, suggesting that SSQ could significantly impact the proliferation of cancer cells that are naturally dispersed from tumors. Remarkably, the kinetics of clinical metastatic recurrence in 124 patients with pancreatic adenocarcinoma included in the TGCA-PAAD project could be predicted from Beclin-1 and Cyclin-A2 mRNA levels in their primary tumor, Cyclin A2 mRNA being a marker of both cell proliferation and mTOR complex 1 activity. Overall, our data show that SSQ is likely to promote the late development of clinical metastases and suggest that identifying new agents targeting cancer cells in SSQ could help improve patient survival.
Collapse
Affiliation(s)
- Carole Nicco
- Institut Cochin, INSERM U1016/CNRS UMR 8104, Université de Paris, Paris, France
| | - Marine Thomas
- Institut Cochin, INSERM U1016/CNRS UMR 8104, Université de Paris, Paris, France
| | - Julie Guillermet
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm U1037, CNRS U5071, Université Toulouse III, Toulouse, France
| | - Maryline Havard
- Laboratory of Biology and Applied Pharmacology (LBPA), CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Fanny Laurent-Tchenio
- Laboratory of Biology and Applied Pharmacology (LBPA), CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Ludivine Doridot
- Institut Cochin, INSERM U1016/CNRS UMR 8104, Université de Paris, Paris, France
| | - François Dautry
- Laboratory of Biology and Applied Pharmacology (LBPA), CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Frédéric Batteux
- Institut Cochin, INSERM U1016/CNRS UMR 8104, Université de Paris, Paris, France
| | - Thierry Tchenio
- Institut Cochin, INSERM U1016/CNRS UMR 8104, Université de Paris, Paris, France
| |
Collapse
|
5
|
Discovery proteomics defines androgen-regulated glycoprotein networks in prostate cancer cells, as well as putative biomarkers of prostatic diseases. Sci Rep 2021; 11:22208. [PMID: 34782677 PMCID: PMC8592995 DOI: 10.1038/s41598-021-01554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/20/2021] [Indexed: 12/05/2022] Open
Abstract
Supraphysiologic androgen (SPA) inhibits cell proliferation in prostate cancer (PCa) cells by transcriptional repression of DNA replication and cell-cycle genes. In this study, quantitative glycoprotein profiling identified androgen-regulated glycoprotein networks associated with SPA-mediated inhibition of PCa cell proliferation, and androgen-regulated glycoproteins in clinical prostate tissues. SPA-regulated glycoprotein networks were enriched for translation factors and ribosomal proteins, proteins that are known to be O-GlcNAcylated in response to various cellular stresses. Thus, androgen-regulated glycoproteins are likely to be targeted for O-GlcNAcylation. Comparative analysis of glycosylated proteins in PCa cells and clinical prostate tissue identified androgen-regulated glycoproteins that are differentially expressed prostate tissues at various stages of cancer. Notably, the enzyme ectonucleoside triphosphate diphosphohydrolase 5 was found to be an androgen-regulated glycoprotein in PCa cells, with higher expression in cancerous versus non-cancerous prostate tissue. Our glycoproteomics study provides an experimental framework for characterizing androgen-regulated proteins and glycoprotein networks, toward better understanding how this subproteome leads to physiologic and supraphysiologic proliferation responses in PCa cells, and their potential use as druggable biomarkers of dysregulated AR-dependent signaling in PCa cells.
Collapse
|
6
|
Nordeen SK, Su LJ, Osborne GA, Hayman PM, Orlicky DJ, Wessells VM, van Bokhoven A, Flaig TW. Titration of Androgen Signaling: How Basic Studies Have Informed Clinical Trials Using High-Dose Testosterone Therapy in Castrate-Resistant Prostate Cancer. Life (Basel) 2021; 11:884. [PMID: 34575033 PMCID: PMC8465783 DOI: 10.3390/life11090884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Since the Nobel Prize-winning work of Huggins, androgen ablation has been a mainstay for treatment of recurrent prostate cancer. While initially effective for most patients, prostate cancers inevitably develop the ability to survive, grow, and metastasize further, despite ongoing androgen suppression. Here, we briefly review key preclinical studies over decades and include illustrative examples from our own laboratories that suggest prostate cancer cells titrate androgen signaling to optimize growth. Such laboratory-based studies argue that adaptations that allow growth in a low-androgen environment render prostate cancer sensitive to restoration of androgens, especially at supraphysiologic doses. Based on preclinical data as well as clinical observations, trials employing high-dose testosterone (HDT) therapy have now been conducted. These trials suggest a clinical benefit in cancer response and quality of life in a subset of castration-resistant prostate cancer patients. Laboratory studies also suggest that HDT may yet be optimized further to improve efficacy or durability of response. However, laboratory observations suggest that the cancer will inevitably adapt to HDT, and, as with prior androgen deprivation, disease progression follows. Nonetheless, the adaptations made to render tumors resistant to hormonal manipulations may reveal vulnerabilities that can be exploited to prolong survival and provide other clinical benefits.
Collapse
Affiliation(s)
- Steven K. Nordeen
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; (S.K.N.); (D.J.O.); (A.v.B.)
| | - Lih-Jen Su
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; (L.-J.S.); (G.A.O.); (P.M.H.); (V.M.W.)
| | - Gregory A. Osborne
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; (L.-J.S.); (G.A.O.); (P.M.H.); (V.M.W.)
| | - Perry M. Hayman
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; (L.-J.S.); (G.A.O.); (P.M.H.); (V.M.W.)
| | - David J. Orlicky
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; (S.K.N.); (D.J.O.); (A.v.B.)
| | - Veronica M. Wessells
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; (L.-J.S.); (G.A.O.); (P.M.H.); (V.M.W.)
| | - Adrie van Bokhoven
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; (S.K.N.); (D.J.O.); (A.v.B.)
| | - Thomas W. Flaig
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; (L.-J.S.); (G.A.O.); (P.M.H.); (V.M.W.)
| |
Collapse
|
7
|
Suppressing BCL-XL increased the high dose androgens therapeutic effect to better induce the Enzalutamide-resistant prostate cancer autophagic cell death. Cell Death Dis 2021; 12:68. [PMID: 33431795 PMCID: PMC7801470 DOI: 10.1038/s41419-020-03321-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022]
Abstract
Most patients with advanced prostate cancer (PCa) initially respond well to androgen deprivation therapy (ADT) with antiandrogens, but most of them eventually become resistant to ADT. Here, we found that the antiandrogen Enzalutamide-resistant (EnzR) PCa cells can be suppressed by hyper-physiological doses of the androgen DHT. Mechanism dissection indicates that while androgens/androgen receptor (AR) can decrease BCL-2 expression to induce cell death, yet they can also simultaneously increase anti-apoptosis BCL-XL protein expression via decreasing its potential E3 ubiquitin ligase, PARK2, through transcriptionally increasing the miR-493-3p expression to target PARK2. Thus, targeting the high dose DHT/AR/miR-493-3p/PARK2/BCL-XL signaling with BCL-XL-shRNA can increase high-dose-DHT effect to better suppress EnzR cell growth via increasing the autophagic cell death. A preclinical study using in vivo mouse model also validated that suppressing BCL-XL led to enhance high dose DHT effect to induce PCa cell death. The success of human clinical trials in the future may help us to develop a novel therapy using high dose androgens to better suppress CRPC progression.
Collapse
|
8
|
Lo EM, Balasubramanian A, Pastuszak AW, Khera M. Bipolar Androgen Therapy in Prostate Cancer (Update). J Sex Med 2020; 17:831-834. [PMID: 32033864 DOI: 10.1016/j.jsxm.2019.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/12/2019] [Accepted: 12/21/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Eric M Lo
- Baylor College of Medicine, Houston, TX, USA
| | | | - Alexander W Pastuszak
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mohit Khera
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Nyquist MD, Corella A, Mohamad O, Coleman I, Kaipainen A, Kuppers DA, Lucas JM, Paddison PJ, Plymate SR, Nelson PS, Mostaghel EA. Molecular determinants of response to high-dose androgen therapy in prostate cancer. JCI Insight 2019; 4:129715. [PMID: 31503550 DOI: 10.1172/jci.insight.129715] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022] Open
Abstract
Clinical trials of high-dose androgen (HDA) therapy for prostate cancer (PC) have shown promising efficacy but are limited by lack of criteria to identify likely responders. To elucidate factors that govern the growth-repressive effects of HDAs, we applied an unbiased integrative approach using genetic screens and transcriptional profiling of PC cells with or without demonstrated phenotypic sensitivity to androgen-mediated growth repression. Through this comprehensive analysis, we identified genetic events and related signaling networks that determine the response to both HDA and androgen withdrawal. We applied these findings to develop a gene signature that may serve as an early indicator of treatment response and identify men with tumors that are amenable to HDA therapy.
Collapse
Affiliation(s)
| | | | | | - Ilsa Coleman
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Arja Kaipainen
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Daniel A Kuppers
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jared M Lucas
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Stephen R Plymate
- Department of Medicine, University of Washington, Seattle, Washington, USA.,Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
| | - Peter S Nelson
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Elahe A Mostaghel
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA.,Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
| |
Collapse
|
10
|
Lakshmana G, Baniahmad A. Interference with the androgen receptor protein stability in therapy-resistant prostate cancer. Int J Cancer 2018; 144:1775-1779. [PMID: 30125354 DOI: 10.1002/ijc.31818] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/25/2018] [Indexed: 01/22/2023]
Abstract
The androgen receptor (AR) plays a central role in the pathogenesis of prostate cancer (PCa). Most PCa cases develop eventually from an androgen-dependent stage to castration-resistant prostate cancer (CRPC) with AR-signaling still being active. Thus, inhibition of AR remains a well-established promising drug target in CRPC. However, despite the improvements of current treatment for CRPC by targeting the AR, the evolution of adaptive AR-signaling leads to therapy-resistant CRPC. Treatment failure is based mostly on the inability to keep AR under long-term restraint due to adaptive responses of AR-signaling. One underlying mechanism appears to be the increased AR protein stability. Therefore, the regulation of AR protein stability and its degradation is another interesting path that could enhance our knowledge of carcinogenesis and tumor evolution possibly leading to novel therapeutic targets. In this review, we discuss various molecular mechanisms and factors that stabilize AR protein levels directly or indirectly. We summarize novel approaches to interfere with AR stability including targeting the glucocorticoid receptor (GR), heat shock proteins, and co-chaperones as well as E3-ligases using small chimeric molecules. These novel approaches in combination with antiandrogen treatment inhibit PCa growth through the regulation of AR protein levels.
Collapse
Affiliation(s)
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| |
Collapse
|
11
|
Mohammad OS, Nyquist MD, Schweizer MT, Balk SP, Corey E, Plymate S, Nelson PS, Mostaghel EA. Supraphysiologic Testosterone Therapy in the Treatment of Prostate Cancer: Models, Mechanisms and Questions. Cancers (Basel) 2017; 9:E166. [PMID: 29210989 PMCID: PMC5742814 DOI: 10.3390/cancers9120166] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022] Open
Abstract
Since Huggins defined the androgen-sensitive nature of prostate cancer (PCa), suppression of systemic testosterone (T) has remained the most effective initial therapy for advanced disease although progression inevitably occurs. From the inception of clinical efforts to suppress androgen receptor (AR) signaling by reducing AR ligands, it was also recognized that administration of T in men with castration-resistant prostate cancer (CRPC) could result in substantial clinical responses. Data from preclinical models have reproducibly shown biphasic responses to T administration, with proliferation at low androgen concentrations and growth inhibition at supraphysiological T concentrations. Many questions regarding the biphasic response of PCa to androgen treatment remain, primarily regarding the mechanisms driving these responses and how best to exploit the biphasic phenomenon clinically. Here we review the preclinical and clinical data on high dose androgen growth repression and discuss cellular pathways and mechanisms likely to be involved in mediating this response. Although meaningful clinical responses have now been observed in men with PCa treated with high dose T, not all men respond, leading to questions regarding which tumor characteristics promote response or resistance, and highlighting the need for studies designed to determine the molecular mechanism(s) driving these responses and identify predictive biomarkers.
Collapse
Affiliation(s)
- Osama S Mohammad
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
- Faculty of Medicine, Benha University, Benha 13518, Egypt.
| | | | - Michael T Schweizer
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
- School of Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Stephen P Balk
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA 98195, USA.
| | - Stephen Plymate
- School of Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Peter S Nelson
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Elahe A Mostaghel
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
- School of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|