1
|
Zhan Y, Weng M, Guo Y, Lv D, Zhao F, Yan Z, Jiang J, Xiao Y, Yao L. Identification and validation of the nicotine metabolism-related signature of bladder cancer by bioinformatics and machine learning. Front Immunol 2024; 15:1465638. [PMID: 39742262 PMCID: PMC11685211 DOI: 10.3389/fimmu.2024.1465638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025] Open
Abstract
Background Several studies indicate that smoking is one of the major risk factors for bladder cancer. Nicotine and its metabolites, the main components of tobacco, have been found to be strongly linked to the occurrence and progression of bladder cancer. However, the function of nicotine metabolism-related genes (NRGs) in bladder urothelial carcinoma (BLCA) are still unclear. Methods NRGs were collected from MSigDB to identify the clusters associated with nicotine metabolism. Prognostic differentially expressed genes (DEGs) were filtered via differentially expression analysis and univariate Cox regression analysis. Integrative machine learning combination based on 10 machine learning algorithms was used for the construction of robust signature. Subsequently, the clinical application of signature in terms of prognosis, tumor microenvironment (TME) as well as immunotherapy was comprehensively evaluated. Finally, the biology function of the signature gene was further verified via CCK-8, transwell migration and colony formation. Results Three clusters associated with nicotine metabolism were discovered with distinct prognosis and immunological patterns. A four gene-signature was developed by random survival forest (RSF) method with highest average Harrell's concordance index (C-index) of 0.763. The signature exhibited a reliable and accurate performance in prognostic prediction across TCGA-train, TCGA-test and GSE32894 cohorts. Furthermore, the signature showed highly correlation with clinical characteristics, TME and immunotherapy responses. Suppression of MKRN1 was found to reduce the migration and proliferation of bladder cancer cell. In addition, enhanced migration and proliferation caused by nicotine was blocked down by loss of MKRN1. Conclusions The novel nicotine metabolism-related signature may provide valuable insights into clinical prognosis and potential benefits of immunotherapy in bladder cancer patients.
Collapse
Affiliation(s)
- Yating Zhan
- Department of Blood Transfusion, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Min Weng
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yangyang Guo
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Dingfeng Lv
- Department of Blood Transfusion, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Feng Zhao
- Department of Blood Transfusion, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Zejun Yan
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Junhui Jiang
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yanyi Xiao
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Lili Yao
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Chu X, Guan B, Dai L, Liu JX, Li F, Shang J. Network embedding framework for driver gene discovery by combining functional and structural information. BMC Genomics 2023; 24:426. [PMID: 37516822 PMCID: PMC10386255 DOI: 10.1186/s12864-023-09515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 07/13/2023] [Indexed: 07/31/2023] Open
Abstract
Comprehensive analysis of multiple data sets can identify potential driver genes for various cancers. In recent years, driver gene discovery based on massive mutation data and gene interaction networks has attracted increasing attention, but there is still a need to explore combining functional and structural information of genes in protein interaction networks to identify driver genes. Therefore, we propose a network embedding framework combining functional and structural information to identify driver genes. Firstly, we combine the mutation data and gene interaction networks to construct mutation integration network using network propagation algorithm. Secondly, the struc2vec model is used for extracting gene features from the mutation integration network, which contains both gene's functional and structural information. Finally, machine learning algorithms are utilized to identify the driver genes. Compared with the previous four excellent methods, our method can find gene pairs that are distant from each other through structural similarities and has better performance in identifying driver genes for 12 cancers in the cancer genome atlas. At the same time, we also conduct a comparative analysis of three gene interaction networks, three gene standard sets, and five machine learning algorithms. Our framework provides a new perspective for feature selection to identify novel driver genes.
Collapse
Affiliation(s)
- Xin Chu
- School of Computer Science, Qufu Normal University, Rizhao, 27826, China
| | - Boxin Guan
- School of Computer Science, Qufu Normal University, Rizhao, 27826, China
| | - Lingyun Dai
- School of Computer Science, Qufu Normal University, Rizhao, 27826, China
| | - Jin-Xing Liu
- School of Computer Science, Qufu Normal University, Rizhao, 27826, China
| | - Feng Li
- School of Computer Science, Qufu Normal University, Rizhao, 27826, China.
| | - Junliang Shang
- School of Computer Science, Qufu Normal University, Rizhao, 27826, China.
| |
Collapse
|
3
|
Pourasghariazar M, Zarredar H, Asadi M, Caner A, Akhgari A, Valizadeh H, Bornehdeli S, Hashemzadeh S, Raeisi M. Comparative evaluation of ZMYND-8 and RARβ2 genes promoters’ methylation changes in tumor and tumor margin tissues of patients with lung cancer. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023. [DOI: 10.1186/s43042-023-00399-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Abstract
Background
Lung cancer remains one of the most lethal carcinomas worldwide because of its late diagnosis. One of the DNA modifications is methylation, one of the primary alterations of tumor development, consisting of fascinating indicators for cancer diagnosis. This study investigated ZMYND-8 and RARβ2 gene methylation in NSCLC as a new epigenetic tool.
Methods
First, to find out the potential diagnostic capability of ZMYND-8 and RARβ2 genes methylation, we entirely surfed DNA methylation microarrays from the Cancer Genome Atlas (TCGA) data of NSCLC samples. Additionally, we took advantage of using q-MSP in several pieces comprising NSCLC tumors and neighboring normal tissues; ZMYND-8 and RARβ2 genes methylation grades were acquired.
Results
Our finding displayed significant hypomethylation of ZMYND-8 and hypermethylation of RARβ2 in NSCLC samples compared to neighboring standard specimens, which significantly correlated with the clinical stage of malignancy. In addition, the incredible precision of ZMYND-8 and RARβ2 methylations as reliable cancer diagnosis indicators in NSCLC was confirmed, drawing the ROC curve analysis with an AUC value of 0.751 and 0.8676, respectively, for ZMYND-8 and RARβ2. Additional studies of other dominant cancer entities in TCGA displayed that RARβ2’s higher methylation degree and ZMYND-8 lower methylation degree are prevalent changes in tumor evolution which could be possibly considered as a potential diagnostic biomarkers for lung cancer.
Conclusion
Based on this study, ZMYND-8 and RARβ2 methylation are reliable biomarkers for lung cancer.
Collapse
|
4
|
Czerwinska P, Mackiewicz AA. Bromodomain (BrD) Family Members as Regulators of Cancer Stemness-A Comprehensive Review. Int J Mol Sci 2023; 24:995. [PMID: 36674511 PMCID: PMC9861003 DOI: 10.3390/ijms24020995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Epigenetic mechanisms involving DNA methylation and chromatin modifications have emerged as critical facilitators of cancer heterogeneity, substantially affecting cancer development and progression, modulating cell phenotypes, and enhancing or inhibiting cancer cell malignant properties. Not surprisingly, considering the importance of epigenetic regulators in normal stem cell maintenance, many chromatin-related proteins are essential to maintaining the cancer stem cell (CSC)-like state. With increased tumor-initiating capacities and self-renewal potential, CSCs promote tumor growth, provide therapy resistance, spread tumors, and facilitate tumor relapse after treatment. In this review, we characterized the epigenetic mechanisms that regulate the acquisition and maintenance of cancer stemness concerning selected epigenetic factors belonging to the Bromodomain (BrD) family of proteins. An increasing number of BrD proteins reinforce cancer stemness, supporting the maintenance of the cancer stem cell population in vitro and in vivo via the utilization of distinct mechanisms. As bromodomain possesses high druggable potential, specific BrD proteins might become novel therapeutic targets in cancers exhibiting de-differentiated tumor characteristics.
Collapse
Affiliation(s)
- Patrycja Czerwinska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Andrzej Adam Mackiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
5
|
Chang SJ, Bin PJ, Luo CW, Chai CY. CHD4 plays a critical role in arsenite-induced oxidative damage in human urothelial carcinoma. Pathol Res Pract 2022; 240:154173. [DOI: 10.1016/j.prp.2022.154173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2022]
|
6
|
Aricthota S, Rana PP, Haldar D. Histone acetylation dynamics in repair of DNA double-strand breaks. Front Genet 2022; 13:926577. [PMID: 36159966 PMCID: PMC9503837 DOI: 10.3389/fgene.2022.926577] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Packaging of eukaryotic genome into chromatin is a major obstacle to cells encountering DNA damage caused by external or internal agents. For maintaining genomic integrity, the double-strand breaks (DSB) must be efficiently repaired, as these are the most deleterious type of DNA damage. The DNA breaks have to be detected in chromatin context, the DNA damage response (DDR) pathways have to be activated to repair breaks either by non‐ homologous end joining and homologous recombination repair. It is becoming clearer now that chromatin is not a mere hindrance to DDR, it plays active role in sensing, detection and repair of DNA damage. The repair of DSB is governed by the reorganization of the pre-existing chromatin, leading to recruitment of specific machineries, chromatin remodelling complexes, histone modifiers to bring about dynamic alterations in histone composition, nucleosome positioning, histone modifications. In response to DNA break, modulation of chromatin occurs via various mechanisms including post-translational modification of histones. DNA breaks induce many types of histone modifications, such as phosphorylation, acetylation, methylation and ubiquitylation on specific histone residues which are signal and context dependent. DNA break induced histone modifications have been reported to function in sensing the breaks, activating processing of breaks by specific pathways, and repairing damaged DNA to ensure integrity of the genome. Favourable environment for DSB repair is created by generating open and relaxed chromatin structure. Histone acetylation mediate de-condensation of chromatin and recruitment of DSB repair proteins to their site of action at the DSB to facilitate repair. In this review, we will discuss the current understanding on the critical role of histone acetylation in inducing changes both in chromatin organization and promoting recruitment of DSB repair proteins to sites of DNA damage. It consists of an overview of function and regulation of the deacetylase enzymes which remove these marks and the function of histone acetylation and regulators of acetylation in genome surveillance.
Collapse
|
7
|
Sanchez A, Buck-Koehntop BA, Miller KM. Joining the PARty: PARP Regulation of KDM5A during DNA Repair (and Transcription?). Bioessays 2022; 44:e2200015. [PMID: 35532219 DOI: 10.1002/bies.202200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 11/05/2022]
Abstract
The lysine demethylase KDM5A collaborates with PARP1 and the histone variant macroH2A1.2 to modulate chromatin to promote DNA repair. Indeed, KDM5A engages poly(ADP-ribose) (PAR) chains at damage sites through a previously uncharacterized coiled-coil domain, a novel binding mode for PAR interactions. While KDM5A is a well-known transcriptional regulator, its function in DNA repair is only now emerging. Here we review the molecular mechanisms that regulate this PARP1-macroH2A1.2-KDM5A axis in DNA damage and consider the potential involvement of this pathway in transcription regulation and cancer. Using KDM5A as an example, we discuss how multifunctional chromatin proteins transition between several DNA-based processes, which must be coordinated to protect the integrity of the genome and epigenome. The dysregulation of chromatin and loss of genome integrity that is prevalent in human diseases including cancer may be related and could provide opportunities to target multitasking proteins with these pathways as therapeutic strategies.
Collapse
Affiliation(s)
- Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, The University of Texas at Austin, Austin, Texas, USA
| | | | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, The University of Texas at Austin, Austin, Texas, USA.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
8
|
Zhang J, Lu X, MoghaddamKohi S, Shi L, Xu X, Zhu WG. Histone lysine modifying enzymes and their critical roles in DNA double-strand break repair. DNA Repair (Amst) 2021; 107:103206. [PMID: 34411909 DOI: 10.1016/j.dnarep.2021.103206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/24/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Cells protect the integrity of the genome against DNA double-strand breaks through several well-characterized mechanisms including nonhomologous end-joining repair, homologous recombination repair, microhomology-mediated end-joining and single-strand annealing. However, aberrant DNA damage responses (DDRs) lead to genome instability and tumorigenesis. Clarification of the mechanisms underlying the DDR following lethal damage will facilitate the identification of therapeutic targets for cancer. Histones are small proteins that play a major role in condensing DNA into chromatin and regulating gene function. Histone modifications commonly occur in several residues including lysine, arginine, serine, threonine and tyrosine, which can be acetylated, methylated, ubiquitinated and phosphorylated. Of these, lysine modifications have been extensively explored during DDRs. Here, we focus on discussing the roles of lysine modifying enzymes involved in acetylation, methylation, and ubiquitination during the DDR. We provide a comprehensive understanding of the basis of potential epigenetic therapies driven by histone lysine modifications.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Xiaopeng Lu
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Sara MoghaddamKohi
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingzhi Xu
- Department of Cell Biology and Medical Genetics, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Validation of ZMYND8 as a new treatment target in hepatocellular carcinoma. J Cancer Res Clin Oncol 2021; 147:3517-3534. [PMID: 34462784 DOI: 10.1007/s00432-021-03768-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/14/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND ZMYND8 (Zinc finger MYND (Myeloid, Nervy and DEAF-1)-type containing 8) has been known to play an important role in tumor regulation in various types of cancer. However, the results of ZMYND8 expression and their clinical significance in hepatocellular carcinoma (HCC) have not yet been published. In the present study, we investigate the expression of ZMYND8 protein and mRNA in HCC and elucidate its prognostic significance. METHODS ZMYND8 protein and mRNA expression in 283 and 234 HCCs were investigated using immunohistochemistry and microarray gene expression profiling data. The relationships between ZMYND8 expression with clinicopathologic features and prognosis of HCC patients were evaluated. Furthermore, we performed the invasion, migration, apoptosis, soft agar formation assay and sphere formation assay in HCC cell lines, and evaluated tumorigenicity in a nude mouse model, after ZMYND8 knockdown. RESULTS Overexpression of ZMYND8 protein and mRNA was observed in 20.5% and 26.9% of HCC cases, respectively. High ZMYND8 expression showed significant correlations with microvascular invasion, high Edmondson grade, advanced American Joint Committee on Cancer, and increased alpha-fetoprotein level. ZMYND8 mRNA overexpression was an independent prognostic factor for predicting early recurrence as well as short recurrence-free survival (RFS). Downregulation of ZMYND8 reduced migration and invasion of HCC cells, and promoted apoptosis of HCC cells in an in vitro model. In a xenograft nude mouse model, knockdown of ZMYND8 significantly reduced tumor growth. CONCLUSION ZMYND8 mRNA overexpression could be a prognostic marker of shorter RFS in HCC patients after curative resection. ZMYND8 might play an important role in the proliferation and progression of HCC and could be a promising candidate for targeted therapy.
Collapse
|
10
|
Kumbhar R, Sanchez A, Perren J, Gong F, Corujo D, Medina F, Devanathan SK, Xhemalce B, Matouschek A, Buschbeck M, Buck-Koehntop BA, Miller KM. Poly(ADP-ribose) binding and macroH2A mediate recruitment and functions of KDM5A at DNA lesions. J Cell Biol 2021; 220:212163. [PMID: 34003252 PMCID: PMC8135068 DOI: 10.1083/jcb.202006149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/15/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
The histone demethylase KDM5A erases histone H3 lysine 4 methylation, which is involved in transcription and DNA damage responses (DDRs). While DDR functions of KDM5A have been identified, how KDM5A recognizes DNA lesion sites within chromatin is unknown. Here, we identify two factors that act upstream of KDM5A to promote its association with DNA damage sites. We have identified a noncanonical poly(ADP-ribose) (PAR)–binding region unique to KDM5A. Loss of the PAR-binding region or treatment with PAR polymerase (PARP) inhibitors (PARPi’s) blocks KDM5A–PAR interactions and DNA repair functions of KDM5A. The histone variant macroH2A1.2 is also specifically required for KDM5A recruitment and function at DNA damage sites, including homology-directed repair of DNA double-strand breaks and repression of transcription at DNA breaks. Overall, this work reveals the importance of PAR binding and macroH2A1.2 in KDM5A recognition of DNA lesion sites that drive transcriptional and repair activities at DNA breaks within chromatin that are essential for maintaining genome integrity.
Collapse
Affiliation(s)
- Ramhari Kumbhar
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Jullian Perren
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Fade Gong
- Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX
| | - David Corujo
- Cancer and Leukemia Epigenetics and Biology Program, Josep Carreras Leukaemia Cancer Institute, Barcelona, Spain
| | - Frank Medina
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Sravan K Devanathan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Blerta Xhemalce
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Marcus Buschbeck
- Cancer and Leukemia Epigenetics and Biology Program, Josep Carreras Leukaemia Cancer Institute, Barcelona, Spain.,Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, Badalona, Spain
| | | | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| |
Collapse
|
11
|
DNA double-strand break repair: Putting zinc fingers on the sore spot. Semin Cell Dev Biol 2021; 113:65-74. [DOI: 10.1016/j.semcdb.2020.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/22/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
|
12
|
Regulation of ZMYND8 to Treat Cancer. Molecules 2021; 26:molecules26041083. [PMID: 33670804 PMCID: PMC7923094 DOI: 10.3390/molecules26041083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/31/2022] Open
Abstract
Zinc finger myeloid, nervy, and deformed epidermal autoregulatory factor 1-type containing 8 (Zinc finger MYND-type containing 8, ZMYND8) is a transcription factor, a histone H3-interacting protein, and a putative chromatin reader/effector that plays an essential role in regulating transcription during normal cellular growth. Mutations and altered expression of ZMYND8 are associated with the development and progression of cancer. Increased expression of ZMYND8 is linked to breast, prostate, colorectal, and cervical cancers. It exerts pro-oncogenic effects in breast and prostate cancers, and it promotes angiogenesis in zebrafish, as well as in breast and prostate cancers. In contrast, downregulation of ZMYND8 is also reported in breast, prostate, and nasopharyngeal cancers. ZMYND8 acts as a tumor suppressor in breast and prostate cancers, and it inhibits tumor growth by promoting differentiation; inhibiting proliferation, cell-cycle progression, invasiveness, and metastasis; and maintaining the epithelial phenotype in various types of cancers. These data together suggest that ZMYND8 is important in tumorigenesis; however, the existing data are contradictory. More studies are necessary to clarify the exact role of ZMYND8 in tumorigenesis. In the future, regulation of expression/activity of ZMYND8 and/or its binding partners may become useful in treating cancer.
Collapse
|
13
|
Broyde J, Simpson DR, Murray D, Paull EO, Chu BW, Tagore S, Jones SJ, Griffin AT, Giorgi FM, Lachmann A, Jackson P, Sweet-Cordero EA, Honig B, Califano A. Oncoprotein-specific molecular interaction maps (SigMaps) for cancer network analyses. Nat Biotechnol 2021; 39:215-224. [PMID: 32929263 PMCID: PMC7878435 DOI: 10.1038/s41587-020-0652-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/23/2020] [Indexed: 02/08/2023]
Abstract
Tumor-specific elucidation of physical and functional oncoprotein interactions could improve tumorigenic mechanism characterization and therapeutic response prediction. Current interaction models and pathways, however, lack context specificity and are not oncoprotein specific. We introduce SigMaps as context-specific networks, comprising modulators, effectors and cognate binding-partners of a specific oncoprotein. SigMaps are reconstructed de novo by integrating diverse evidence sources-including protein structure, gene expression and mutational profiles-via the OncoSig machine learning framework. We first generated a KRAS-specific SigMap for lung adenocarcinoma, which recapitulated published KRAS biology, identified novel synthetic lethal proteins that were experimentally validated in three-dimensional spheroid models and established uncharacterized crosstalk with RAB/RHO. To show that OncoSig is generalizable, we first inferred SigMaps for the ten most mutated human oncoproteins and then for the full repertoire of 715 proteins in the COSMIC Cancer Gene Census. Taken together, these SigMaps show that the cell's regulatory and signaling architecture is highly tissue specific.
Collapse
Affiliation(s)
- Joshua Broyde
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - David R Simpson
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Diana Murray
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Evan O Paull
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Brennan W Chu
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Somnath Tagore
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sunny J Jones
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Aaron T Griffin
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Federico M Giorgi
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Alexander Lachmann
- Mount Sinai Center for Bioinformatics; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University, Palo Alto, CA, USA
- Department of Pathology, Stanford University, Palo Alto, CA, USA
| | - E Alejandro Sweet-Cordero
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCSF Benioff Children's Hospital, San Francisco, CA, USA.
| | - Barry Honig
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
- Department of Medicine, Columbia University, New York, NY, USA.
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY, USA.
| | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
- Department of Medicine, Columbia University, New York, NY, USA.
- JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Motor Neuron Center and Columbia Initiative in Stem Cells, Columbia University, New York, NY, USA.
| |
Collapse
|
14
|
A novel role of tumor suppressor ZMYND8 in inducing differentiation of breast cancer cells through its dual-histone binding function. J Biosci 2020. [DOI: 10.1007/s12038-019-9980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Aleksandrov R, Hristova R, Stoynov S, Gospodinov A. The Chromatin Response to Double-Strand DNA Breaks and Their Repair. Cells 2020; 9:cells9081853. [PMID: 32784607 PMCID: PMC7464352 DOI: 10.3390/cells9081853] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Cellular DNA is constantly being damaged by numerous internal and external mutagenic factors. Probably the most severe type of insults DNA could suffer are the double-strand DNA breaks (DSBs). They sever both DNA strands and compromise genomic stability, causing deleterious chromosomal aberrations that are implicated in numerous maladies, including cancer. Not surprisingly, cells have evolved several DSB repair pathways encompassing hundreds of different DNA repair proteins to cope with this challenge. In eukaryotic cells, DSB repair is fulfilled in the immensely complex environment of the chromatin. The chromatin is not just a passive background that accommodates the multitude of DNA repair proteins, but it is a highly dynamic and active participant in the repair process. Chromatin alterations, such as changing patterns of histone modifications shaped by numerous histone-modifying enzymes and chromatin remodeling, are pivotal for proficient DSB repair. Dynamic chromatin changes ensure accessibility to the damaged region, recruit DNA repair proteins, and regulate their association and activity, contributing to DSB repair pathway choice and coordination. Given the paramount importance of DSB repair in tumorigenesis and cancer progression, DSB repair has turned into an attractive target for the development of novel anticancer therapies, some of which have already entered the clinic.
Collapse
|
16
|
A STAT3 of Addiction: Adipose Tissue, Adipocytokine Signalling and STAT3 as Mediators of Metabolic Remodelling in the Tumour Microenvironment. Cells 2020; 9:cells9041043. [PMID: 32331320 PMCID: PMC7226520 DOI: 10.3390/cells9041043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic remodelling of the tumour microenvironment is a major mechanism by which cancer cells survive and resist treatment. The pro-oncogenic inflammatory cascade released by adipose tissue promotes oncogenic transformation, proliferation, angiogenesis, metastasis and evasion of apoptosis. STAT3 has emerged as an important mediator of metabolic remodelling. As a downstream effector of adipocytokines and cytokines, its canonical and non-canonical activities affect mitochondrial functioning and cancer metabolism. In this review, we examine the central role played by the crosstalk between the transcriptional and mitochondrial roles of STAT3 to promote survival and further oncogenesis within the tumour microenvironment with a particular focus on adipose-breast cancer interactions.
Collapse
|
17
|
Mukherjee S, Sen S, Adhikary S, Sengupta A, Mandal P, Dasgupta D, Chakrabarti P, Roy S, DAS C. A novel role of tumor suppressor ZMYND8 in inducing differentiation of breast cancer cells through its dual-histone binding function. J Biosci 2020; 45:2. [PMID: 31965980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Accumulating evidences indicate the involvement of epigenetic deregulations in cancer. While some epigenetic regulators with aberrant functions in cancer are targeted for improving therapeutic outcome in patients, reinstating the functions of tumor-suppressor-like epigenetic regulators might further potentiate anti-cancer therapies. Epigenetic reader zinc-finger MYND-type-containing 8 (ZMYND8) has been found to be endowed with multiple anti-cancer functions like inhibition of tumor cell migration and proliferation. Here, we report another novel tumor suppressor role of ZMYND8 as an inducer of differentiation in breast cancer cells, by upregulating differentiation genes. Interestingly, we also demonstrated that ZMYND8 mediates all its antitumor roles through a common dual-histone mark binding to H4K16Ac and H3K36Me2. We validated these findings by both biochemical and biophysical analyses. Furthermore, we also confirmed the differentiationinducing potential of ZMYND8 in vivo, using 4T1 murine breast cancer model in Balb/c mice. Differentiation therapy holds great promise in cancer therapy, since it is non-toxic and makes the cancer cells therapysensitive. In this scenario, we propose epigenetic reader ZMYND8 as a potential therapeutic candidate for differentiation therapy in breast cancer.
Collapse
Affiliation(s)
- Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata 700 064, India
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen J, Liu J, Chen X, Li Y, Li Z, Shen C, Chen K, Zhang X. Low expression of ZMYND8 correlates with aggressive features and poor prognosis in nasopharyngeal carcinoma. Cancer Manag Res 2019; 11:7835-7843. [PMID: 31692588 PMCID: PMC6713802 DOI: 10.2147/cmar.s210305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/04/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose ZMYND8 is closely correlated with cancerous proliferation and invasiveness. However, its prognostic value has not been estimated in a nasopharyngeal carcinoma (NPC). The purpose of this study was to elucidate the status of ZMYND8 expression and its prognostic significance in NPCs. Methods The status of ZMYND8 expression was investigated by immunohistochemistry for NPC samples in the study. The cutoff value of ZMYND8 expression was confirmed in NPCs using ROC-curve analysis. Correlations between ZMYND8 expression and clinicopathological variables and patient prognosis were analyzed by various statistical methods. Results Our study showed that low expression of ZMYND8 strongly correlated with late T stage in NPCs (P<0.05). Kaplan–Meier survival analysis revealed a significant association between low ZMYND8 expression and worse overall survival (P<0.05). Most importantly, Cox regression analysis confirmed ZMYND8 expression in NPC could be an independent prognostic factor. Conclusion Low expression of ZMYND8 could be of importance, due to its displaying more aggressive behavior in NPC. Therefore, ZMYND8 expression might serve as an independent prediction factor in patients with NPCs.
Collapse
Affiliation(s)
- Jiewei Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Jun Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Xiaoting Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Yong Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Zizi Li
- Department of Pathology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, People's Republic of China
| | - Chengchao Shen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Keming Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Xinke Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| |
Collapse
|
19
|
Non-canonical DNA/RNA structures during Transcription-Coupled Double-Strand Break Repair: Roadblocks or Bona fide repair intermediates? DNA Repair (Amst) 2019; 81:102661. [PMID: 31331819 DOI: 10.1016/j.dnarep.2019.102661] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although long overlooked, it is now well understood that DNA does not systematically assemble into a canonical double helix, known as B-DNA, throughout the entire genome but can also accommodate other structures including DNA hairpins, G-quadruplexes and RNA:DNA hybrids. Notably, these non-canonical DNA structures form preferentially at transcriptionally active loci. Acting as replication roadblocks and being targeted by multiple machineries, these structures weaken the genome and render it prone to damage, including DNA double-strand breaks (DSB). In addition, secondary structures also further accumulate upon DSB formation. Here we discuss the potential functions of pre-existing or de novo formed nucleic acid structures, as bona fide repair intermediates or repair roadblocks, especially during Transcription-Coupled DNA Double-Strand Break repair (TC-DSBR), and provide an update on the specialized protein complexes displaying the ability to remove these structures to safeguard genome integrity.
Collapse
|
20
|
Kim JJ, Lee SY, Miller KM. Preserving genome integrity and function: the DNA damage response and histone modifications. Crit Rev Biochem Mol Biol 2019; 54:208-241. [PMID: 31164001 DOI: 10.1080/10409238.2019.1620676] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modulation of chromatin templates in response to cellular cues, including DNA damage, relies heavily on the post-translation modification of histones. Numerous types of histone modifications including phosphorylation, methylation, acetylation, and ubiquitylation occur on specific histone residues in response to DNA damage. These histone marks regulate both the structure and function of chromatin, allowing for the transition between chromatin states that function in undamaged condition to those that occur in the presence of DNA damage. Histone modifications play well-recognized roles in sensing, processing, and repairing damaged DNA to ensure the integrity of genetic information and cellular homeostasis. This review highlights our current understanding of histone modifications as they relate to DNA damage responses (DDRs) and their involvement in genome maintenance, including the potential targeting of histone modification regulators in cancer, a disease that exhibits both epigenetic dysregulation and intrinsic DNA damage.
Collapse
Affiliation(s)
- Jae Jin Kim
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin , TX , USA
| | - Seo Yun Lee
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin , TX , USA
| | - Kyle M Miller
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
21
|
Caron P, Pankotai T, Wiegant WW, Tollenaere MAX, Furst A, Bonhomme C, Helfricht A, de Groot A, Pastink A, Vertegaal ACO, Luijsterburg MS, Soutoglou E, van Attikum H. WWP2 ubiquitylates RNA polymerase II for DNA-PK-dependent transcription arrest and repair at DNA breaks. Genes Dev 2019; 33:684-704. [PMID: 31048545 PMCID: PMC6546063 DOI: 10.1101/gad.321943.118] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/25/2019] [Indexed: 11/24/2022]
Abstract
Here, Caron et al. show that the HECT E3 ubiquitin ligase WWP2 associates with components of the DNA-PK and RNAPII complexes and is recruited to DSBs at RNAPII transcribed genes. Their findings suggest that WWP2 operates in a DNA-PK-dependent shutoff circuitry for RNAPII clearance that promotes DSB repair by protecting the NHEJ machinery from collision with the transcription machinery. DNA double-strand breaks (DSBs) at RNA polymerase II (RNAPII) transcribed genes lead to inhibition of transcription. The DNA-dependent protein kinase (DNA-PK) complex plays a pivotal role in transcription inhibition at DSBs by stimulating proteasome-dependent eviction of RNAPII at these lesions. How DNA-PK triggers RNAPII eviction to inhibit transcription at DSBs remains unclear. Here we show that the HECT E3 ubiquitin ligase WWP2 associates with components of the DNA-PK and RNAPII complexes and is recruited to DSBs at RNAPII transcribed genes. In response to DSBs, WWP2 targets the RNAPII subunit RPB1 for K48-linked ubiquitylation, thereby driving DNA-PK- and proteasome-dependent eviction of RNAPII. The lack of WWP2 or expression of nonubiquitylatable RPB1 abrogates the binding of nonhomologous end joining (NHEJ) factors, including DNA-PK and XRCC4/DNA ligase IV, and impairs DSB repair. These findings suggest that WWP2 operates in a DNA-PK-dependent shutoff circuitry for RNAPII clearance that promotes DSB repair by protecting the NHEJ machinery from collision with the transcription machinery.
Collapse
Affiliation(s)
- Pierre Caron
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Tibor Pankotai
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), 67404 Illkirch, France.,UMR7104, Centre National de Recherche Scientifique (CNRS), 67404 Illkirch, France.,Université de Strasbourg, 67081 Strasbourg, France
| | - Wouter W Wiegant
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Maxim A X Tollenaere
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Audrey Furst
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), 67404 Illkirch, France.,UMR7104, Centre National de Recherche Scientifique (CNRS), 67404 Illkirch, France.,Université de Strasbourg, 67081 Strasbourg, France
| | - Celine Bonhomme
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), 67404 Illkirch, France.,UMR7104, Centre National de Recherche Scientifique (CNRS), 67404 Illkirch, France.,Université de Strasbourg, 67081 Strasbourg, France
| | - Angela Helfricht
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Anton de Groot
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Albert Pastink
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Evi Soutoglou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), 67404 Illkirch, France.,UMR7104, Centre National de Recherche Scientifique (CNRS), 67404 Illkirch, France.,Université de Strasbourg, 67081 Strasbourg, France
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
22
|
Jin X, Xu XE, Jiang YZ, Liu YR, Sun W, Guo YJ, Ren YX, Zuo WJ, Hu X, Huang SL, Shen HJ, Lan F, He YF, Hu GH, Di GH, He XH, Li DQ, Liu S, Yu KD, Shao ZM. The endogenous retrovirus-derived long noncoding RNA TROJAN promotes triple-negative breast cancer progression via ZMYND8 degradation. SCIENCE ADVANCES 2019; 5:eaat9820. [PMID: 30854423 PMCID: PMC6402854 DOI: 10.1126/sciadv.aat9820] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 01/23/2019] [Indexed: 05/03/2023]
Abstract
Human endogenous retroviruses (HERVs) play pivotal roles in the development of breast cancer. However, the detailed mechanisms of noncoding HERVs remain elusive. Here, our genome-wide transcriptome analysis of HERVs revealed that a primate long noncoding RNA, which we dubbed TROJAN, was highly expressed in human triple-negative breast cancer (TNBC). TROJAN promoted TNBC proliferation and invasion and indicated poor patient outcomes. We further confirmed that TROJAN could bind to ZMYND8, a metastasis-repressing factor, and increase its degradation through the ubiquitin-proteasome pathway by repelling ZNF592. TROJAN also epigenetically up-regulated metastasis-related genes in multiple cell lines. Correlations between TROJAN and ZMYND8 were subsequently confirmed in clinical samples. Furthermore, our study verified that antisense oligonucleotide therapy targeting TROJAN substantially suppressed TNBC progression in vivo. In conclusion, the long noncoding RNA TROJAN promotes TNBC progression and serves as a potential therapeutic target.
Collapse
Affiliation(s)
- Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
| | - Xiao-En Xu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Corresponding author. (Z.-M.S.); (X.-E.X.); (K.-D.Y.); (S.L.)
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
| | - Yi-Rong Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
| | - Wei Sun
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
| | - Ya-Jie Guo
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
| | - Yi-Xing Ren
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
| | - Wen-Jia Zuo
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
| | - Xin Hu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
| | - Sheng-Lin Huang
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Hong-Jie Shen
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Fei Lan
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Yun-Fei He
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Guo-Hong Hu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Gen-Hong Di
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
| | - Xiang-Huo He
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Da-Qiang Li
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Suling Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
- Corresponding author. (Z.-M.S.); (X.-E.X.); (K.-D.Y.); (S.L.)
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Corresponding author. (Z.-M.S.); (X.-E.X.); (K.-D.Y.); (S.L.)
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Corresponding author. (Z.-M.S.); (X.-E.X.); (K.-D.Y.); (S.L.)
| |
Collapse
|
23
|
Abstract
Maintenance of genomic integrity depends on the spatiotemporal recruitment and regulation of DNA damage response and repair proteins at DNA damage sites. These highly dynamic processes have been widely studied using laser microirradiation coupled with fluorescence microscopy. Laser microirradiation has provided a powerful methodology to identify and determine mechanisms of DNA damage response pathways. Here we describe methods used to analyze protein recruitment dynamics of fluorescently tagged or endogenous proteins to laser-induced DNA damage sites using laser scanning and fluorescence microscopy. We further describe multiple applications employing these techniques to study additional processes at DNA damage sites including transcription. Together, we aim to provide robust visualization methods employing laser-microirradiation to detect and determine protein behavior, functions and dynamics in response to DNA damage in mammalian cells.
Collapse
|