1
|
Li Y, Dong X, He W, Quan H, Chen K, Cen C, Wei W. Ube2L6 Promotes M1 Macrophage Polarization in High-Fat Diet-Fed Obese Mice via ISGylation of STAT1 to Trigger STAT1 Activation. Obes Facts 2023; 17:24-36. [PMID: 37820603 PMCID: PMC10836867 DOI: 10.1159/000533966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/31/2023] [Indexed: 10/13/2023] Open
Abstract
INTRODUCTION In obesity-related type 2 diabetes mellitus (T2DM), M1 macrophages aggravate chronic inflammation and insulin resistance. ISG15-conjugation enzyme E2L6 (Ube2L6) has been demonstrated as a promoter of obesity and insulin resistance. This study investigated the function and mechanism of Ube2L6 in M1 macrophage polarization in obesity. METHODS Obesity was induced in Ube2L6AKO mice and age-matched Ube2L6flox/flox control mice by high-fat diet (HFD). Stromal vascular cells were isolated from the epididymal white adipose tissue of mice. Polarization induction was performed in mouse bone marrow-derived macrophages (BMDMs) by exposure to IFN-γ, lipopolysaccharide, or IL-4. F4/80 expression was assessed by immunohistochemistry staining. Expressions of M1/M2 macrophage markers and target molecules were determined by flow cytometry, RT-qPCR, and Western blotting, respectively. Protein interaction was validated by co-immunoprecipitation (Co-IP) assay. The release of TNF-α and IL-10 was detected by ELISA. RESULTS The polarization of pro-inflammatory M1 macrophages together with an increase in macrophage infiltration was observed in HFD-fed mice, which could be restrained by Ube2L6 knockdown. Additionally, Ube2L6 deficiency triggered the repolarization of BMDMs from M1 to M2 phenotypes. Mechanistically, Ube2L6 promoted the expression and activation of signal transducer and activator of transcription 1 (STAT1) through interferon-stimulated gene 15 (ISG15)-mediated ISGlylation, resulting in M1 macrophage polarization. CONCLUSION Ube2L6 exerts as an activator of STAT1 via post-translational modification of STAT1 by ISG15, thereby triggering M1 macrophage polarization in HFD-fed obese mice. Overall, targeting Ube2L6 may represent an effective therapeutic strategy for ameliorating obesity-related T2DM.
Collapse
Affiliation(s)
- Yunqian Li
- Center of Gerontology and Geriatrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xiao Dong
- Center of Gerontology and Geriatrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wenqian He
- Department of Endocrinology, Hainan Medical College, Haikou, China
| | - Huibiao Quan
- Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Kaining Chen
- Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Chaoping Cen
- Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Weiping Wei
- Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
2
|
Nigam N, Bernard B, Sevilla S, Kim S, Dar MS, Tsai D, Robbins Y, Burkitt K, Sievers C, Allen CT, Bennett RL, Tettey TT, Carter B, Rinaldi L, Lingen MW, Sater H, Edmondson EF, Moshiri A, Saeed A, Cheng H, Luo X, Brennan K, Koparde V, Chen C, Das S, Andresson T, Abdelmaksoud A, Murali M, Sakata S, Takeuchi K, Chari R, Nakamura Y, Uppaluri R, Sunwoo JB, Van Waes C, Licht JD, Hager GL, Saloura V. SMYD3 represses tumor-intrinsic interferon response in HPV-negative squamous cell carcinoma of the head and neck. Cell Rep 2023; 42:112823. [PMID: 37463106 PMCID: PMC10407766 DOI: 10.1016/j.celrep.2023.112823] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/03/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Cancers often display immune escape, but the mechanisms are incompletely understood. Herein, we identify SMYD3 as a mediator of immune escape in human papilloma virus (HPV)-negative head and neck squamous cell carcinoma (HNSCC), an aggressive disease with poor response to immunotherapy with pembrolizumab. SMYD3 depletion induces upregulation of multiple type I interferon (IFN) response and antigen presentation machinery genes in HNSCC cells. Mechanistically, SMYD3 binds to and regulates the transcription of UHRF1, encoding for a reader of H3K9me3, which binds to H3K9me3-enriched promoters of key immune-related genes, recruits DNMT1, and silences their expression. SMYD3 further maintains the repression of immune-related genes through intragenic deposition of H4K20me3. In vivo, Smyd3 depletion induces influx of CD8+ T cells and increases sensitivity to anti-programmed death 1 (PD-1) therapy. SMYD3 overexpression is associated with decreased CD8 T cell infiltration and poor response to neoadjuvant pembrolizumab. These data support combining SMYD3 depletion strategies with checkpoint blockade to overcome anti-PD-1 resistance in HPV-negative HNSCC.
Collapse
Affiliation(s)
- Nupur Nigam
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Benjamin Bernard
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Samantha Sevilla
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Sohyoung Kim
- Laboratory of Receptor Biology and Gene Expression, NCI, NIH, Bethesda, MD 20892, USA
| | - Mohd Saleem Dar
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Daniel Tsai
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Yvette Robbins
- Translational Tumor Immunology Program, NIDCD, NIH, Bethesda, MD 20892, USA
| | - Kyunghee Burkitt
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Cem Sievers
- Translational Tumor Immunology Program, NIDCD, NIH, Bethesda, MD 20892, USA
| | - Clint T Allen
- Translational Tumor Immunology Program, NIDCD, NIH, Bethesda, MD 20892, USA
| | | | - Theophilus T Tettey
- Laboratory of Receptor Biology and Gene Expression, NCI, NIH, Bethesda, MD 20892, USA
| | - Benjamin Carter
- National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Lorenzo Rinaldi
- Laboratory of Receptor Biology and Gene Expression, NCI, NIH, Bethesda, MD 20892, USA
| | - Mark W Lingen
- University of Chicago, Department of Pathology, Chicago, IL 60637, USA
| | - Houssein Sater
- GU Malignancies Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Elijah F Edmondson
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21702, USA
| | - Arfa Moshiri
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Abbas Saeed
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Hui Cheng
- National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Xiaolin Luo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Kevin Brennan
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vishal Koparde
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Chen Chen
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sudipto Das
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD 21702, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD 21702, USA
| | - Abdalla Abdelmaksoud
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Madhavi Murali
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Seiji Sakata
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan; Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan; Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan; Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD 21702, USA
| | - Yusuke Nakamura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan
| | | | - John B Sunwoo
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carter Van Waes
- National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | | | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, NCI, NIH, Bethesda, MD 20892, USA
| | - Vassiliki Saloura
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Liu H, Ma H, Li Y, Zhao H. Advances in epigenetic modifications and cervical cancer research. Biochim Biophys Acta Rev Cancer 2023; 1878:188894. [PMID: 37011697 DOI: 10.1016/j.bbcan.2023.188894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Cervical cancer (CC) is an important public health problem for women, and perspectives and information regarding its prevention and treatment are quickly evolving. Human papilloma virus (HPV) has been recognized as a major contributor to CC development; however, HPV infection is not the only cause of CC. Epigenetics refers to changes in gene expression levels caused by non-gene sequence changes. Growing evidence suggests that the disruption of gene expression patterns which were governed by epigenetic modifications can result in cancer, autoimmune diseases, and various other maladies. This article mainly reviews the current research status of epigenetic modifications in CC based on four aspects, respectively DNA methylation, histone modification, noncoding RNA regulation and chromatin regulation, and we also discuss their functions and molecular mechanisms in the occurrence and progression of CC. This review provides new ideas for early screening, risk assessment, molecular targeted therapy and prognostic prediction of CC.
Collapse
|
4
|
Wang M, Song J, Gao C, Yu C, Qin C, Lang Y, Xu A, Liu Y, Feng W, Tang J, Zhang R. UHRF1 Deficiency Inhibits Alphaherpesvirus through Inducing RIG-I-IRF3-Mediated Interferon Production. J Virol 2023; 97:e0013423. [PMID: 36916938 PMCID: PMC10062162 DOI: 10.1128/jvi.00134-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/14/2023] [Indexed: 03/16/2023] Open
Abstract
Type I interferon (IFN-I) response plays a prominent role in innate immunity, which is frequently modulated during viral infection. Here, we report DNA methylation regulator UHRF1 as a potent negative regulator of IFN-I induction during alphaherpesvirus infection, whereas the viruses in turn regulates the transcriptional expression of UHRF1. Knockdown of UHRF1 in cells significantly increases interferon-β (IFN-β)-mediated gene transcription and viral inhibition against herpes simplex virus 1 (HSV1) and pseudorabies virus (PRV). Mechanistically, UHRF1 deficiency promotes IFN-I production by triggering dsRNA-sensing receptor RIG-I and activating IRF3 phosphorylation. Knockdown of UHRF1 in cells upregulates the accumulation of double-stranded RNA (dsRNA), including host endogenous retroviral sequence (ERV) transcripts, while the treatment of RNase III, known to specifically digest dsRNA, prevents IFN-β induction by siUHRF1. Furthermore, the double-knockdown assay of UHRF1 and DNA methyltransferase DNMT1 suggests that siUHRF1-mediated DNA demethylation may play an important role in dsRNA accumulation and subsequently IFN induction. These findings establish the essential role of UHRF1 in IFN-I-induced antiviral immunity and reveal UHRF1 as a potential antivrial target. IMPORTANCE Alphaherpesviruses can establish lifelong infections and cause many diseases in humans and animals, which rely partly on their interaction with IFN-mediated innate immune response. Using alphaherpesviruses PRV and HSV-1 as models, we identified an essential role of DNA methylation regulator UHRF1 in IFN-mediated immunity against virus replication, which unravels a novel mechanism employed by epigenetic factor to control IFN-mediated antiviral immune response and highlight UHRF1, which might be a potential target for antiviral drug development.
Collapse
Affiliation(s)
- Mengdong Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingjing Song
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chao Gao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Cuilian Yu
- College of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Chao Qin
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yue Lang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Aotian Xu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yun Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenhai Feng
- College of Biology, China Agricultural University, Beijing, China
| | - Jun Tang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Rui Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Kuser-Abali G, Zhang Y, Szeto P, Zhao P, Masoumi-Moghaddam S, Fedele CG, Leece I, Huang C, Cheung JG, Ameratunga M, Noguchi F, Andrews MC, Wong NC, Schittenhelm RB, Shackleton M. UHRF1/UBE2L6/UBR4-mediated ubiquitination regulates EZH2 abundance and thereby melanocytic differentiation phenotypes in melanoma. Oncogene 2023; 42:1360-1373. [PMID: 36906655 PMCID: PMC10121471 DOI: 10.1038/s41388-023-02631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 03/13/2023]
Abstract
Cellular heterogeneity in cancer is linked to disease progression and therapy response, although mechanisms regulating distinct cellular states within tumors are not well understood. We identified melanin pigment content as a major source of cellular heterogeneity in melanoma and compared RNAseq data from high-pigmented (HPCs) and low-pigmented melanoma cells (LPCs), suggesting EZH2 as a master regulator of these states. EZH2 protein was found to be upregulated in LPCs and inversely correlated with melanin deposition in pigmented patient melanomas. Surprisingly, conventional EZH2 methyltransferase inhibitors, GSK126 and EPZ6438, had no effect on LPC survival, clonogenicity and pigmentation, despite fully inhibiting methyltransferase activity. In contrast, EZH2 silencing by siRNA or degradation by DZNep or MS1943 inhibited growth of LPCs and induced HPCs. As the proteasomal inhibitor MG132 induced EZH2 protein in HPCs, we evaluated ubiquitin pathway proteins in HPC vs LPCs. Biochemical assays and animal studies demonstrated that in LPCs, the E2-conjugating enzyme UBE2L6 depletes EZH2 protein in cooperation with UBR4, an E3 ligase, via ubiquitination at EZH2's K381 residue, and is downregulated in LPCs by UHRF1-mediated CpG methylation. Targeting UHRF1/UBE2L6/UBR4-mediated regulation of EZH2 offers potential for modulating the activity of this oncoprotein in contexts in which conventional EZH2 methyltransferase inhibitors are ineffective.
Collapse
Affiliation(s)
- Gamze Kuser-Abali
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Youfang Zhang
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Health, Melbourne, VIC, Australia
| | - Pacman Szeto
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Health, Melbourne, VIC, Australia
| | - Peinan Zhao
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | | | | | - Isobel Leece
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Cheng Huang
- Monash Proteomics and Metabolomics Facility and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jen G Cheung
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Health, Melbourne, VIC, Australia
| | - Malaka Ameratunga
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Health, Melbourne, VIC, Australia
| | - Fumihito Noguchi
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Miles C Andrews
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Health, Melbourne, VIC, Australia
| | - Nicholas C Wong
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Monash Bioinformatics Platform, Monash University, Melbourne, VIC, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Facility and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Mark Shackleton
- Central Clinical School, Monash University, Melbourne, VIC, Australia. .,Alfred Health, Melbourne, VIC, Australia.
| |
Collapse
|
6
|
Skelin J, Sabol I, Tomaić V. Do or Die: HPV E5, E6 and E7 in Cell Death Evasion. Pathogens 2022; 11:pathogens11091027. [PMID: 36145459 PMCID: PMC9502459 DOI: 10.3390/pathogens11091027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Human papillomaviruses (HPVs) infect the dividing cells of human epithelia and hijack the cellular replication machinery to ensure their own propagation. In the effort to adapt the cell to suit their own reproductive needs, the virus changes a number of processes, amongst which is the ability of the cell to undergo programmed cell death. Viral infections, forced cell divisions and mutations, which accumulate as a result of uncontrolled proliferation, all trigger one of several cell death pathways. Here, we examine the mechanisms employed by HPVs to ensure the survival of infected cells manipulated into cell cycle progression and proliferation.
Collapse
|
7
|
Jin G, Zheng J, Zhang Y, Yang Z, Chen Y, Huang C. LncRNA UCA1 epigenetically suppresses APAF1 expression to mediate the protective effect of sevoflurane against myocardial ischemia-reperfusion injury. Funct Integr Genomics 2022; 22:965-975. [PMID: 35723795 DOI: 10.1007/s10142-022-00874-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/27/2022]
Abstract
Myocardial ischemia-reperfusion injury (MI/RI) is a leading cause of death globally. Whereas some long noncoding RNAs (lncRNAs) are known to participate in the progression of MI/RI, the role of urothelial carcinoma associated 1 (UCA1) in conjunction with sevoflurane treatment remains largely unknown. H9C2 cardiomyocytes were subjected to hypoxia/reoxygenation (H/R) to establish an in vitro MI/RI model, and sevoflurane was then added. Cell viability, apoptosis, SOD activity, and MDA levels were measured. Levels of inflammatory cytokines and methylation of apoptosis protease-activating factor 1 (APAF1) were determined. Interactions among lncRNA UCA1, enhancer of zeste homologue 2 (EZH2), DNA methyltransferase-1 (DNMT1), and APAF1 were analyzed. After H/R treatment, the viability of H9C2 cardiomyocytes decreased and apoptosis rate, oxidative stress factor levels, inflammatory cytokine levels, and apoptosis-related protein levels all increased. Sevoflurane treatment reversed these changes. LncRNA UCA1 knockdown attenuated the therapeutic effect of sevoflurane on H/R-treated cardiomyocytes, and silencing of APAF1 reversed this role of UCA1 knockdown. Moreover, lncRNA UCA1 recruited DNMT1 through EZH2, thus promoting methylation of the APAF1 promoter region. LncRNA UCA1 recruits DNMT1 to promote methylation of the APAF1 promoter through EZH2, thus strengthening the protective effect of sevoflurane on H/R-induced cardiomyocyte injury.
Collapse
Affiliation(s)
- Guanjun Jin
- Department of Anesthesiology, Ningbo First Hospital, No. 90, Xianxue Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Jungang Zheng
- Department of Anesthesiology, Ningbo First Hospital, No. 90, Xianxue Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Yiwei Zhang
- Department of Anesthesiology, Ningbo First Hospital, No. 90, Xianxue Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Zhaodong Yang
- Department of Anesthesiology, Ningbo First Hospital, No. 90, Xianxue Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Yijun Chen
- Department of Anesthesiology, Ningbo First Hospital, No. 90, Xianxue Street, Haishu District, Ningbo, 315010, Zhejiang, China.
| | - Changshun Huang
- Department of Anesthesiology, Ningbo First Hospital, No. 90, Xianxue Street, Haishu District, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
8
|
Gao J, Li C, Li W, Chen H, Fu Y, Yi Z. Increased UBE2L6 regulated by type 1 interferon as potential marker in TB. J Cell Mol Med 2021; 25:11232-11243. [PMID: 34773365 PMCID: PMC8650027 DOI: 10.1111/jcmm.17046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/07/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this study is to identify potential biomarker of tuberculosis (TB) and determine its function. Differentially expressed mRNAs(DEGs) were selected from a blood database GSE101805, and then, 30 key genes were screened using STING, Cytoscape and further functionally enriched. We then found that only 6 of 13 genes related to ubiquitination (the first in the functional enrichment) were increased significantly. ROC analysis showed that UBE2L6, among 6 genes, had the highest diagnostic value, and then, we found that it also had mild value in differential diagnosis. Moreover, our analysis showed that UBE2L6 may be upregulated by type I interferon, which was further confirmed by us. In addition, we also found that UBE2L6 inhibits the apoptosis of Mycobacterium tuberculosis(Mtb)infected macrophages. Subsequently, we discovered that miR-146a-5p, which may target UBE2L6, is reduced in peripheral blood mononuclear cells (PBMC) and plasma of TB, and it also had certain diagnostic efficiency(AUC=0.791). In brief, we demonstrated that UBE2L6 as well as miR-146a-5p is a potential biomarker for TB and UBE2L6,which may also plays important role in TB by, at least, modulating Mtb-infected macrophage apoptosis.
Collapse
Affiliation(s)
- Jiao Gao
- School of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Chonghui Li
- School of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Wenjing Li
- School of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Haotian Chen
- School of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Yurong Fu
- School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Zhengjun Yi
- School of Medical Laboratory, Weifang Medical University, Weifang, China
| |
Collapse
|
9
|
Sharma A, Khan H, Singh TG, Grewal AK, Najda A, Kawecka-Radomska M, Kamel M, Altyar AE, Abdel-Daim MM. Pharmacological Modulation of Ubiquitin-Proteasome Pathways in Oncogenic Signaling. Int J Mol Sci 2021; 22:ijms222111971. [PMID: 34769401 PMCID: PMC8584958 DOI: 10.3390/ijms222111971] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
The ubiquitin-proteasome pathway (UPP) is involved in regulating several biological functions, including cell cycle control, apoptosis, DNA damage response, and apoptosis. It is widely known for its role in degrading abnormal protein substrates and maintaining physiological body functions via ubiquitinating enzymes (E1, E2, E3) and the proteasome. Therefore, aberrant expression in these enzymes results in an altered biological process, including transduction signaling for cell death and survival, resulting in cancer. In this review, an overview of profuse enzymes involved as a pro-oncogenic or progressive growth factor in tumors with their downstream signaling pathways has been discussed. A systematic literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on modulation of ubiquitin-proteasome pathways in oncogenic signaling. Various in vitro, in vivo studies demonstrating the involvement of ubiquitin-proteasome systems in varied types of cancers and the downstream signaling pathways involved are also discussed in the current review. Several inhibitors of E1, E2, E3, deubiquitinase enzymes and proteasome have been applied for treating cancer. Some of these drugs have exhibited successful outcomes in in vivo studies on different cancer types, so clinical trials are going on for these inhibitors. This review mainly focuses on certain ubiquitin-proteasome enzymes involved in developing cancers and certain enzymes that can be targeted to treat cancer.
Collapse
Affiliation(s)
- Anmol Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
- Correspondence: or (T.G.S.); (M.M.A.-D.); Tel.: +91-9815951171 (T.G.S.); +966-580192142 (M.M.A.-D.)
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland; (A.N.); (M.K.-R.)
| | - Małgorzata Kawecka-Radomska
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland; (A.N.); (M.K.-R.)
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: or (T.G.S.); (M.M.A.-D.); Tel.: +91-9815951171 (T.G.S.); +966-580192142 (M.M.A.-D.)
| |
Collapse
|
10
|
Hui B, Pan S, Che S, Sun Y, Yan Y, Guo J, Gong T, Ren J, Zhang X. Silencing UHRF1 Enhances Radiosensitivity of Esophageal Squamous Cell Carcinoma by Inhibiting the PI3K/Akt/mTOR Signaling Pathway. Cancer Manag Res 2021; 13:4841-4852. [PMID: 34188537 PMCID: PMC8232844 DOI: 10.2147/cmar.s311192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Resistance to radiotherapy results in a high treatment failure rate for locally advanced esophageal squamous cell carcinoma (ESCC). Ubiquitin-like with plant homeodomain and ring-finger domains 1 (UHRF1), is associated with poor prognosis in ESCC. The present study aims to characterize the effect of UHRF1 silencing on the radiosensitivity of ESCC and its potential mechanism. Methods Both in vitro and in vivo experiments were conducted to observe the effects of UHRF1 silencing on the radiosensitivity of ESCC. The effects of UHRF1 silencing on the apoptosis of ESCC cells were assessed by flow cytometry. The expression of apoptosis-related factors (caspase-3 and Bcl-2), PI3K/Akt/mTOR signaling pathway-related factors (PTEN, p-Akt and Akt, p-mTOR and mTOR), and DNMT1 were measured via Western blot, and the status of PTEN methylation was detected by methylation-specific PCR. Immunohistochemistry was used to detect the expressions of PTEN, p-AKT, and p-mTOR in xenograft tumor tissues. Results In vitro and in vivo experiments showed that UHRF1 knock-down inhibited ESCC cell growth and enhanced their radiosensitivity. shUHRF1 combined with radiation significantly increased ESCC cell apoptosis. Meanwhile, it activated the expression of caspase-3 and inhibited the expression of Bcl-2. shUHRF1 inhibited the expression of DNMT1 and reduced the methylation of PTEN, and then upregulated the expression of PTEN to inhibit the PI3K/Akt/mTOR signaling pathway. On the contrary, the PI3K/Akt/mTOR signaling pathway can be activated by upregulation of UHRF1. Conclusion Our findings provide a theoretical basis for UHRF1 as a target to improve the radiosensitivity of ESCC.
Collapse
Affiliation(s)
- Beina Hui
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, People's Republic of China
| | - Shupei Pan
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, People's Republic of China
| | - Shaomin Che
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, People's Republic of China
| | - Yuchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, People's Republic of China
| | - Yanli Yan
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, People's Republic of China
| | - Jia Guo
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, People's Republic of China
| | - Tuotuo Gong
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, People's Republic of China
| | - Juan Ren
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, People's Republic of China
| | - Xiaozhi Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, People's Republic of China
| |
Collapse
|
11
|
Abdullah O, Omran Z, Hosawi S, Hamiche A, Bronner C, Alhosin M. Thymoquinone Is a Multitarget Single Epidrug That Inhibits the UHRF1 Protein Complex. Genes (Basel) 2021; 12:genes12050622. [PMID: 33922029 PMCID: PMC8143546 DOI: 10.3390/genes12050622] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Silencing of tumor suppressor genes (TSGs) through epigenetic mechanisms, mainly via abnormal promoter DNA methylation, is considered a main mechanism of tumorigenesis. The abnormal DNA methylation profiles are transmitted from the cancer mother cell to the daughter cells through the involvement of a macromolecular complex in which the ubiquitin-like containing plant homeodomain (PHD), and an interesting new gene (RING) finger domains 1 (UHRF1), play the role of conductor. Indeed, UHRF1 interacts with epigenetic writers, such as DNA methyltransferase 1 (DNMT1), histone methyltransferase G9a, erasers like histone deacetylase 1 (HDAC1), and functions as a hub protein. Thus, targeting UHRF1 and/or its partners is a promising strategy for epigenetic cancer therapy. The natural compound thymoquinone (TQ) exhibits anticancer activities by targeting several cellular signaling pathways, including those involving UHRF1. In this review, we highlight TQ as a potential multitarget single epidrug that functions by targeting the UHRF1/DNMT1/HDAC1/G9a complex. We also speculate on the possibility that TQ might specifically target UHRF1, with subsequent regulatory effects on other partners.
Collapse
Affiliation(s)
- Omeima Abdullah
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (O.A.); (Z.O.)
| | - Ziad Omran
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (O.A.); (Z.O.)
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ali Hamiche
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France; (A.H.); (C.B.)
| | - Christian Bronner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France; (A.H.); (C.B.)
| | - Mahmoud Alhosin
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: ; Tel.: +966-597-959-354
| |
Collapse
|
12
|
Kim MJ, Lee HJ, Choi MY, Kang SS, Kim YS, Shin JK, Choi WS. UHRF1 Induces Methylation of the TXNIP Promoter and Down-Regulates Gene Expression in Cervical Cancer. Mol Cells 2021; 44:146-159. [PMID: 33795533 PMCID: PMC8019600 DOI: 10.14348/molcells.2021.0001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/16/2021] [Accepted: 02/21/2021] [Indexed: 12/13/2022] Open
Abstract
DNA methylation, and consequent down-regulation, of tumour suppressor genes occurs in response to epigenetic stimuli during cancer development. Similarly, human oncoviruses, including human papillomavirus (HPV), up-regulate and augment DNA methyltransferase (DNMT) and histone deacetylase (HDAC) activities, thereby decreasing tumour suppressor genes (TSGs) expression. Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1), an epigenetic regulator of DNA methylation, is overexpressed in HPV-induced cervical cancers. Here, we investigated the role of UHRF1 in cervical cancer by knocking down its expression in HeLa cells using lentiviral-encoded short hairpin (sh)RNA and performing cDNA microarrays. We detected significantly elevated expression of thioredoxin-interacting protein (TXNIP), a known TSG, in UHRF1-knockdown cells, and this gene is hypermethylated in cervical cancer tissue and cell lines, as indicated by whole-genome methylation analysis. Up-regulation of UHRF1 and decreased TXNIP were further detected in cervical cancer by western blot and immunohistochemistry and confirmed by Oncomine database analysis. Using chromatin immunoprecipitation, we identified the inverted CCAAT domain-containing UHRF1-binding site in the TXNIP promoter and demonstrated UHRF1 knockdown decreases UHRF1 promoter binding and enhances TXNIP expression through demethylation of this region. TXNIP promoter CpG methylation was further confirmed in cervical cancer tissue by pyrosequencing and methylation-specific polymerase chain reaction. Critically, down-regulation of UHRF1 by siRNA or UHRF1 antagonist (thymoquinone) induces cell cycle arrest and apoptosis, and ubiquitin-specific protease 7 (USP7), which stabilises and promotes UHRF1 function, is increased by HPV viral protein E6/E7 overexpression. These results indicate HPV might induce carcinogenesis through UHRF1-mediated TXNIP promoter methylation, thus suggesting a possible link between CpG methylation and cervical cancer.
Collapse
Affiliation(s)
- Min Jun Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Han Ju Lee
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Mee Young Choi
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Sang Soo Kang
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Yoon Sook Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Jeong Kyu Shin
- Department of Obstetrics and Gynecology, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Wan Sung Choi
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
13
|
Liu L, Hu L, Yang L, Jia S, Du P, Min X, Wu J, Wu H, Long H, Lu Q, Zhao M. UHRF1 downregulation promotes T follicular helper cell differentiation by increasing BCL6 expression in SLE. Clin Epigenetics 2021; 13:31. [PMID: 33568199 PMCID: PMC7874639 DOI: 10.1186/s13148-021-01007-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022] Open
Abstract
Background Transcription factor B cell lymphoma 6 (BCL6) is a master regulator of T follicular helper (Tfh) cells, which play a crucial role in the pathogenesis of systemic lupus erythematosus (SLE). However, the mechanisms by which BCL6 expression is regulated are poorly understood. Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is an important epigenetic factor that regulates DNA methylation and histone modifications. In the present study, we assessed whether UHRF1 can regulate BCL6 expression and influence the differentiation and proliferation of Tfh cells. Results Compared to healthy controls, the mean fluorescence intensity of UHRF1 (UHRF1-MFI) in Tfh cells from SLE patients was significantly downregulated, whereas that of BCL6 (BCL6-MFI) was significantly upregulated. In vitro, UHRF1 knockdown led to BCL6 overexpression and promoted Tfh cell differentiation. In contrast, UHRF1 overexpression led to BCL6 downregulation and decreased Tfh cell differentiation. In vivo, conditional UHRF1 gene knockout (UHRF1-cKO) in mouse T cells revealed that UHRF1 depletion can enhance the proportion of Tfh cells and induce an augmented GC reaction in mice treated with NP-keyhole limpet hemocyanin (NP-KLH). Mechanistically, UHRF1 downregulation can decrease DNA methylation and H3K27 trimethylation (H3K27me3) levels in the BCL6 promoter region of Tfh cells. Conclusions Our results demonstrated that UHRF1 downregulation leads to increased BCL6 expression by decreasing DNA methylation and H3K27me3 levels, promoting Tfh cell differentiation in vitro and in vivo. This finding reveals the role of UHRF1 in regulating Tfh cell differentiation and provides a potential target for SLE therapy.
Collapse
Affiliation(s)
- Limin Liu
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Longyuan Hu
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Linxuan Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Sujie Jia
- Department of Pharmacy, Central South University, The Third Xiangya Hospital, Changsha, China
| | - Pei Du
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Xiaoli Min
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Jiali Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Hai Long
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China. .,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China.
| |
Collapse
|
14
|
Hu B, Wei Q, Li X, Ju M, Wang L, Zhou C, Chen L, Li Z, Wei M, He M, Zhao L. Development of an IFNγ response-related signature for predicting the survival of cutaneous melanoma. Cancer Med 2020; 9:8186-8201. [PMID: 32902917 PMCID: PMC7643661 DOI: 10.1002/cam4.3438] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 07/21/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022] Open
Abstract
Background The tumor microenvironment (TME) plays a critical role in tumorigenesis, development, and therapeutic efficacy. Major advances have been achieved in the treatment of various cancers through immunotherapy. Nevertheless, only a minority of patients have positive responses to immunotherapy, which is partly due to conditions of the immunosuppressive microenvironment. Therefore, it is essential to identify prognostic biomarkers that reflect heterogeneous landscapes of the TME. Methods and materials Based upon the ESTIMATE algorithm, we evaluated the infiltrating levels of immune and stromal components derived from patients afflicted by various types of cancer from The Cancer Genome Atlas database (TCGA). According to respective patient immune and stromal scores, we categorized cases into high‐ and low‐scoring subgroups for each cancer type to explore associations between TME and patient prognosis. Gene Set Enrichment Analyses (GSEA) were conducted and genes enriched in IFNγ response signaling pathway were selected to facilitate establishment of a risk model for predicting overall survival (OS). Furthermore, we investigated the associations between the prognostic signature and tumor immune infiltration landscape by using CIBERSORT algorithm and TIMER database. Results Among the cancers assessed, the immune scores for skin cutaneous melanoma (SKCM) were the most significantly correlated with patients' survival time (P < .0001). We identified and validated a five‐IFNγ response‐related gene signature (UBE2L6, PARP14, IFIH1, IRF2, and GBP4), which was closely correlated with the prognosis for SKCM afflicted patients. Multivariate Cox regression analysis indicated that this risk model was an independent prognostic factor for SKCM. Tumor‐infiltrating lymphocytes and specific immune checkpoint molecules had notably differential levels of expression in high‐ compared to low‐risk samples. Conclusion In this study, we established a novel five‐IFNγ response‐related gene signature that provided a better and increasingly comprehensive understanding of tumor immune landscape, and which demonstrated good performance in predicting outcomes for patients afflicted by SKCM.
Collapse
Affiliation(s)
- Baohui Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Xueping Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Lin Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Chenyi Zhou
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Lianze Chen
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Zinan Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
15
|
Lee HJ, Kim MJ, Kim YS, Choi MY, Cho GJ, Choi WS. UHRF1 silences gelsolin to inhibit cell death in early stage cervical cancer. Biochem Biophys Res Commun 2020; 526:1061-1068. [PMID: 32312517 DOI: 10.1016/j.bbrc.2020.03.185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
Abstract
Persistent infection with high-risk strains of human papillomavirus (HPV) is the primary cause of cervical cancer, the fourth most common cancer among women worldwide. Two oncoproteins encoded by the HPV genome, E6 and E7, are required for epigenetic modifications that promote cervical cancer development. We found that knockdown of HPV E6/E7 by siRNA reduced the levels of ubiquitin-like containing PHD and RING finger domain 1 (UHRF1) but increased the levels of gelsolin (GSN) in early stage cervical cancer cells. In addition, we found that UHRF1 levels were increased and GSN levels were decreased in early stage cervical cancer compared with those in normal cervical tissues, as shown by Western blot analysis, immunohistochemistry, and analysis of the Oncomine database. Moreover, knockdown of UHRF1 resulted in increased cell death in cervical cancer cell lines. Treatment of E6/E7-transformed HaCaT (HEK001) cells and HeLa cells with the DNA-hypomethylating agent 5-aza-2'-deoxycytidine and the histone deacetylase inhibitor Trichostatin A increased GSN expression levels. UHRF1 knockdown in HEK001 cells by siRNA or the UHRF1 antagonist thymoquinone increased GSN levels, induced cell cycle arrest and apoptosis, and increased the levels of p27 and cleaved PARP. Those results indicate that upregulation of UHRF1 by HPV E6/E7 causes GSN silencing and a reduction of cell death in early stage cervical cancer, suggesting that GSN might be a useful therapeutic target in early stage cervical cancer.
Collapse
Affiliation(s)
- Han Ju Lee
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Min Jun Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Yoon Sook Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Mee Young Choi
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Gyeong Jae Cho
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Wan Sung Choi
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.
| |
Collapse
|
16
|
Wu Y, Zhang S, Yan J. IRF1 association with tumor immune microenvironment and use as a diagnostic biomarker for colorectal cancer recurrence. Oncol Lett 2020; 19:1759-1770. [PMID: 32194669 PMCID: PMC7039159 DOI: 10.3892/ol.2020.11289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is considered to be one of the most lethal cancer types globally, and its recurrence is a major treatment challenge. Identifying the factors involved when determining the risk of CRC recurrence is required to improve personalized therapy for patients with CRC. Based on the GSE39582 dataset, the present study demonstrated that a higher ratio of M1 macrophages and activated memory CD4+ T cells indicated a better recurrence-free survival (RFS) time for CRC, using CIBERSORT and Pearson's correlation analysis. Through weighted correlation network analysis (WGCNA), an immune-associated module was identified that was significantly positively correlated with the ratio of M1 macrophages and activated memory CD4+ T cells. In this module, using WGCNA and a protein-protein interaction network, interferon regulatory factor 1 (IRF1), chemokine ligand 5, ubiquitin/ISG15-conjugating enzyme E2 L6, guanylate binding protein 1 and interleukin 2 receptor subunit beta were identified as hub genes. Among these genes, univariate Cox and multivariate Cox analysis revealed that IRF1 may be a potential diagnostic biomarker for RFS in patients with CRC. This was further validated using The Cancer Genome Atlas data. Gene set enrichment analysis demonstrated that IRF1 influenced the genes and pathways that are associated with immune cell recruitment and activation. Additionally, the DNA methylation of cg27587780 and cg15375424 CpG sites in the IRF1 gene region was indicated to be negatively correlated with IRF1 mRNA expression and positively correlated with the recurrence of CRC. Collectively, the results of the present study demonstrated that IRF1 may be a potential diagnostic biomarker for RFS in patients with CRC.
Collapse
Affiliation(s)
- Yanfang Wu
- Department of Gastroenterology, The Fourth People's Hospital of Shaanxi, Xi'an, Shanxi 710032, P.R. China
| | - Shuju Zhang
- Hunan Children's Research Institute, Hunan Children's Hospital, University of South China, Changsha, Hunan 410007, P.R. China
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Beijing 102218, P.R. China
| |
Collapse
|
17
|
Papasavvas E, Kossenkov AV, Azzoni L, Zetola NM, Mackiewicz A, Ross BN, Fair M, Vadrevu S, Ramogola-Masire D, Sanne I, Firnhaber C, Montaner LJ. Gene expression profiling informs HPV cervical histopathology but not recurrence/relapse after LEEP in ART-suppressed HIV+HPV+ women. Carcinogenesis 2019; 40:225-233. [PMID: 30364933 DOI: 10.1093/carcin/bgy149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/28/2018] [Accepted: 10/24/2018] [Indexed: 12/30/2022] Open
Abstract
Identification of factors associated with human papillomavirus (HPV) cervical histopathology or recurrence/relapse following loop electrosurgical excision procedure (LEEP) would allow for better management of the disease. We investigated whether gene signatures could (i) associate with HPV cervical histopathology and (ii) identify women with post-LEEP disease recurrence/relapse. Gene array analysis was performed on paraffin-embedded cervical tissue-isolated RNA from two cross-sectional cohorts of antiretroviral therapy (ART)-suppressed HIV+HPV+ coinfected women: (i) 55 women in South Africa recruited into three groups: high risk (HR) (-) (n = 16) and HR (+) (n = 15) HPV without cervical histopathology and HR (+) HPV with cervical intraepithelial neoplasia (CIN) grade 1/2/3 (n = 24), (ii) 28 women in Botswana with CIN2/3 treated with LEEP 12-month prior to recruitment and presenting with (n = 13) and without (n = 15) lesion recurrence/relapse (tissue was analyzed at first LEEP). Three distinct gene expression signatures identified were able to segregate: (i) HR+ HPV and CIN1/2/3, (ii) HR HPV-free and cervical histopathology-free and (iii) HR+ HPV and cervical histopathology-free. Immune activation and neoplasia-associated genes (n = 272 genes; e.g. IL-1A, IL-8, TCAM1, POU4F1, MCM2, SMC1B, CXCL6, MMP12) were a feature of cancer precursor dysplasia within HR HPV infection. No difference in LEEP tissue gene expression was detected between women with or without recurrence/relapse. In conclusion, distinctive gene signatures were associated with presence of cervical histopathology in tissues from ART-suppressed HIV+/HPV+ coinfected women. Lack of detection of LEEP tissue gene signature able to segregate subsequent post-LEEP disease recurrence/relapse indicates additional factors independent of local gene expression as determinants of recurrence/relapse.
Collapse
Affiliation(s)
- Emmanouil Papasavvas
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | - Andrew V Kossenkov
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | - Livio Azzoni
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | - Nicola M Zetola
- The Botswana-UPenn Partnership, Department of Radiation Oncology, Gaborone, Botswana.,The University of Pennsylvania, Department of Radiation Oncology, Philadelphia, PA, USA
| | - Agnieszka Mackiewicz
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | - Brian N Ross
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | - Matthew Fair
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | - Surya Vadrevu
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | | | - Ian Sanne
- Clinical HIV Research Unit, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Cynthia Firnhaber
- Clinical HIV Research Unit, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Right To Care, Johannesburg, South Africa
| | - Luis J Montaner
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| |
Collapse
|
18
|
Polepalli S, George SM, Valli Sri Vidya R, Rodrigues GS, Ramachandra L, Chandrashekar R, M DN, Rao PP, Pestell RG, Rao M. Role of UHRF1 in malignancy and its function as a therapeutic target for molecular docking towards the SRA domain. Int J Biochem Cell Biol 2019; 114:105558. [DOI: 10.1016/j.biocel.2019.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/30/2019] [Accepted: 06/14/2019] [Indexed: 01/07/2023]
|
19
|
Chen T, Yang S, Xu J, Lu W, Xie X. Transcriptome sequencing profiles of cervical cancer tissues and SiHa cells. Funct Integr Genomics 2019; 20:211-221. [PMID: 31456134 DOI: 10.1007/s10142-019-00706-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/08/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023]
Abstract
High-risk human papillomavirus (HPV) is a causal factor for cervical cancer, of which HPV16 is the predominant genotype, but the detailed mechanism remains to be elucidated. In this study, we performed transcriptome sequencing in cervical cancer tissues with HPV16-positive and normal tissues with HPV16-negative, and SiHa cells with or without HPV16 E6/E7 knockdown, and identified 140 differential expressed genes (DEGs) in two data sets. We carried out a series of bioinformatic analyses to learn more about the 140 DEGs, and found that 140 DEGs were mostly enriched in cell cycle and DNA repair through Kyoto Encyclopedia of Genes and Genomes pathway enrichment, Gene Ontology annotation, and gene set enrichment analysis. A total of 20 genes including RMI1, MKI67, FANCB, KIF14, CENPI, RACGAP1, EXO1, KIF4A, FOXM1, C19orf57, PSRC1, NUSAP1, CIT, NDC80, MCM7, GINS2, MCM6, ORC1, TLX2, and UHRF1 were screened by co-expression analysis; of those, the expressions of 6 (CENPI, FANCB, KIF14, ORC1, RACGAP1, and RMI1) were verified by qRT-PCR. Further, we found that E2F family, NF-Y, AhR:Arnt, and KROX family may be involved in modulating DEGs by TransFind prediction. TF2DNA database and co-expression analysis suggested that 12 TFs (ZNF367, TLX2, DEPDC1B, E2F8, ZNF541, EGR2, ZMAT3, HES6, CEBPA, MYBL2, FOXM1, and RAD51) were upstream modulators of DEGs. Our findings may provide a new understanding for effects of HPV oncogenes in the maintenance of cancerous state at the transcriptional level.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shizhou Yang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xing Xie
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
20
|
Yang Y, Liu G, Qin L, Ye L, Zhu F, Ying Y. Overexpression of UHRF1 and its potential role in the development of invasive ductal breast cancer validated by integrative bioinformatics and immunohistochemistry analyses. Transl Cancer Res 2019; 8:1086-1096. [PMID: 35116851 PMCID: PMC8797458 DOI: 10.21037/tcr.2019.06.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Increasing evidence has highlighted the role of ubiquitin-like PHD and RING finger domain-containing protein 1 (UHRF1) in the development of cancers, including hepatocellular carcinoma, pancreatic cancer, and bladder cancer. However, the correlation between UHRF1 and breast cancer remains unclear. The present study aimed to analyze the expression of UHRF1 and its role in the development of invasive ductal breast cancer (IDC) by integrating multilevel expression data and immunohistochemistry analysis. METHODS The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were used to gather UHRF1 expression data on IDC. Additionally, immunohistochemistry analysis was used to investigate the correlations between UHRF1 expression and the clinical characteristics of IDC. RESULTS The GEO and TCGA databases indicated that UHRF1 was up-regulated in IDC. Consistently, the immunohistochemical specimens showed that the significant overexpression of UHRF1 in IDC, and its expression level showed an increasing trend from ductal carcinomas in situ to IDC. Notably, the increased levels of UHRF1 were closely correlated with estrogen receptor expression, pathological grade, and the prognosis of the disease. In addition, patients with a high UHRF1 expression had a poorer prognosis. CONCLUSIONS In conclusion, our findings suggested that UHRF1 plays a promoting role in breast tumorigenesis, and the over-expression of UHRF1 could serve as a biomarker for the prognosis in invasive ductal carcinomas in breast cancer.
Collapse
Affiliation(s)
- Yichen Yang
- Department of Pathophysiology, Jiangxi Medical College of Nanchang University, Nanchang 330006, China
| | - Guanjun Liu
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Lifang Qin
- Department of Pathology, Xinxiang Center Hospital, Xinxiang 450003, China
| | - Li Ye
- Department of Pathology, Xinxiang Center Hospital, Xinxiang 450003, China
| | - Fangheng Zhu
- Department of Pathology, Xinxiang Center Hospital, Xinxiang 450003, China
| | - Ying Ying
- Department of Pathophysiology, Jiangxi Medical College of Nanchang University, Nanchang 330006, China
| |
Collapse
|
21
|
Xue B, Zhao J, Feng P, Xing J, Wu H, Li Y. Epigenetic mechanism and target therapy of UHRF1 protein complex in malignancies. Onco Targets Ther 2019; 12:549-559. [PMID: 30666134 PMCID: PMC6334784 DOI: 10.2147/ott.s192234] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ubiquitin-like with plant homeodomain and really interesting new gene finger domains 1 (UHRF1) functions as an epigenetic regulator recruiting PCNA, DNMT1, histone deacetylase 1, G9a, SuV39H, herpes virus-associated ubiquitin-specific protease, and Tat-interactive protein by multiple corresponding domains of DNA and H3 to maintain DNA methylation and histone modifications. Overexpression of UHRF1 has been found as a potential biomarker in various cancers resulting in either DNA hypermethylation or global DNA hypo-methylation, which participates in the occurrence, progression, and invasion of cancer. The role of UHRF1 in the reciprocal interaction between DNA methylation and histone modifications, the dynamic structural transformation of UHRF1 protein within epigenetic code replication machinery in epigenetic regulations, as well as modifications during cell cycle and chemotherapy targeting UHRF1 are evaluated in this study.
Collapse
Affiliation(s)
- Busheng Xue
- Department of Spine and Joint Surgery, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China,
| | - Jiansong Zhao
- Department of Spine and Joint Surgery, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China,
| | - Penghui Feng
- Department of Obstetrics and Gynecology-Reproductive Medical Center, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Jia Xing
- Department of Histology and Embryology, Basic Medicine College, China Medical University, Shenyang, People's Republic of China
| | - Hongliang Wu
- Department of Spine and Joint Surgery, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China,
| | - Yan Li
- Department of Spine and Joint Surgery, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China,
| |
Collapse
|
22
|
Li H, Xing L, Zhao N, Wang J, Zheng N. Furosine Induced Apoptosis by the Regulation of STAT1/STAT2 and UBA7/UBE2L6 Genes in HepG2 Cells. Int J Mol Sci 2018; 19:ijms19061629. [PMID: 29857509 PMCID: PMC6032202 DOI: 10.3390/ijms19061629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 11/16/2022] Open
Abstract
As a typical product in the Miallard reaction, research on the quantitative detection of furosine is abundant, while its bioactivities and toxic effects are still unclear. Our own work recently demonstrated the induction of furosine on apoptosis in HepG2 cells, while the related mechanism remained elusive. In this study, the effects of furosine on cell viability and apoptosis were detected to select the proper dosage, and transcriptomics detection and data analysis were performed to screen out the special genes. Additionally, SiRNA fragments of the selected genes were designed and transfected into HepG2 cells to validate the role of these genes in inducing apoptosis. Results showed that furosine inhibited cell viability and induced cell apoptosis in a dose-dependent manner, as well as activated expressions of the selected genes STAT1 (signal transducer and activator of transcription 1), STAT2 (signal transducer and activator of transcription 2), UBA7 (ubiquitin-like modifier activating enzyme 7), and UBE2L6 (ubiquitin-conjugating enzyme E2L6), which significantly affected downstream apoptosis factors Caspase-3 (cysteinyl aspartate specific proteinase-3), Bcl-2 (B-cell lymphoma gene-2), Bax (BCL2-Associated gene X), and Caspase-9 (cysteinyl aspartate specific proteinase-9). For the first time, we revealed furosine induced apoptosis through two transcriptional regulators (STAT1 and STAT2) and two ubiquitination-related enzymes (UBA7 and UBE2L6).
Collapse
Affiliation(s)
- Huiying Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Lei Xing
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Nan Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Jiaqi Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Nan Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|