1
|
El-Korany WA, Zahran WE, Alm El-Din MA, Al-Shenawy HA, Soliman AF. Rs12039395 Variant Influences the Expression of hsa-miR-181a-5p and PTEN Toward Colorectal Cancer Risk. Dig Dis Sci 2024; 69:3318-3332. [PMID: 38940971 DOI: 10.1007/s10620-024-08517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) in microRNA (miRNA) genes could alter miRNA expression levels or processing and, thus, may contribute to colorectal cancer (CRC) development. Therefore, this study aimed to examine whether the MIR181A1 genomic sequence possesses SNPs that can affect the expression of hsa-miR-181a-5p and, subsequently, impact its targets and associate with CRC risk. METHODS The NCBI dbSNP database was searched for possible SNPs associated with MIR181A1. One SNP with a minor allele frequency > 5%, rs12039395 G > T was identified. In silico analyses determined the effect of the SNP on the secondary structure of the miRNA and predicted the hsa-miR-181a-5p target genes. The SNP was genotyped using allelic discrimination assay, the relative hsa-miR-181a-5p expression level was determined using quantitative real-time PCR, and immunohistochemical staining was used to detect target genes in 192 paraffin-embedded specimens collected from 160 CRC patients and 32 healthy subjects. RESULTS The rs6505162 SNP conferred protection against CRC, and the G-allele presence provides may provide accessibility for the transcriptional machinery. Hsa-miR-181a-5p was significantly over-expressed in the CRC group compared to controls and in samples carrying the G-allele compared to those with T-allele. PTEN, identified as the only hsa-miR-181a-5p target implicated in CRC, was significantly diminished in the CRC group compared to controls and showed an inverse relationship with hsa-miR-181a-5p expression level as well as negatively associated with the G-allele presence in CRC. CONCLUSION This study highlights that rs12039395 G > T may protect against CRC by influencing the expression of hsa-mir-181a-5p and its target gene, PTEN.
Collapse
Affiliation(s)
- Wael A El-Korany
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Walid E Zahran
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed A Alm El-Din
- Clinical Oncology Department, Faculty of Medicine, Tanta University, Gharbia, Egypt
| | - Hanan A Al-Shenawy
- Pathology Department, Faculty of Medicine, Tanta University, Gharbia, Egypt
| | - Ahmed F Soliman
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
2
|
Chen J, Liu K, Vadas MA, Gamble JR, McCaughan GW. The Role of the MiR-181 Family in Hepatocellular Carcinoma. Cells 2024; 13:1289. [PMID: 39120319 PMCID: PMC11311592 DOI: 10.3390/cells13151289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth-leading cause of cancer-related death worldwide. Due to the high mortality rate in HCC patients, discovering and developing novel systemic treatment options for HCC is a vital unmet medical need. Among the numerous molecular alterations in HCCs, microRNAs (miRNAs) have been increasingly recognised to play critical roles in hepatocarcinogenesis. We and others have recently revealed that members of the microRNA-181 (miR-181) family were up-regulated in some, though not all, human cirrhotic and HCC tissues-this up-regulation induced epithelial-mesenchymal transition (EMT) in hepatocytes and tumour cells, promoting HCC progression. MiR-181s play crucial roles in governing the fate and function of various cells, such as endothelial cells, immune cells, and tumour cells. Previous reviews have extensively covered these aspects in detail. This review aims to give some insights into miR-181s, their targets and roles in modulating signal transduction pathways, factors regulating miR-181 expression and function, and their roles in HCC.
Collapse
Affiliation(s)
- Jinbiao Chen
- Liver Injury and Cancer Program, Cancer Innovations Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
| | - Ken Liu
- Liver Injury and Cancer Program, Cancer Innovations Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| | - Mathew A. Vadas
- Vascular Biology Program, Healthy Ageing Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (M.A.V.); (J.R.G.)
| | - Jennifer R. Gamble
- Vascular Biology Program, Healthy Ageing Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (M.A.V.); (J.R.G.)
| | - Geoffrey W. McCaughan
- Liver Injury and Cancer Program, Cancer Innovations Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| |
Collapse
|
3
|
Li P, Zhang Z, Sun P. DOT1L promotes expression of CD44 through the Wnt/β-catenin signaling pathway in early gastric carcinoma. J Cancer 2024; 15:2276-2291. [PMID: 38495505 PMCID: PMC10937288 DOI: 10.7150/jca.90170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
To assess telomere silencing 1-like (DOTIL) gene expression within gastric cancer (GC) tissues as well as its function of promoting cancer stem cell (CSC)-mediated epithelial-mesenchymal switching, tissue samples from 8 patients each in 3 stages (normal, low-grade intraepithelial neoplasia (LGIN), as well as early gastric carcinoma (EGC)) were collected for whole-exome sequencing, which revealed differentially expressed genes (DEGs). The DEGs and their prognostic value were verified through TCGA and GTEx analyses. We also verified the role of DOT1L in EGC development. We collected samples from three patients each with LGIN and EGC for single-cell sequencing. We conducted single-cell transcriptomic analysis, DEG analysis, cell‒cell interaction analysis, and pseudotime analysis using R language. Sites and levels of DOT1L, CD44 and DOT1L expression were verified by IF. We found 703 deleterious mutation sites in the LGIN group and 389 deleterious mutation sites in the EGC group. The LGIN as well as EGC categories exhibited increased levels of DOT1L expression compared to the standard category (P<0.05) in TCGA and GTEx. DOT1L also correlated significantly with TMB (P=8.45E-06), MSI (P=0.001), and tumor proliferation index (P=7.17E-09) in the TCGA and GTEx datasets. In single cells, we found that DOT1L promotes CD44 expression via the Wnt/β-catenin signaling pathway and the development for stemness properties within GC. In addition, we found that DOT1L, CD44 and CTNNB1 colocalize and correlate positively. In conclusion, one important CSC regulator in GC, DOT1L may be crucial in coordinating the expression of genes specific to a certain lineage during MSC development.
Collapse
Affiliation(s)
- Ping Li
- Department of Pathology, Jiangnan University Medical Center, Wuxi, Jiangsu Province 214002, PR China
- Department of Pathology, Wuxi No.2 People's Hospital, Wuxi, Jiangsu Province 214002, PR China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214002, PR China
| | - Zhou Zhang
- Department of Clinical Laboratory, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, Wuxi, Jiangsu Province 214000, PR China
| | - Ping Sun
- Department of Pathology, Jiangnan University Medical Center, Wuxi, Jiangsu Province 214002, PR China
- Department of Pathology, Wuxi No.2 People's Hospital, Wuxi, Jiangsu Province 214002, PR China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214002, PR China
| |
Collapse
|
4
|
Rehman SU, Ullah N, Zhang Z, Zhen Y, Din AU, Cui H, Wang M. Recent insights into the functions and mechanisms of antisense RNA: emerging applications in cancer therapy and precision medicine. Front Chem 2024; 11:1335330. [PMID: 38274897 PMCID: PMC10809404 DOI: 10.3389/fchem.2023.1335330] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The antisense RNA molecule is a unique DNA transcript consisting of 19-23 nucleotides, characterized by its complementary nature to mRNA. These antisense RNAs play a crucial role in regulating gene expression at various stages, including replication, transcription, and translation. Additionally, artificial antisense RNAs have demonstrated their ability to effectively modulate gene expression in host cells. Consequently, there has been a substantial increase in research dedicated to investigating the roles of antisense RNAs. These molecules have been found to be influential in various cellular processes, such as X-chromosome inactivation and imprinted silencing in healthy cells. However, it is important to recognize that in cancer cells; aberrantly expressed antisense RNAs can trigger the epigenetic silencing of tumor suppressor genes. Moreover, the presence of deletion-induced aberrant antisense RNAs can lead to the development of diseases through epigenetic silencing. One area of drug development worth mentioning is antisense oligonucleotides (ASOs), and a prime example of an oncogenic trans-acting long noncoding RNA (lncRNA) is HOTAIR (HOX transcript antisense RNA). NATs (noncoding antisense transcripts) are dysregulated in many cancers, and researchers are just beginning to unravel their roles as crucial regulators of cancer's hallmarks, as well as their potential for cancer therapy. In this review, we summarize the emerging roles and mechanisms of antisense RNA and explore their application in cancer therapy.
Collapse
Affiliation(s)
- Shahab Ur Rehman
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
| | - Numan Ullah
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
| | - Zhenbin Zhang
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
| | - Yongkang Zhen
- College of Animals Nutrition Yangzhou University, Yangzhou, China
| | - Aziz-Ud Din
- Department of Human Genetics, Hazara University Mansehra, Mansehra, Pakistan
| | - Hengmi Cui
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
- Institute of Epigenetics and Epigenomics Yangzhou University, College of Animal Nutrition Yangzhou University, Yangzhou, China
| | - Mengzhi Wang
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
- College of Animals Nutrition Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Chen P, Yu J, Luo Q, Li J, Wang W. Construction of disulfidptosis-related lncRNA signature for predicting the prognosis and immune escape in colon adenocarcinoma. BMC Gastroenterol 2023; 23:382. [PMID: 37946148 PMCID: PMC10636996 DOI: 10.1186/s12876-023-03020-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Colon adenocarcinoma (COAD) is one of the most frequent types of cancer worldwide. Disulfidptosis has been identified as a new mode of cell death recently. The goal of this study was to explore the possibility of a connection between disulfidptosis and COAD. RNA sequencing data from COAD patients were retrieved from the The Cancer Genome Atlas (TCGA) database for this investigation. R software and various methods were used to identify disulfidptosis-related lncRNAs (DRLs) in COAD, and a prognostic model was created based on 6 DRLs (AP003555.1, AL683813.1, SNHG7, ZEB1-AS1, AC074212.1, RPL37A-DT). The prognostic model demonstrated a good accuracy in predicting the prognosis of COAD patients, according to receiver operating characteristic (ROC) curve and Concordance index (C-index) analyses. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed significant differences in biological functions and signaling pathways involved in differential genes in risk subgroups, including protein - DNA complex subunit organization, Hippo signaling pathway, Wnt signaling pathway. TIDE analysis was done on risk groupings in this study, and it found that patients in the high-risk group had more immune escape potential and were less probable to react to immunotherapy. Real-time quantitative pcr (qRT-PCR) was used to identify the relatively high expression of 6 DRLs in colon cancer cell lines. In summary, 6 DRLs were identified as possible novel molecular therapy targets for COAD in this investigation. This prognostic model has the potential to be a novel tool for forecasting COAD prognosis in clinical practice, as well as providing new insights on the potential function and mechanism of disulfidptosis in the COAD process.
Collapse
Affiliation(s)
- Pan Chen
- Department of General Surgery, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, 211102, China
| | - Jun Yu
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Taicang Hospital of Traditional Chinese Medicine, Taicang, 215400, China
| | - Qian Luo
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China
| | - Jie Li
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China.
| | - Wei Wang
- Department of Clinical Laboratory, Lianshui County People's Hospital, Huai'an, 223400, China.
| |
Collapse
|
6
|
Li J, Shen J, Zhao Y, Du F, Li M, Wu X, Chen Y, Wang S, Xiao Z, Wu Z. Role of miR‑181a‑5p in cancer (Review). Int J Oncol 2023; 63:108. [PMID: 37539738 PMCID: PMC10552769 DOI: 10.3892/ijo.2023.5556] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
MicroRNAs (miRNAs) are non‑coding RNAs (ncRNAs) that can post‑transcriptionally suppress targeted genes. Dysregulated miRNAs are associated with a variety of diseases. MiR‑181a‑5p is a conserved miRNA with the ability to regulate pathological processes, such as angiogenesis, inflammatory response and obesity. Numerous studies have demonstrated that miR‑181a‑5p exerts regulatory influence on cancer development and progression, acting as an oncomiR or tumor inhibitor in various cancer types by impacting multiple hallmarks of tumor. Generally, miR‑181a‑5p binds to target RNA sequences with partial complementarity, resulting in suppression of the targeted genes of miR‑181a‑5p. However, the precise role of miR‑181a‑5p in cancer remains incompletely understood. The present review aims to provide a comprehensive summary of recent research on miR‑181a‑5p, focusing on its involvement in different types of cancer and its potential as a diagnostic and prognostic biomarker, as well as its function in chemoresistance.
Collapse
Affiliation(s)
- Junxin Li
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shurong Wang
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhigui Wu
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
7
|
Ghafouri-Fard S, Askari A, Behzad Moghadam K, Hussen BM, Taheri M, Samadian M. A review on the role of ZEB1-AS1 in human disorders. Pathol Res Pract 2023; 245:154486. [PMID: 37120907 DOI: 10.1016/j.prp.2023.154486] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
ZEB1 Antisense RNA 1 (ZEB1-AS1) is a type of RNA characterized as long non-coding RNA (lncRNA). This lncRNA has important regulatory roles on its related gene, Zinc Finger E-Box Binding Homeobox 1 (ZEB1). In addition, role of ZEB1-AS1 has been approved in diverse malignancies such as colorectal cancer, breast cancer, glioma, hepatocellular carcinoma and gastric cancer. ZEB1-AS1 serves as a sponge for a number of microRNAs, namely miR-577, miR-335-5p, miR-101, miR-505-3p, miR-455-3p, miR-205, miR-23a, miR-365a-3p, miR-302b, miR-299-3p, miR-133a-3p, miR-200a, miR-200c, miR-342-3p, miR-214, miR-149-3p and miR-1224-5p. In addition to malignant conditions, ZEB1-AS1 has functional role in non-malignant conditions like diabetic nephropathy, diabetic lung, arthrosclerosis, Chlamydia trachomatis infection, pulmonary fibrosis and ischemic stroke. This review outlines different molecular mechanisms of ZEB1-AS1 in a variety of disorders and highlights its importance in their pathogenesis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Institue of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Li D, Qu G, Ling S, Sun Y, Cui Y, Yang Y, Cao X. A cuproptosis-related lncRNA signature to predict prognosis and immune microenvironment of colon adenocarcinoma. Sci Rep 2023; 13:6284. [PMID: 37072493 PMCID: PMC10113217 DOI: 10.1038/s41598-023-33557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
Cuproptosis is a novel cell death modality but its regulatory role in the colon cancer remains obscure. This study is committed to establishing a cuproptosis-related lncRNA (CRL) signature to forecast the prognosis for colon adenocarcinoma (COAD). The Cancer Genome Atlas (TCGA) samples were randomly divided into training and validation cohorts. LASSO-COX analysis was performed to construct a prognostic signature consisting of five CRLs (AC015712.2, ZEB1-AS1, SNHG26, AP001619.1, and ZKSCAN2-DT). We found the patients with high-risk scores suffered from poor prognosis in training cohort (p < 0.001) and validation cohort (p = 0.004). Nomogram was created based on the 5-CRL signature. Calibration curves, receiver operating characteristic (ROC) curves, and decision curve analysis (DCA) demonstrated the nomogram performed well in 1‑, 3‑, and 5‑year overall survival (OS). Subsequently, we observed increased infiltration of multiple immune cells and upregulated expression of immune checkpoints and RNA methylation modification genes in high-risk patients. Additionally, gene set enrichment analysis (GSEA) revealed two tumor-related pathways, including MAPK and Wnt signaling pathways. Finally, we found AKT inhibitors, all-trans retinoic acid (ATRA), camptothecin, and thapsigargin had more sensitivity to antitumor therapy in high-risk patients. Collectively, this CRL signature is promising for the prognostic prediction and precise therapy of COAD.
Collapse
Affiliation(s)
- Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Guangzhen Qu
- Department of Interventional Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Shen Ling
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Yuanlin Sun
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Yingnan Cui
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Yingchi Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, 100050, China.
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
9
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
10
|
Li J, Han T, Wang X, Wang Y, Chen X, Chen W, Yang Q. Identification of prognostic immune-related lncRNA signature predicting the overall survival for colorectal cancer. Sci Rep 2023; 13:1333. [PMID: 36693898 PMCID: PMC9873726 DOI: 10.1038/s41598-023-28305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Long non-coding RNA (lncRNA) is an important regulator of gene expression and serves a fundamental role in immune regulation. The present study aimed to develop a novel immune-related lncRNA signature to assess the prognosis of patients with colorectal cancer (CRC). Transcriptome data and clinical information of patients with CRC were downloaded from The Cancer Genome Atlas (TCGA) and UCSC Xena platforms. Immune-related mRNAs were extracted from the Molecular Signatures Database (MSigDB), and the immune-related lncRNAs were identified based on correlation analysis. Then, univariate, Lasso and multivariate Cox regression were applied to construct an immune-related lncRNA signature, and CRC patients were divided into high- and low-risk groups according to the median risk score. Finally, we evaluated the signature from the perspectives of clinical outcome, clinicopathological parameters, tumor-infiltrating immune cells (TIICs), immune status, tumor mutation burden (TMB) and immunotherapy responsiveness. In total, 272 immune-related lncRNAs were identified, five of which were applied to construct an immune-related lncRNA signature. The signature divided patients with CRC into low- and high-risk groups, the prognosis of patients in the high-risk group were significantly poorer than those in low-risk group, and the results were further confirmed in external validation cohort. Furthermore, the high-risk group showed aggressive clinicopathological characteristics, specific TIIC and immune function status, and low sensitivity to immunotherapy. The immune-related lncRNA signature could be exploited as a promising biomarker for predicting the prognosis and immune status of patients with CRC.
Collapse
Affiliation(s)
- Jianxin Li
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China
| | - Ting Han
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xin Wang
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yinchun Wang
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xuan Chen
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China
| | - Wangsheng Chen
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China
| | - Qingqiang Yang
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
11
|
De Palma FDE, Carbonnier V, Salvatore F, Kroemer G, Pol JG, Maiuri MC. Systematic Investigation of the Diagnostic and Prognostic Impact of LINC01087 in Human Cancers. Cancers (Basel) 2022; 14:cancers14235980. [PMID: 36497462 PMCID: PMC9738797 DOI: 10.3390/cancers14235980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Long non-coding RNAs may constitute epigenetic biomarkers for the diagnosis, prognosis, and therapeutic response of a variety of tumors. In this context, we aimed at assessing the diagnostic and prognostic value of the recently described long intergenic non-coding RNA 01087 (LINC01087) in human cancers. (2) Methods: We studied the expression of LINC01087 across 30 oncological indications by interrogating public resources. Data extracted from the TCGA and GTEx databases were exploited to plot receiver operating characteristic curves (ROC) and determine the diagnostic performance of LINC01087. Survival data from TCGA and KM-Plotter directories allowed us to graph Kaplan-Meier curves and evaluate the prognostic value of LINC01087. To investigate the function of LINC01087, gene ontology (GO) annotation and Kyoto Encyclopedia of Gene and Genomes (KEGG) enrichment analyses were performed. Furthermore, interactions between LINC01087 and both miRNA and mRNA were studied by means of bioinformatics tools. (3) Results: LINC01087 was significantly deregulated in 7 out of 30 cancers, showing a predominant upregulation. Notably, it was overexpressed in breast (BC), esophageal (ESCA), and ovarian (OV) cancers, as well as lung squamous cell carcinoma (LUSC), stomach adenocarcinoma (STAD), and uterine carcinosarcoma (UCS). By contrast, LINC01087 displayed downregulation in testicular germ cell tumors (TGCT). ROC curve analyses identified LINC01087 as a potential diagnostic indicator in BC, ESCA, OV, STAD, and TGCT. Moreover, high and low expression of LINC01087 predicted a favorable prognosis in BC and papillary cell carcinoma, respectively. In silico analyses indicated that deregulation of LINC01087 in cancer was associated with a modulation of genes related to ion channel, transporter, and peptide receptor activity. (4) Conclusions: the quantification of an altered abundance of LINC01087 in tissue specimens might be clinically useful for the diagnosis and prognosis of some hormone-related tumors, including BC, OV, and TGCT, as well as other cancer types such as ESCA and STAD. Moreover, our study revealed the potential of LINC01087 (and perhaps other lncRNAs) to regulate neuroactive molecules in cancer.
Collapse
Affiliation(s)
- Fatima Domenica Elisa De Palma
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Napoli, Italy
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Vincent Carbonnier
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Napoli, Italy
- Centro Interuniversitario per Malattie Multigeniche e Multifattoriali e Loro Modelli Animali (Federico II, 80131, Napoli, Tor Vergata, Rome and “G. D’Annunzio”, Chieti-Pescara), 80131 Napoli, Italy
| | - Guido Kroemer
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, 75004 Paris, France
| | - Jonathan G. Pol
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Correspondence: (J.G.P.); (M.C.M.)
| | - Maria Chiara Maiuri
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, 80131 Napoli, Italy
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Correspondence: (J.G.P.); (M.C.M.)
| |
Collapse
|
12
|
Ali SR, Humphreys KJ, Simpson K, McKinnon RA, Meech R, Michael MZ. Functional high-throughput screen identifies microRNAs that promote butyrate-induced death in colorectal cancer cells. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 30:30-47. [PMID: 36189423 PMCID: PMC9485215 DOI: 10.1016/j.omtn.2022.08.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022]
Abstract
The gut fermentation product butyrate displays anti-cancer properties in the human proximal colon, including the ability to inhibit proliferation and induce apoptosis in colorectal cancer (CRC) cells. A natural histone deacetylase inhibitor (HDACi), butyrate can alter histone acetylation patterns in CRC cells, and thereby regulate global gene expression, including the non-coding transcriptome and microRNAs (miRNAs). Dysregulated miRNA expression affects CRC development and progression; however, the interplay between miRNA activity and butyrate response remains to be elucidated. A high-throughput functional screen was employed to identify miRNAs that can act as enhancers of the anti-cancer properties of butyrate. Validation studies confirmed that several miRNAs, including miR-125b, miR-181a, miR-593, and miR-1227, enhanced apoptosis, decreased proliferation, and promoted cell-cycle arrest in the presence of butyrate. Pathway analyses of predicted miRNA target genes highlighted their likely involvement in critical cancer-related growth pathways, including WNT and PI3K signaling. Several cancer-associated miRNA targets, including TRIM29, COX2, PIK3R3, CCND1, MET, EEF2K, DVL3, and NUP62 were synergistically regulated by the combination of cognate miRNAs and butyrate. Overall, this study has exposed the potential of miRNAs to act as enhancers of the anti-cancer effects of HDAC inhibition and identifies specific miRNAs that might be exploited for therapeutic benefit.
Collapse
|
13
|
Beni FA, Kazemi M, Dianat-Moghadam H, Behjati M. MicroRNAs regulating Wnt signaling pathway in colorectal cancer: biological implications and clinical potentials. Funct Integr Genomics 2022; 22:1073-1088. [DOI: 10.1007/s10142-022-00908-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
|
14
|
Han S, Cao Y, Guo T, Lin Q, Luo F. Targeting lncRNA/Wnt axis by flavonoids: A promising therapeutic approach for colorectal cancer. Phytother Res 2022; 36:4024-4040. [PMID: 36227024 DOI: 10.1002/ptr.7550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022]
Abstract
Despite the dramatic advances in our understanding of the etiology of colorectal cancer (CRC) in recent decades, effective therapeutic strategies are still urgently needed. Oncogenic mutations in the Wnt/β-Catenin pathway are hallmarks of CRC. Moreover, long non-coding RNAs (lncRNAs) as molecular managers are involved in the initiation, progression, and metastasis of CRC. Therefore, it is important to further explore the interaction between lncRNAs and Wnt/β-Catenin signaling pathway for targeted therapy of CRC. Natural phytochemicals have not toxicity and can target carcinogenesis-related pathways. Growing evidences suggest that flavonoids are inversely associated with CRC risk. These bioactive compounds could target carcinogenesis pathways of CRC and reduced the side effects of anti-cancer drugs. The review systematically summarized the progress of flavonoids targeting lncRNA/Wnt axis in the investigations of CRC, which will provide a promising therapeutic approach for CRC and develop nutrition-oriented preventive strategies for CRC based on epigenetic mechanisms. In the field, more epidemiological and clinical trials are required in the future to verify feasibility of targeting lncRNA/Wnt axis by flavonoids in the therapy and prevention of CRC.
Collapse
Affiliation(s)
- Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Yunyun Cao
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| |
Collapse
|
15
|
He J, Wu W. Comprehensive landscape and future perspectives of long noncoding RNAs (lncRNAs) in colorectal cancer (CRC): Based on a bibliometric analysis. Noncoding RNA Res 2022; 8:33-52. [PMID: 36311994 PMCID: PMC9582894 DOI: 10.1016/j.ncrna.2022.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
This review aimed to use bibliometric analysis to sort out, analyze and summarize the knowledge foundation and hot topics in the field of long noncoding RNAs (lncRNAs) in colorectal cancer (CRC), and point out future trends to inspire related research and innovation. We used CiteSpace to analyze publication outputs, countries, institutions, authors, journals, references, and keywords. Knowledge foundations, hotspots, and future trends were then depicted. The overall research showed the trend of biomedical-oriented multidisciplinary. Much evidence indicates that lncRNA plays the role of oncogene or tumor suppressor in the occurrence and development of CRC. Besides, many lncRNAs have multiple mechanisms. lncRNAs and metastasis of CRC, lncRNAs and drug resistance of CRC, and the clinical application of lncRNAs in CRC are current research hotspots. Through insight into the development trend of lncRNAs in CRC, this study will help researchers extract hidden valuable information for further research.
Collapse
Affiliation(s)
- Jia He
- Faculty Affairs and Human Resources Management Department, Southwest Medical University, Luzhou, China
| | - Wenhan Wu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China,Corresponding author.
| |
Collapse
|
16
|
Wei S, Hu W, Feng J, Geng Y. Promotion or remission: a role of noncoding RNAs in colorectal cancer resistance to anti-EGFR therapy. Cell Commun Signal 2022; 20:150. [PMID: 36131281 PMCID: PMC9490904 DOI: 10.1186/s12964-022-00960-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
Anti-epidermal-growth-factor-receptor (EGFR) monoclonal antibodies (mAbs) are of great significance for RAS and BRAF wild-type metastatic colorectal cancer (mCRC) patients. However, the generation of primary and secondary resistance to anti-EGFR mAbs has become an important factor restricting its efficacy. Recent studies have revealed that non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are implicated in anti-EGFR antibodies resistance, affecting the sensitivity of CRC cells to Cetuximab and Panitumumab. This paper briefly reviewed the research advance of the expression, signaling network and functional mechanism of ncRNAs related to anti-EGFR mAbs resistance in CRC, as well as their relationship with clinical prognosis and the possibility of therapeutic targets. In addition, some ncRNAs that are involved in the regulation of signaling pathways or genes related to anti-EGFR resistance, but need to be further verified by resistance experiments were also included in this review, thereby providing more ideas and basis for ncRNAs as CRC prognostic markers and anti-EGFR therapy sensitizers. Video Abstract.
Collapse
Affiliation(s)
- Shanshan Wei
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Feng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
17
|
Zhang J, Wu Y, Mu J, Xin D, Wang L, Fan Y, Zhang S, Xu Y. Glycosyltransferase-related long non-coding RNA signature predicts the prognosis of colon adenocarcinoma. Front Oncol 2022; 12:954226. [PMID: 36203430 PMCID: PMC9530784 DOI: 10.3389/fonc.2022.954226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose Colon adenocarcinoma (COAD) is the most common type of colorectal cancer (CRC) and is associated with poor prognosis. Emerging evidence has demonstrated that glycosylation by long noncoding RNAs (lncRNAs) was associated with COAD progression. To date, however, the prognostic values of glycosyltransferase (GT)-related lncRNAs in COAD are still largely unknown. Methods We obtained the expression matrix of mRNAs and lncRNAs in COAD from The Cancer Genome Atlas (TCGA) database. Then, the univariate Cox regression analysis was conducted to identify 33 prognostic GT-related lncRNAs. Subsequently, LASSO and multivariate Cox regression analysis were performed, and 7 of 33 GT-related lncRNAs were selected to conduct a risk model. Gene set enrichment analysis (GSEA) was used to analyze gene signaling pathway enrichment of the risk model. ImmuCellAI, an online tool for estimating the abundance of immune cells, and correlation analysis were used to explore the tumor-infiltrating immune cells in COAD. Finally, the expression levels of seven lncRNAs were detected in colorectal cancer cell lines by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results A total of 1,140 GT-related lncRNAs were identified, and 7 COAD-specific GT-related lncRNAs (LINC02381, MIR210HG, AC009237.14, AC105219.1, ZEB1-AS1, AC002310.1, and AC020558.2) were selected to conduct a risk model. Patients were divided into high- and low-risk groups based on the median of risk score. The prognosis of the high-risk group was worse than that of the low-risk group, indicating the good reliability and specificity of our risk model. Additionally, a nomogram based on the risk score and clinical traits was built to help clinical decisions. GSEA showed that the risk model was significantly enriched in metabolism-related pathways. Immune infiltration analysis revealed that five types of immune cells were significantly different between groups, and two types of immune cells were negatively correlated with the risk score. Besides, we found that the expression levels of these seven lncRNAs in tumor cells were significantly higher than those in normal cells, which verified the feasibility of the risk model. Conclusion The efficient risk model based on seven GT-related lncRNAs has prognostic potential for COAD, which may be novel biomarkers and therapeutic targets for COAD patients.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinan Wu
- Zhejiang University Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Cancer Hospital of the University of Chinese Academy of Sciences(Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
| | - Jiayi Mu
- Zhejiang University Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dijia Xin
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luyao Wang
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yili Fan
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Suzhan Zhang
- Zhejiang University Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Suzhan Zhang, ; Yang Xu,
| | - Yang Xu
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- *Correspondence: Suzhan Zhang, ; Yang Xu,
| |
Collapse
|
18
|
Wang J, Chen X, Sun L, Chen X, Li H, Xiong B, Wang H. [Long noncoding RNA ZEB1-AS1 aggravates cerebral ischemia/reperfusion injury in rats through the HMGB1/TLR-4 signaling axis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1134-1142. [PMID: 36073211 DOI: 10.12122/j.issn.1673-4254.2022.08.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the role of long non-coding RNA ZEB1-AS1 in cerebral ischemia/reperfusion injury (CI/RI). METHODS We detected the temporal changes of ZEB1-AS1 and HMGB1 expression using qPCR and Western blotting in SD rats following CI/RI induced by middle cerebral artery occlusion (MCAO). The rat models of CI/RI were subjected to injections of vectors for ZEB1-AS1 overexpression or knockdown into the lateral ventricle, and the changes in cognitive function, brain water content, blood-brain barrier integrity, and IL-1β and TNF-α levels in the cerebrospinal fluid (CSF) and serum were observed. Neuronal loss and cell apoptosis in the cortex of the rat models were detected by FJC and TUNEL methods, and HMGB1 and TLR-4 expressions were analyzed with Western blotting. We also examined the effects of ZEB1-AS1 knockdown on apoptosis and expressions of HMGB1 and TLR-4 in SH-SY5Y cells with oxygen-glucose deprivation/reoxygenation (OGD/R). RESULTS In CI/RI rats, the expressions of ZEB1-AS1 and HMGB1 in the brain tissue increased progressively with the extension of reperfusion time, reaching the peak levels at 24 h followed by a gradual decline. ZEB1-AS1 overexpression significantly aggravated icognitive impairment and increased brain water content, albumin content in the CSF, and IL-1β and TNF-α levels in the CSF and serum in CI/RI rats (P < 0.05), while ZEB1-AS1 knockdown produced the opposite effects (P < 0.05 or 0.01). ZEB1-AS1 overexpression obviously increased the number of FJC-positive neurons in the cortex and enhanced the expressions of HMGB1 and TLR-4 in the rat models (P < 0.01); ZEB1-AS1 knockdown significantly reduced the number of FJC-positive neurons and lowered HMGB1 and TLR-4 expressions (P < 0.01). In SH-SY5Y cells with OGD/R, ZEB1-AS1 knockdown significantly suppressed cell apoptosis and lowered the expressions of HMGB1 and TLR-4 (P < 0.01). CONCLUSION ZEB1-AS1 overexpression aggravates CI/RI in rats through the HMGB1/TLR-4 signaling axis.
Collapse
Affiliation(s)
- J Wang
- College of Basic Medical Sciences, Wannan Medical College, Wuhu 241002, China
| | - X Chen
- College of Basic Medical Sciences, Wannan Medical College, Wuhu 241002, China
| | - L Sun
- College of Basic Medical Sciences, Wannan Medical College, Wuhu 241002, China
| | - X Chen
- Graduate School, Wannan Medical College, Wuhu 241002, China
| | - H Li
- Graduate School, Wannan Medical College, Wuhu 241002, China
| | - B Xiong
- College of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - H Wang
- College of Basic Medical Sciences, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
19
|
Hanusek K, Rybicka B, Popławski P, Adamiok-Ostrowska A, Głuchowska K, Piekiełko-Witkowska A, Bogusławska J. TGF‑β1 affects the renal cancer miRNome and regulates tumor cells proliferation. Int J Mol Med 2022; 49:52. [PMID: 35179216 PMCID: PMC8904080 DOI: 10.3892/ijmm.2022.5108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/19/2022] [Indexed: 11/24/2022] Open
Abstract
TGF-β1 is a pleiotropic cytokine that can either promote or inhibit cancer development and progression. It was previously found that TGF-β1 can regulate the expression of several microRNAs (miR or miRNA) involved in the progression of renal cell carcinoma (RCC). Therefore, the present study aimed to analyze the effects of TGF-β1 on the global RCC miRNome. It was found that TGF-β1 can regulate a complex network consisting of miRNAs and mRNAs involved in RCC transformation. In particular, TGF-β1 was revealed to regulate the proliferation of RCC cells while concomitantly modifying the expression of oncogenic regulators, including avian erythroblastosis virus E26 (V-Ets) oncogene homolog-1 (ETS1). In addition, TGF-β1 was demonstrated to regulate the expression of a number of miRNAs including miR-30c-5p, miR-155-5p, miR-181a-5p and miR-181b-5p. By contrast, TGF-β1 reciprocally modified the expression of genes encoding TGF-β1 receptors and SMADs, indicating a novel regulatory feedback mechanism mediated through the miRNAs. These data suggested that ETS1 served different roles in different subtypes of RCC tumors, specifically by functioning as an oncogene in clear cell RCC while as a tumor suppressor in papillary RCC.
Collapse
Affiliation(s)
- Karolina Hanusek
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01‑813 Warsaw, Poland
| | - Beata Rybicka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01‑813 Warsaw, Poland
| | - Piotr Popławski
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01‑813 Warsaw, Poland
| | - Anna Adamiok-Ostrowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01‑813 Warsaw, Poland
| | - Katarzyna Głuchowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01‑813 Warsaw, Poland
| | | | - Joanna Bogusławska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01‑813 Warsaw, Poland
| |
Collapse
|
20
|
Dong H, Liu Q, Chen C, Lu T, Xu K. LncRNA OGFRP1 promotes angiogenesis and epithelial-mesenchymal transition in colorectal cancer cells through miR-423-5p/CTCF axis. Immunobiology 2022; 227:152176. [DOI: 10.1016/j.imbio.2022.152176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/09/2021] [Accepted: 01/02/2022] [Indexed: 01/29/2023]
|
21
|
Zhao S, Mi Y, Zheng B, Wei P, Gu Y, Zhang Z, Xu Y, Cai S, Li X, Li D. Highly-metastatic colorectal cancer cell released miR-181a-5p-rich extracellular vesicles promote liver metastasis by activating hepatic stellate cells and remodelling the tumour microenvironment. J Extracell Vesicles 2022; 11:e12186. [PMID: 35041299 PMCID: PMC8765330 DOI: 10.1002/jev2.12186] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/21/2021] [Accepted: 12/29/2021] [Indexed: 01/11/2023] Open
Abstract
Liver metastasis of colorectal cancer (CRLM) is the most common cause of CRC-related mortality, and is typically caused by interactions between CRC cells and the tumour microenvironment (TME) in the liver. However, the molecular mechanisms underlying the crosstalk between tumour-derived extracellular vesicle (EV) miRNAs and the TME in CRLM have yet to be fully elucidated. The present study demonstrated that highly metastatic CRC cells released more miR-181a-5p-rich EVs than cells which exhibit a low metastatic potential, in-turn promoting CRLM. Additionally, we verified that FUS mediated packaging of miR-181a-5p into CRC EVs, which in-turn persistently activated hepatic stellate cells (HSCs) by targeting SOCS3 and activating the IL6/STAT3 signalling pathway. Activated HSCs could secrete the chemokine CCL20 and further activate a CCL20/CCR6/ERK1/2/Elk-1/miR-181a-5p positive feedback loop, resulting in reprogramming of the TME and the formation of pre-metastatic niches in CRLM. Clinically, high levels of serum EV containing miR-181a-5p was positively correlated with liver metastasis in CRC patients. Taken together, highly metastatic CRC cells-derived EVs rich in miR-181a-5p could activate HSCs and remodel the TME, thereby facilitating liver metastasis in CRC patients. These results provide novel insight into the mechanism underlying liver metastasis in CRC.
Collapse
Affiliation(s)
- Senlin Zhao
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yushuai Mi
- Department of Gastrointestinal SurgeryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Binbin Zheng
- Department of General SurgeryShanghai General HospitalSchool of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Ping Wei
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Yanzi Gu
- Department of BiobankFudan University Shanghai Cancer CenterShanghaiChina
| | - Zhengxiang Zhang
- Department of OncologyYijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
| | - Ye Xu
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Sanjun Cai
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xinxiang Li
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Dawei Li
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
22
|
Wang D, Li Z, Yin H. Long Non-Coding RNA CCAT2 Activates RAB14 and Acts as an Oncogene in Colorectal Cancer. Front Oncol 2021; 11:751903. [PMID: 34868956 PMCID: PMC8639683 DOI: 10.3389/fonc.2021.751903] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
Here, we investigated the clinicopathological and prognostic potential of the long noncoding RNA Colon Cancer-Associated Transcript 2 (CCAT2) in human colorectal cancer (CRC). We used qPCR to quantify CCAT2 levels in 44 pairs of CRC tissues and adjacent nontumor and healthy colon mucosa tissues, and in several CRC cell lines (SW620, SW480, HT-29, LOVO, HCT116 and DLD-1) and normal human colorectal epithelial cells (HFC). We assessed the effects of CCAT2 overexpression or knockdown on the proliferation, migration and invasion by SW620 and LOVO cells using CCK-8, transwell, and wound-healing assays, respectively. We also investigated the potential interaction between CCAT2 and TAF15 through RNA pull down and rescue experiments. Lastly, we evaluated the expression of the cell cycle progression markers and GSK3β signaling pathway proteins using Western blotting. Our results showed that CCAT2 was upregulated in CRC tissues and cell lines as com-pared to controls. Ectopic expression of CCAT2 promoted CRC cell proliferation, migration and invasion, likely through direct interaction with TAF15, transcriptional activation of RAB14, and activation of the AKT/GSK3β signaling pathway. In vivo, CCAT2 promoted CRC cell growth and metastasis in nude mice. Taken together, these results highlight the actions of CCAT2 as a CRC oncogene.
Collapse
Affiliation(s)
- Dalu Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhilong Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongzhuan Yin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Zhuang Z, Cai H, Lin H, Guan B, Wu Y, Zhang Y, Liu X, Zhuang J, Guan G. Development and Validation of a Robust Pyroptosis-Related Signature for Predicting Prognosis and Immune Status in Patients with Colon Cancer. JOURNAL OF ONCOLOGY 2021; 2021:5818512. [PMID: 34840571 PMCID: PMC8616665 DOI: 10.1155/2021/5818512] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/24/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Pyroptosis has been confirmed as a type of inflammatory programmed cell death in recent years. However, the prognostic role of pyroptosis in colon cancer (CC) remains unclear. METHODS Dataset TCGA-COAD which came from the TCGA portal was taken as the training cohort. GSE17538 from the GEO database was treated as validation cohorts. Differential expression genes (DEGs) between normal and tumor tissues were confirmed. Patients were classified into two subgroups according to the expression characteristics of pyroptosis-related DEGs. The LASSO regression analysis was used to build the best prognostic signature, and its reliability was validated using Kaplan-Meier, ROC, PCA, and t-SNE analyses. And a nomogram based on the multivariate Cox analysis was developed. The enrichment analysis was performed in the GO and KEGG to investigate the potential mechanism. In addition, we explored the difference in the abundance of infiltrating immune cells and immune microenvironment between high- and low-risk groups. And we also predicted the association of common immune checkpoints with risk scores. Finally, we verified the expression of the pyroptosis-related hub gene at the protein level by immunohistochemistry. RESULTS A total of 23 pyroptosis-related DEGs were identified in the TCGA cohort. Patients were classified into two molecular clusters (MC) based on DEGs. Kaplan-Meier survival analysis indicated that patients with MC1 represented significantly poorer OS than patients with MC2. 13 overall survival- (OS-) related DEGs in MCs were used to construct the prognostic signature. Patients in the high-risk group exhibited poorer OS compared to those in the low-risk group. Combined with the clinical features, the risk score was found to be an independent prognostic factor of CC patients. The above results are verified in the external dataset GSE17538. A nomogram was established and showed excellent performance. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that the varied prognostic performance between high- and low-risk groups may be related to the immune response mediated by local inflammation. Further analysis showed that the high-risk group has stronger immune cell infiltration and lower tumor purity than the low-risk group. Through the correlation between risk score and immune checkpoint expression, T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) was predicted as a potential therapeutic target for the high-risk group. CONCLUSION The 13-gene signature was associated with OS, immune cells, tumor purity, and immune checkpoints in CC patients, and it could provide the basis for immunotherapy and predicting prognosis and help clinicians make decisions for individualized treatment.
Collapse
Affiliation(s)
- Zhicheng Zhuang
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Huajun Cai
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Hexin Lin
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Bingjie Guan
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yong Wu
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yiyi Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xing Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jinfu Zhuang
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Guoxian Guan
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
24
|
Chen S, Zhu J, Zhi X. A Novel Pyroptosis-Associated Long Noncoding RNA Signature to Predict the Prognosis of Patients with Colorectal Cancer. Int J Gen Med 2021; 14:6111-6123. [PMID: 34611426 PMCID: PMC8485925 DOI: 10.2147/ijgm.s328842] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/17/2021] [Indexed: 01/09/2023] Open
Abstract
Purpose Pyroptosis plays an important role in tumor progression. However, there is no pyroptosis-associated long noncoding RNA (lncRNA) signature to predict the prognosis of patients with colorectal cancer (CRC). Materials and Methods The RNA sequencing data (RNA-seq) and corresponding clinical information relating to CRC patients were obtained from the Cancer Genome Atlas (TCGA) database and the GSE39582 dataset. Univariate Cox regression analysis was used to identify pyroptosis-associated lncRNAs linked to CRC prognosis. Subsequently, multivariate Cox regression analysis was performed to construct a pyroptosis-associated lncRNAs signature within the TCGA cohort, which was then validated using the GSE39582 dataset. We used Kaplan-Meier (K-M) analysis, principal component analysis (PCA), and receiver operating characteristic curve (ROC) analysis to evaluate our novel lncRNA signature. Finally, gene set enrichment analysis (GSEA) was performed to explore the potential function of the lncRNA signature. Results We constructed a pyroptosis-associated lncRNA signature comprising four lncRNAs (ELFN1-AS1, PCAT6, TNRC6C-AS1, and ZEB1-AS1). CRC patients were subdivided into high- and low-risk groups based on median risk scores. The results of the K-M, PCA, and ROC analyses showed that this signature could accurately predict the prognosis of CRC patients. Univariate and multivariate Cox regression analyses showed that the pyroptosis-associated signature was an independent prognostic factor. Functional analysis suggested that tumor-associated pathways were enriched for in the high-risk CRC patient group. Conclusion Our study established an effective prognostic signature for CRC patients that may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Sijun Chen
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jianwei Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xiaofei Zhi
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| |
Collapse
|
25
|
Liu B, Xiang W, Liu J, Tang J, Wang J, Liu B, Long Z, Wang L, Yin G, Liu J. The regulatory role of antisense lncRNAs in cancer. Cancer Cell Int 2021; 21:459. [PMID: 34461912 PMCID: PMC8404292 DOI: 10.1186/s12935-021-02168-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
Antisense long non-coding RNAs (antisense lncRNAs), transcribed from the opposite strand of genes with either protein coding or non-coding function, were reported recently to play a crucial role in the process of tumor onset and development. Functionally, antisense lncRNAs either promote or suppress cancer cell proliferation, migration, invasion, and chemoradiosensitivity. Mechanistically, they exert their regulatory functions through epigenetic, transcriptional, post-transcriptional, and translational modulations. Simultaneously, because of nucleotide sequence complementarity, antisense lncRNAs have a special role on its corresponding sense gene. We highlight the functions and molecular mechanisms of antisense lncRNAs in cancer tumorigenesis and progression. We also discuss the potential of antisense lncRNAs to become cancer diagnostic biomarkers and targets for tumor treatment.
Collapse
Affiliation(s)
- Biao Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Wei Xiang
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jiahao Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jin Tang
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jinrong Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Bin Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Zhi Long
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Guangming Yin
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jianye Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
26
|
Jafarzadeh M, Soltani BM. MiRNA-Wnt signaling regulatory network in colorectal cancer. J Biochem Mol Toxicol 2021; 35:e22883. [PMID: 34382723 DOI: 10.1002/jbt.22883] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/02/2021] [Indexed: 01/05/2023]
Abstract
Colorectal cancer (CRC) is one of the common malignancies worldwide and the Wnt signaling pathway is recognized as the main disrupted pathway in this malignancy. MicroRNAs (miRNAs) are recognized to contribute to the pathogenesis of CRC by triggering or impeding the Wnt signaling pathway. In addition, transcriptional regulation of miRNAs by canonical Wnt signaling also participates in CRC cell progression. In this review, we present comprehensive literature of the existing data on the interaction of miRNAs and Wnt signaling that could be useful in future studies in the field of CRC management.
Collapse
Affiliation(s)
- Meisam Jafarzadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram M Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
27
|
Chi J, Liu S, Wu Z, Shi Y, Shi C, Zhang T, Xiong B, Zeng Y, Dong X. circNSUN2 promotes the malignant biological behavior of colorectal cancer cells via the miR‑181a‑5p/ROCK2 axis. Oncol Rep 2021; 46:142. [PMID: 34080658 PMCID: PMC8165598 DOI: 10.3892/or.2021.8093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Aberrant expression of circular RNAs (circRNAs) has been demonstrated to be related to the development of colorectal cancer (CRC), the third most common cancer worldwide. However, the mechanism of the effect of circRNA NOP2/Sun domain family, member 2 (circNSUN2) on the malignant biological behavior of CRC remains unclear. In the present study, the expression of circNSUN2 and microRNA (miR)‑181a‑5p was detected by RT‑qPCR. The expression of Rho‑associated coiled‑coil‑containing protein kinase 2 (ROCK2) was measured by western blotting. Cell proliferation was detected by CCK‑8 assay. The cell apoptosis rate was measured by flow cytometry. Cell migration ability was evaluated by Transwell assay. The interactions between circNSUN2, miR‑181a‑5p and ROCK2 were verified by dual‑luciferase reporter assay. The results revealed that circNSUN2 was highly expressed in CRC tissues and cell lines. Knockdown of circNSUN2 inhibited the malignant biological behavior of CRC in vivo and in vitro. Moreover, miR‑181a‑5p was revealed to be a target gene of circNSUN2, and the expression of ROCK2 was negatively regulated by miR‑181a‑5p. Knockdown of circNSUN2 inhibited proliferation and migration, and induced apoptosis of CRC cells and suppressed tumor growth by targeting miR‑181a‑5p to decrease ROCK2 expression. In conclusion, circNSUN2 promoted the progression of CRC by sponging miR‑181a‑5p to increase the expression of ROCK2.
Collapse
Affiliation(s)
- Junlin Chi
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Shuang Liu
- Department of Ultrasound, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Zhizhong Wu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yanqiang Shi
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Chengmin Shi
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Tong Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Binghong Xiong
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yujian Zeng
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xiangqian Dong
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
28
|
Pidíková P, Herichová I. miRNA Clusters with Up-Regulated Expression in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13122979. [PMID: 34198662 PMCID: PMC8232258 DOI: 10.3390/cancers13122979] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary As miRNAs show the capacity to be used as CRC biomarkers, we analysed experimentally validated data about frequently up-regulated miRNA clusters in CRC tissue. We identified 15 clusters that showed increased expression in CRC: miR-106a/363, miR-106b/93/25, miR-17/92a-1, miR-181a-1/181b-1, miR-181a-2/181b-2, miR-181c/181d, miR-183/96/182, miR-191/425, miR-200c/141, miR-203a/203b, miR-222/221, mir-23a/27a/24-2, mir-29b-1/29a, mir-301b/130b and mir-452/224. Cluster positions in the genome are intronic or intergenic. Most clusters are regulated by several transcription factors, and by long non-coding RNAs. In some cases, co-expression of miRNA with other cluster members or host gene has been proven. miRNA expression patterns in cancer tissue, blood and faeces were compared. The members of the selected clusters target 181 genes. Their functions and corresponding pathways were revealed with the use of Panther analysis. Clusters miR-17/92a-1, miR-106a/363, miR-106b/93/25 and miR-183/96/182 showed the strongest association with metastasis occurrence and poor patient survival, implicating them as the most promising targets of translational research. Abstract Colorectal cancer (CRC) is one of the most common malignancies in Europe and North America. Early diagnosis is a key feature of efficient CRC treatment. As miRNAs can be used as CRC biomarkers, the aim of the present study was to analyse experimentally validated data on frequently up-regulated miRNA clusters in CRC tissue and investigate their members with respect to clinicopathological characteristics of patients. Based on available data, 15 up-regulated clusters, miR-106a/363, miR-106b/93/25, miR-17/92a-1, miR-181a-1/181b-1, miR-181a-2/181b-2, miR-181c/181d, miR-183/96/182, miR-191/425, miR-200c/141, miR-203a/203b, miR-222/221, mir-23a/27a/24-2, mir-29b-1/29a, mir-301b/130b and mir-452/224, were selected. The positions of such clusters in the genome can be intronic or intergenic. Most clusters are regulated by several transcription factors, and miRNAs are also sponged by specific long non-coding RNAs. In some cases, co-expression of miRNA with other cluster members or host gene has been proven. miRNA expression patterns in cancer tissue, blood and faeces were compared. Based on experimental evidence, 181 target genes of selected clusters were identified. Panther analysis was used to reveal the functions of the target genes and their corresponding pathways. Clusters miR-17/92a-1, miR-106a/363, miR-106b/93/25 and miR-183/96/182 showed the strongest association with metastasis occurrence and poor patient survival, implicating them as the most promising targets of translational research.
Collapse
|
29
|
Lu C, Luo X, Xing C, Mao Y, Xu Y, Gao W, Wang W, Zhan T, Wang G, Liu Z, Yu C. Construction of a novel mRNA-miRNA-lncRNA network and identification of potential regulatory axis associated with prognosis in colorectal cancer liver metastases. Aging (Albany NY) 2021; 13:14968-14988. [PMID: 34081622 PMCID: PMC8221294 DOI: 10.18632/aging.203049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 04/29/2021] [Indexed: 12/24/2022]
Abstract
Liver metastasis is a leading cause of death in patients with colorectal cancer (CRC). Increasing evidence demonstrates that competing endogenous RNA (ceRNA) networks play important roles in malignant cancers. The purpose of this study was to identify molecular markers and build a ceRNA network as a significant predictor of colorectal liver metastases (CRLM). By integrated bioinformatics analysis, we found that apolipoprotein C1 (APOC1) was upregulated in CRLM and associated with prognosis in patients with CRC and thereby established an APOC1-dependent ceRNA network. By survival analysis, expression analysis, and correlation analysis of each element in the ceRNA network, we identified that ZEB1-AS1, miR-335-5p and APOC1 regulated each other. We further experimentally confirmed that ZEB1-AS1 promoted a CRC progression via regulating the expression of miR-335-5p that controlled the expression of APOC1. Our findings indicate that the ZEB1-AS1-miR-335-5p-APOC1 ceRNA regulatory network is significantly valuable for better prognosis of patients with CRC and as a new therapeutic target for the treatment of CRLM.
Collapse
Affiliation(s)
- Chen Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Xiagang Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Cheng Xing
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Yonghuan Mao
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Yuting Xu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Wenjie Gao
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Wulin Wang
- Department of Gastrointestinal Surgery, Jingzhou Central Hospital, Jingzhou 434000, Hubei, China
| | - Tian Zhan
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Guoguang Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Zhengxia Liu
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Chunzhao Yu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| |
Collapse
|
30
|
Yang Y, Yan X, Li X, Ma Y, Goel A. Long non-coding RNAs in colorectal cancer: Novel oncogenic mechanisms and promising clinical applications. Cancer Lett 2021; 504:67-80. [PMID: 33577977 PMCID: PMC9715275 DOI: 10.1016/j.canlet.2021.01.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/29/2020] [Accepted: 01/08/2021] [Indexed: 02/05/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignancy and ranks as the second leading cause of cancer-related deaths worldwide. Despite the improvements in CRC diagnosis and treatment approaches, a considerable proportion of CRC patients still suffers from poor prognosis due to late disease detections and lack of personalized disease managements. Recent evidences have not only provided important molecular insights into their mechanistic behaviors but also indicated that identification of cancer-specific long non-coding RNAs (LncRNAs) could benefit earlier disease detections and improve treatment outcomes in patients suffering from CRC. LncRNAs have raised extensive attentions as they participate in various hallmarks of CRC. The mechanistic evidence gleaned in the recent decade clearly reveals that lncRNAs exert their oncogenic roles by regulating autophagy, epigenetic modifications, enhancing stem phenotype and modifying tumor microenvironment. In view of their pleiotropic functional roles in malignant progression, and their frequently dysregulated expression in CRC patients, they have great potential to be reliable diagnostic and prognostic biomarkers, as well as therapeutic targets for CRC. In the present review, we will focus on the oncogenic roles of lncRNAs and related mechanisms in CRC as well as discuss their clinical potential in the early diagnosis, prognostic prediction and therapeutic translation in patients with this malignancy.
Collapse
Affiliation(s)
- Yufei Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuebing Yan
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
31
|
Ghafouri-Fard S, Hussen BM, Gharebaghi A, Eghtedarian R, Taheri M. LncRNA signature in colorectal cancer. Pathol Res Pract 2021; 222:153432. [PMID: 33857856 DOI: 10.1016/j.prp.2021.153432] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is among the most frequent cancers and is associated with high mortality particularly when being diagnosed in advanced stages. Although several environmental and intrinsic risk factors have been identified, the underlying cause of CRC is not clear in the majority of cases. Several studies especially in the recent decade have pointed to the role of epigenetic factors in this kind of cancer. Long non-coding RNAs (lncRNAs) as important contributors in the epigenetic mechanisms are involved in the initiation, progression and metastasis of CRC. Tens of oncogenic lncRNAs and a lower number of tumor suppressor lncRNAs have been recently identified to be dysregulated in CRC cells and tissues. Notably, expressions of a number of these transcripts have been dysregulated in serum samples of CRC patients, providing a non-invasive route for detection of this kind of cancer. The involvement of lncRNAs in the regulation of autophagy has provided them the ability to modulate response of CRC cells to chemotherapeutic modalities. In the current manuscript, we review the studies which evaluated the role of lncRNAs in the pathogenesis and progression of CRC to appraise their application as diagnostic/ prognostic markers.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Alireza Gharebaghi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reyhane Eghtedarian
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Mu B, Lv C, Liu Q, Yang H. Long non-coding RNA ZEB1-AS1 promotes proliferation and metastasis of hepatocellular carcinoma cells by targeting miR-299-3p/E2F1 axis. J Biochem 2021; 170:41-50. [PMID: 33788950 DOI: 10.1093/jb/mvab042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/12/2021] [Indexed: 12/09/2022] Open
Abstract
There is emerging evidence that dysregulation of long non-coding RNAs (lncRNAs) is associated with hepatocellular carcinoma (HCC). Zinc finger E-box binding homeobox 1 antisense 1 (ZEB1-AS1) functions as an oncogenic regulator in various malignancies. Nonetheless, the potential role of ZEB1-AS1 in HCC remains poorly elucidated. Herein, qRT-PCR was employed for examining ZEB1-AS1, miR-299-3p and E2F1 mRNA expressions in HCC cells and tissues. MTT assay was performed to evaluate cell proliferation. Transwell assay was utilized for evaluating cancer cell migration and invasion. Western blot was employed for measuring E2F1 protein expression. What's more, dual-luciferase reporter assay was utilized for verifying the targeting relationships between ZEB1-AS1 and miR-299-3p, as well as E2F1 and miR-299-3p. It was demonstrated that, in HCC tissues and cells, ZEB1-AS1 expression was markedly increased, and meanwhile, its high expression level is related to the unfavorable clinicopathologic indicators. ZEB1-AS1 overexpression facilitated HCC cell proliferation, migration and invasion, while its knockdown led to the opposite effects. In terms of mechanism, we discovered that ZEB1-AS1 could decoy miR-299-3p and up-regulate E2F1 expression. This work reveals the functions and mechanism of ZEB1-AS1 in HCC tumorigenesis and progression, which provides novel biomarkers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Baiyin Mu
- Department of Tenth Liver Disease, Qingdao Sixth People's Hospital, Qingdao city, 266033, Shandong Province, China
| | - Chenlan Lv
- Department of Tenth Liver Disease, Qingdao Sixth People's Hospital, Qingdao city, 266033, Shandong Province, China
| | - Qingli Liu
- Department of Medical Laboratory, Qingdao Sixth People's Hospital, Qingdao city, 266033, Shandong Province, China
| | - Hong Yang
- Department of Physical Treatment, Qingdao Sixth People's Hospital, Qingdao city, 266033, Shandong Province, China
| |
Collapse
|
33
|
Song X, Xue Y, Cai H. Down-Regulation of miR-181a-5p Prevents Cerebral Ischemic Injury by Upregulating En2 and Activating Wnt/β-catenin Pathway. J Stroke Cerebrovasc Dis 2021; 30:105485. [PMID: 33360253 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Cerebral ischemic injury contributes to severe dysfunction of the brain, which triggers extremely high mortality and disability. The role of microRNA (miR)-181a-5p is documented in cerebral ischemic injury. Therefore, this study intended to further figure out the mechanism of miR-181a-5p in cerebral ischemic injury. METHODS miR-181a-5p expression in middle cerebral artery occlusion (MCAO) mouse model, oxygen-glucose-deprivation/reoxygenation (OGD/R) N2a cell model, and serum from acute ischemic injury (ACI) patients was evaluated using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Gain- and loss-of-function assays were implemented in MCAO mice and OGD/R-induced N2a cells. In mice, the cerebral infarction area was assessed with 2,3,5-triphenyltetrazolium chloride staining, the number of damaged neurons by Nissl staining, and apoptosis by TdT-mediated dUTP-biotin nick end-labeling staining. Moreover, N2a cell apoptosis and proliferation were determined with flow cytometry or 5-ethynyl-2'-deoxyuridine staining, respectively. The expression of En2 and Wnt/β-catenin pathway-related factors was determined with RT-qPCR and Western blot analysis. The targeting relationship between miR-181a-5p and En2 was evaluated by dual luciferase reporter gene assay. RESULTS miR-181a-5p was highly expressed in serum of ACI patients, MCAO mice, and OGD/R-induced N2a cells. En2, lowly expressed in MCAO mice, was targeted by miR-181a-5p, and miR-181a-5p down-regulation activated the Wnt/β-catenin pathway. Furthermore, miR-181a-5p inhibition or En2 overexpression reduced cerebral infarction area, the number of damaged neurons, and apoptosis in MCAO mice, and also diminished apoptosis and accelerated proliferation of OGD/R-induced N2a cells. CONCLUSION miR-181a-5p suppression activated Wnt/β-catenin pathway and sequentially attenuated cerebral ischemic injury by targeting En2.
Collapse
Affiliation(s)
- Xiaoming Song
- Department of Neurology, Ningbo Yinzhou No. 2 Hospital, Ningbo 315100, P.R. China.
| | - Yongming Xue
- Department of Ultrasound imaging, Ningbo Women & Children's Hospital, Ningbo 315000, P.R. China
| | - Hairui Cai
- Department of Obstetrics and Gynecology, Ningbo Women & Children's Hospital, Ningbo 315000, P.R. China
| |
Collapse
|
34
|
Shen M, Zhang W, Wang B. The Effect of LncRNA Zinc Finger E-Box-Binding Homeobox 1 Antisense 1 on the Biological Characteristics of Gastric Cancer Cells by Regulating the MiR-200b/Wnt1 Axis. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent decades, most gastric cancer patients are diagnosed in the advanced disease stage with poor prognosis, and more than half of the advanced-stage patients will relapse. This research explores lncRNA ZEB1-AS1’s effect on gastric cancer cell proliferation, invasion, apoptosis
via regulating the miR-200b/Wnt1 molecular axis. ZEB1-AS1 and miR-200b expressions in BGC-803, SGC-7901, MKN-45, and AGS cells were measured by qRT-PCR. ZEB1-AS1 siRNA, miR-200b mimics, and miR-200b mimics + pcDNA3.1-ZEB1-AS1 were transfected into BGC-803 cells to study their respective effect
on cell proliferation, invasion, apoptosis using CCK-8 and Transwell assays and flow cytometry, respectively. Dual-luciferase reporter gene assay is used to detect the luciferase activity of ZEB1-AS1 WT or MUT and Wnt1 WT or MUT after co-transfecting with miR-200b mimics. The expression of
miR-200b in BGC-803 cells with knocked down or overexpressed ZEB1-AS1 was quantified with qRT-PCR. Western blot analysis was used to detect the protein level of Wnt1 in BGC-803 cells with upregulated or downregulated miR-200b expression. Data showed that ZEB1-AS1 expression was significantly
raised when miR-200b expression was reduced (P < 0.05). BGC-803 cells were selected for follow-up experiments. ZEB1-AS1, Wnt1, and miR-200b were found to have a targeted regulatory relationship. The knockdown of ZEB1-AS1 and upregulation of miR-200b can hinder BGC-803 cell proliferation
and invasion and expedite apoptosis. ZEB1-AS1 and miR-200b overexpression can reverse the effect of miR-200b upregulation on BGC-803 cell proliferation, invasion, and apoptosis. Therefore, lncRNA ZEB1-AS1 could impede gastric cancer cell proliferation and invasion and accelerate apoptosis
via the regulation of the miR-200b/Wnt1 molecular axis.
Collapse
Affiliation(s)
- Minghai Shen
- Department of General Surgury, Xixi Hospital of Hangzhou, Hangzhou 310023, Zhejiang, PR China
| | - Weidong Zhang
- Department of General Surgury, Xixi Hospital of Hangzhou, Hangzhou 310023, Zhejiang, PR China
| | - Bei Wang
- Department of Division of Hepatobiliary and Pancreatic Surgery, First Affifiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, PR China
| |
Collapse
|
35
|
Saberinia A, Alinezhad A, Jafari F, Soltany S, Akhavan Sigari R. Oncogenic miRNAs and target therapies in colorectal cancer. Clin Chim Acta 2020; 508:77-91. [DOI: 10.1016/j.cca.2020.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022]
|
36
|
Javed Z, Khan K, Sadia H, Raza S, Salehi B, Sharifi-Rad J, Cho WC. LncRNA & Wnt signaling in colorectal cancer. Cancer Cell Int 2020; 20:326. [PMID: 32699525 PMCID: PMC7372757 DOI: 10.1186/s12935-020-01412-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
The outlook for new therapeutic approaches is pivotal to ameliorate the deterioration caused by the abrogated Wnt signaling. Long non-coding RNAs (lncRNAs) are tiny molecules that have begun emerging as vital molecular manager for the regulation of various cellular processes at transcription and translation levels in the colorectal cancer (CRC). Targeting Wnt pathway with lncRNA seems a promising approach to eradicate CRC. However, little is known of their active role in commencing both apoptosis and proliferation in CRC. This article reviews the importance of these molecules in the pathogenesis of CRC and also emphasizes on the development of new therapeutic strategies to cope with the Wnt mediated CRC.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office for Research Innovation and Commercialization, Lahore Garrison University, Sector-C, Phase VI, DHA, Lahore, Pakistan
| | - Khushbukhat Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Haleema Sadia
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Shahid Raza
- Department of Biotechnology, University of Central Punjab, Lahore, Pakistan
| | - Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.,Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
| |
Collapse
|
37
|
Shan TD, Tian ZB, Li Q, Jiang YP, Liu FG, Sun XG, Han Y, Sun LJ, Chen L. Long intergenic noncoding RNA 00908 promotes proliferation and inhibits apoptosis of colorectal cancer cells by regulating KLF5 expression. J Cell Physiol 2020; 236:889-899. [PMID: 33020901 DOI: 10.1002/jcp.29899] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/06/2020] [Accepted: 06/13/2020] [Indexed: 12/14/2022]
Abstract
Long intergenic noncoding RNAs (lincRNAs) play a vital role in the occurrence and progression of cancer. The mechanism of lincRNAs in colorectal cancer (CRC) has not been fully elucidated. In this context, an integrated comparative long noncoding RNA (lncRNA) microarray technology was used to determine the expression profile of lncRNAs in CRC. The roles of LINC00908 are unclear. We found that LINC00908 was significantly upregulated in CRC. Inhibition of LINC00908 resulted in reduced cell proliferation and G1 cell cycle arrest, which was mediated by cyclin D1, cyclin-dependent kinase 4, and phosphorylated retinoblastoma. Moreover, inhibition of LINC00908-induced apoptosis through the intrinsic apoptosis signaling pathway, as shown by the activation of caspase-9 and caspase-3. Mechanistically, miR-143-3p directly bound to LINC00908. miR-143-3p expression was negatively correlated with LINC00908 expression in CRC tissue. Functional experiments revealed opposing roles for miR-143-3p and LINC00908, suggesting that LINC00908 negatively regulates miR-143-3p. Mechanistically, miR-143-3p directly targets LINC00908. The KLF5 inhibitor ML264 affected proliferation and apoptosis, indicating that LINC00908 may act as a competing endogenous RNA to facilitate the expression of the miR-143-3p target gene KLF5. Thus, LINC00908 has an important proliferative and antiapoptotic role in CRC by regulating the cell cycle and intrinsic apoptosis. LINC00908 could be a potential biomarker and a new therapeutic target for CRC.
Collapse
Affiliation(s)
- Ti-Dong Shan
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zi-Bin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qian Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yue-Ping Jiang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Fu-Guo Liu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xue-Guo Sun
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yue Han
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Li-Juan Sun
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Li Chen
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
38
|
Ma ZJ, Wang Y, Li HF, Liu MH, Bi FR, Ma L, Ma H, Yan HL. LncZEB1-AS1 regulates hepatocellular carcinoma bone metastasis via regulation of the miR-302b-EGFR-PI3K-AKT axis. J Cancer 2020; 11:5118-5128. [PMID: 32742459 PMCID: PMC7378930 DOI: 10.7150/jca.45995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
In patients with hepatocellular carcinoma (HCC), disease progression and associated bone metastasis (BM) can markedly reduce quality of life. While the long non-coding RNA (lncRNA) zinc finger E-box binding homeobox 1 antisense 1 (ZEB1-AS1) has been shown to function as a key regulator of oncogenic processes in HCC and other tumor types, whether it plays a role in controlling HCC BM remains to be established. In the current study, we detected the significant upregulation of lncZEB1-AS1 in HCC tissues, and we found this expression to be associated with BM progression. When we knocked down this lncRNA in HCC cells, we found that this significantly reduced their migratory, invasive, and metastatic activity both in vitro and in vivo. At a mechanistic level, we found that lncZEB1-AS1 was able to target miR-302b and to thereby increase PI3K-AKT pathway activation and EGFR expression, resulting in the enhanced expression of downstream matrix metalloproteinase genes in HCC cells. In summary, our results provide novel evidence that lncZEB1-AS1 can promote HCC BM through a mechanism dependent upon the activation of PI3K-AKT signaling, thus highlighting a potentially novel therapeutic avenue for the treatment of such metastatic progression in HCC patients.
Collapse
Affiliation(s)
- Zhen-Jiang Ma
- Department of Orthopedics, the Third Affiliated Hospital of Second Military Medical University, Shanghai 201805, P.R. China.,Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai 200011, P.R. China
| | - Yao Wang
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China.,Department of Laboratory Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, China
| | - Hui-Fen Li
- Department of Interventional, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Ming-Hua Liu
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Feng-Rui Bi
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Long Ma
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Hui Ma
- Department of Orthopedics, the Third Affiliated Hospital of Second Military Medical University, Shanghai 201805, P.R. China
| | - Hong-Li Yan
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| |
Collapse
|
39
|
Long non-coding RNA CCAT1 promotes colorectal cancer progression by regulating miR-181a-5p expression. Aging (Albany NY) 2020; 12:8301-8320. [PMID: 32380476 PMCID: PMC7244037 DOI: 10.18632/aging.103139] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/31/2020] [Indexed: 01/30/2023]
Abstract
The vital roles of long noncoding RNAs (lncRNAs) have been implicated in growing number of studies in tumor development. LncRNA CCAT1 has been recognized as associated with tumor development, yet its relation with colorectal cancer (CRC) remains elusive. Our study aimed at elucidating the function and mechanisms of long non-coding RNA CCAT1 in CRC. From a lncRNA profile dataset of 38 pairs of matched tumor-control colon tissues from colorectal patients housed in The Cancer Genome Atlas (TCGA), we detected 10 upregulated and 10 down-regulated lncRNAs in CRC. Fifty cases of CRC patients were enrolled to analyze the correlation between the expression of CCAT1 and clinical pathology. The inverse correlation of expression and target relationship between CCAT1 and miR-181a-5p were verified using qRT-PCR and dual-luciferase reporter gene assay. Cell viability, colony formation ability, aggression and apoptosis were determined by MTT assay, colony formation assay, Transwell and wound healing assays and flow cytometry analysis. Furthermore, Xenograft model was used to show that knockdown of CCAT1 inhibits tumor growth in vivo. The expression of lncRNA CCAT1 was significantly upregulated in CRC tissues. The CCAT1 expression was positively associated with cancer stage (American Joint Committee on Cancer stage, P<0.05). CCAT1 promoted cell proliferation, growth and mobility by targeting miR-181a-5p and the silence of CCAT1 increased the cell apoptosis. Same effect was observed in an in vivo xenograft model, which the tumor size and pro-tumor proteins were significantly diminished by knocking down of CCAT1.
Collapse
|
40
|
Wang L, Zhang L, Wang L. SNHG7 Contributes to the Progression of Non-Small-Cell Lung Cancer via the SNHG7/miR-181a-5p/E2F7 Axis. Cancer Manag Res 2020; 12:3211-3222. [PMID: 32440218 PMCID: PMC7213887 DOI: 10.2147/cmar.s240964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background Non-small-cell lung cancer (NSCLC) is a common malignant tumor with very high mortality. Small nucleolar RNA host gene 7 (SNHG7) was associated with many tumors progression. We aimed to explore the role and regulatory mechanism of SNHG7 in the development of NSCLC. Methods The expression of SNHG7, miR-181a-5p and E2F transcription factor 7 (E2F7) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein expression of E2F7 was evaluated by Western blot. Cell Counting Kit-8 (CCK-8) assay was conducted to explore cell proliferation. Flow cytometry was used to examine cell apoptosis. The clonogenic examination was performed to reflect cell population dependence and proliferative ability. Transwell assay was used to assess cell migration and invasion. The potential target relationship between miR-181a-5p and SNHG7 or E2F7 was analyzed by dual-luciferase reporter assay. A xenograft mouse model was generated to verify the effect of SNHG7 on tumor growth in vivo. Results SNHG7 and E2F7 were increased, while miR-181a-5p was decreased in NSCLC. Knockdown of SNHG7 suppressed cell viability, clonogenic, migration, invasion and tumor growth, and promoted cell apoptosis. SNHG7 acted as a sponge of miR-181a-5p and E2F7 was directly interacted with miR-181a-5p. Overexpression of miR-181a-5p had the same functional effect as SNHG7 knockdown on the progression of NSCLC cells. E2F7 was negatively correlated with miR-181a-5p and positively correlated with SNHG7. Moreover, miR-181a-5p inhibition or E2F7 overexpression abolished the effect of SNHG7 knockdown on the progression of NSCLC cells. Conclusion SNHG7 regulated the development of NSCLC cells by the miR-181a-5p/E2F7 axis.
Collapse
Affiliation(s)
- Liming Wang
- Department of Interventional, Shandong Provincial Chest Hospital, Jinan, Shandong, People's Republic of China
| | - Lili Zhang
- Thoracoscopic Ward, Shandong Provincial Chest Hospital, Jinan, Shandong, People's Republic of China
| | - Liwei Wang
- Department of Radiology, Tianbao Township Health Center, Taian, Shandong, People's Republic of China
| |
Collapse
|
41
|
Ma T, Chen H, Wang P, Yang N, Bao J. Downregulation of lncRNA ZEB1-AS1 Represses Cell Proliferation, Migration, and Invasion Through Mediating PI3K/AKT/mTOR Signaling by miR-342-3p/CUL4B Axis in Prostate Cancer. Cancer Biother Radiopharm 2020; 35:661-672. [PMID: 32275162 DOI: 10.1089/cbr.2019.3123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: Prostate cancer (PCa) is the second most common cancer among men, threatening men's health and life. Long noncoding RNA Zinc-finger E-box binding homeobox 1 antisense gene 1 (ZEB1-AS1) and Cullin 4B (CUL4B) were reported to be connected with the tumorigenesis of PCa. However, it is unclear whether ZEB1-AS1 regulates the expression of CUL4B in PCa. Materials and Methods: The levels of ZEB1-AS1 and CUL4B in PCa tissues and cells were evaluated by quantitative real-time polymerase chain reaction. Protein levels of CUL4B, p21, CyclinD1, matrix metalloprotease 9 (MMP9), E-cadherin, phosphorylated-phosphatidylinositol 3 kinase (p-PI3K), PI3K phosphorylated protein kinase B (p-AKT), AKT, p-mTOR and mammalian target of rapamycin (mTOR) in PCa tissues or cells were assessed by Western blot analysis. The proliferation, migration, and invasion abilities of PCa cells were determined with 3-(4, 5-dimethylthiazol-2-YI)-2,5-diphenyltetrazolium bromide (MTT) or transwell assay. The interaction between ZEB1-AS1 or CUL4B and microRNA-342-3p (miR-342-3p) was predicted using starBase v2.0 database and confirmed by the dual-luciferase reporter assay. Results: ZEB1-AS1 and CUL4B were upregulated and miR-342-3p was downregulated in PCa tissues and cells. Both ZEB1-AS1 and CUL4B inhibition constrained proliferation, migration, and invasion of PCa cells. Moreover, the elevation of CUL4B reversed the effects of ZEB1-AS1 silencing on the proliferation, migration, and invasion of PCa cells. Importantly, ZEB1-AS1 modulated CUL4B expression by sponging miR-342-3p in PCa cells. Besides, ZEB1-AS1 mediated PI3K/AKT/mTOR signal pathway by miR-342-3p/CUL4B axis in PCa cells. Conclusion: ZEB1-AS1 modulated PCa progression through mediating PI3K/AKT/mTOR signaling by miR-342-3p/CUL4B axis, providing a possible strategy for the treatment of PCa.
Collapse
Affiliation(s)
- Teng Ma
- Department of Urology, Urological Institute, Gansu Key Laboratory of Urinary System, Lanzhou University Second Hospital, Lanzhou, China
| | - Hua Chen
- Department of Urology, Urological Institute, Gansu Key Laboratory of Urinary System, Lanzhou University Second Hospital, Lanzhou, China
| | - Peilong Wang
- Department of Urology, Urological Institute, Gansu Key Laboratory of Urinary System, Lanzhou University Second Hospital, Lanzhou, China
| | - Ningqiang Yang
- Department of Urology, Urological Institute, Gansu Key Laboratory of Urinary System, Lanzhou University Second Hospital, Lanzhou, China
| | - Junsheng Bao
- Department of Urology, Urological Institute, Gansu Key Laboratory of Urinary System, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
42
|
Jin Z, Chen B. LncRNA ZEB1-AS1 Regulates Colorectal Cancer Cells by MiR-205/YAP1 Axis. Open Med (Wars) 2020; 15:175-184. [PMID: 32190742 PMCID: PMC7065425 DOI: 10.1515/med-2020-0026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022] Open
Abstract
Background Recent studies demonstrated that long non-coding RNAs (lncRNAs) were involved in many biological processes. Dysregulated lncRNAs are related to many cancers, including colorectal cancer (CRC). However, the molecular mechanism of lncRNA ZEB1-AS1 in CRC is not clear. Methods LncRNA ZEB1-AS1, miR-205, and YAP1 expression were measured by quantitative reverse transcriptase PCR (QRT-PCR). YAP1 protein expression was measured by western blotting. Cell viability was measured by MTT assay. Cell apoptosis was detected by flow cytometry. Luciferase reporter assay was used to confirm the relationship between ZEB1-AS1, miR-205, and YAP1. Results LncRNA ZEB1-AS1 and YAP1 was upregulated in CRC tissues. The expression of YAP1 was positively correlated with ZEB1-AS1. Knockdown of ZEB1-AS1 inhibited cell viability and induced apoptosis in CRC cell line SW480 and HCT116 which could be reversed by overexpression of YAP1. ZEB1-AS1 targeted and regulated miR-205 which could directly bind to YAP1. Meanwhile, ZEB1-AS1 regulated the expression of YAP1 via modulating miR-205. Conclusion Long non-coding RNA ZEB1-AS1 silencing could inhibit cell proliferation and induce apoptosis of colorectal cancer via regulating miR-205 and YAP1.
Collapse
Affiliation(s)
- Zhong Jin
- Department of Leader/VIP Surgery, the First Affiliated Hospital of Xinjiang Medical University, No.137, South Liyushan Rd, Urumqi, 830054, Xinjiang, China
| | - Bing Chen
- Department of Gastrointestinal surgery, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| |
Collapse
|
43
|
Shan TD, Tian ZB, Jiang YP. Downregulation of lncRNA MALAT1 suppresses abnormal proliferation of small intestinal epithelial stem cells through miR‑129‑5p expression in diabetic mice. Int J Mol Med 2020; 45:1250-1260. [PMID: 32124944 DOI: 10.3892/ijmm.2020.4492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/08/2020] [Indexed: 11/05/2022] Open
Abstract
The problems caused by diabetes mellitus (DM) and its related complications are gaining increasing attention. In our previous study, the abnormal proliferation of small intestinal epithelial cells (IECs) were observed in diabetic mice. However, little is known regarding the potential underlying mechanism. In the present study, the abnormal proliferation of IECs in DM and the marked upregulation of metastasis associated lung adenocarcinoma transcript 1 (MALAT1) was observed. Additionally, knockdown of MALAT1 significantly reduced abnormal IESC proliferation in DM mice. Bioinformatics analysis and luciferase reporter assays revealed that microRNA (miR)‑129‑5p was directly targeted by MALAT1. Moreover, the results of the bioinformatics prediction and luciferase assays demonstrated that MALAT1 directly interacted with SRY‑box 9 (SOX9). Furthermore, MALAT1 silencing was observed to attenuate the abnormal proliferation of IESCs through the SOX9‑mediated WNT/β‑catenin signaling pathway. Knockdown of MALAT1 downregulated SOX9 expression by binding to miR‑129‑5p, thereby inhibiting the abnormal proliferation of IESCs via the WNT/β‑catenin signaling pathway.
Collapse
Affiliation(s)
- Ti-Dong Shan
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 262000, P.R. China
| | - Zi-Bin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 262000, P.R. China
| | - Yue-Ping Jiang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 262000, P.R. China
| |
Collapse
|
44
|
Rahmani Z, Mojarrad M, Moghbeli M. Long non-coding RNAs as the critical factors during tumor progressions among Iranian population: an overview. Cell Biosci 2020; 10:6. [PMID: 31956395 PMCID: PMC6961246 DOI: 10.1186/s13578-020-0373-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cancer is associated with various genetic and environmental risk factors. Beside the mutations or aberrant expression of protein-coding genes, the genetic deregulation of non-coding RNAs has also an important role during tumor progression and metastasis. Long non-coding RNAs (lncRNAs) are a class of ncRNAs larger than 200 nucleotides that may function as tumor-suppressor or oncogene. MAIN BODY There is a raising trend of cancer incidence among Iranian population during the last decades. Therefore, it is required to prepare a general population specific panel of genetic markers for the early detection of cancer in this population. The tissue-specific expression characteristics and high stability in body fluids highlight the lncRNAs as efficient diagnostic and prognostic noninvasive biomarkers in cancer. In present review we summarized all of the lncRNAs which have been reported until now in different tumors among Iranian patients. CONCLUSIONS This review paves the way of introducing a population based noninvasive diagnostic panel of lncRNAs for the early detection of tumor cells among Iranian population.
Collapse
Affiliation(s)
- Zahra Rahmani
- Department of Medical Genetics, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
45
|
Zheng Y, Nie P, Xu S. Long noncoding RNA CASC21 exerts an oncogenic role in colorectal cancer through regulating miR-7-5p/YAP1 axis. Biomed Pharmacother 2020; 121:109628. [DOI: 10.1016/j.biopha.2019.109628] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022] Open
|
46
|
Wu G, Xue M, Zhao Y, Han Y, Li C, Zhang S, Zhang J, Xu J. Long noncoding RNA ZEB1-AS1 acts as a Sponge of miR-141-3p to Inhibit Cell Proliferation in Colorectal Cancer. Int J Med Sci 2020; 17:1589-1597. [PMID: 32669962 PMCID: PMC7359398 DOI: 10.7150/ijms.46698] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022] Open
Abstract
Evidence shows that long noncoding RNAs (lncRNAs) play key roles in various cancers, including colorectal cancer. In this current study, we found that the expression of ZEB1-AS1 in colorectal cancer tissues and cell lines was significantly upregulated, and positively correlated with advanced stage of colorectal cancer. Kaplan-Meier assays also indicated that the expression of ZEB1-AS1 was correlated with poor prognosis in patients with colorectal cancer. Knocking down of ZEB1-AS1 inhibited the proliferation of colorectal cancer cells. Subcellular fractionation analyses suggested that ZEB1-AS1 was majorly distributed in cytoplasm of SW480 and LOVO cells. Thus, ZEB1-AS1 might act as a competing endogenous RNA. MicroRNA array analysis suggested that miR-141-3p was significantly downregulated in CRC tissues, which was further verified by RT-qPCR. The results of luciferase reporter assay proved that miR-141-3p was a target of ZEB1-AS1. Functionally, miR-141-3p inhibitor reversed the anti-proliferation effect of sh-ZEB1-AS1 on colorectal cancer cells. Collectively, ZEB1-AS1 may contribute to colorectal cancer cell proliferation by sponging miR-141-3p.
Collapse
Affiliation(s)
- Guanghai Wu
- Department of General Surgery, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121, China
| | - Mei Xue
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Yongjie Zhao
- Department of General Surgery, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121, China
| | - Youkui Han
- Department of General Surgery, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121, China
| | - Chao Li
- Department of General Surgery, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121, China
| | - Shuai Zhang
- Department of General Surgery, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121, China
| | - Judong Zhang
- Department of General Surgery, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121, China
| | - Jing Xu
- Department of General Surgery, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121, China
| |
Collapse
|
47
|
Zhang H, Huang H, Xu X, Wang H, Wang J, Yao Z, Xu X, Wu Q, Xu F. LncRNA HCG11 promotes proliferation and migration in gastric cancer via targeting miR-1276/CTNNB1 and activating Wnt signaling pathway. Cancer Cell Int 2019; 19:350. [PMID: 31889902 PMCID: PMC6933929 DOI: 10.1186/s12935-019-1046-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
Background Gastric cancer (GC) is one common cancer which occurs in the stomach leading to high mortality around the world. Long non-coding RNAs (lncRNAs) were found overexpressed or silenced in the occurrence and progression of multiple cancers including GC. Method The gene expression level in GC tissues and cells were analyzed by RT-qPCR. CCK-8, colony formation, flow cytometry and transwell assays were performed for the function analysis of HLA complex group 11 (HCG11). The mechanism study for HCG11 was conducted using RIP, RNA pull down and luciferase reporter assays. Results HCG11 was discovered highly expressed in GC tissues and cells. Depletion experiments were used to evaluate HCG11 silence on cell proliferation, migration and apoptosis. Moreover, Wnt signaling pathway was found as a tumor promoter in GC. RIP assay, RNA pull down assay and luciferase reporter assay were performed to illustrate the relationship of HCG11, miR-1276 and CTNNB1. Rescue assays revealed that HCG11/miR-1276/CTNNB1 axis regulated the incidence and development of GC. Tumor formation in mice proved that HCG11 was negatively correlated with miR-1276 and had positively correlation with CTNNB1. Conclusion Overall, HCG11 accelerated proliferation and migration in GC through miR-1276/CTNNB1 and Wnt signaling pathway, revealing that HCG11 could be a brand new target for GC.
Collapse
Affiliation(s)
- Hua Zhang
- 1Department of Gastroenterology, The Fifth People's Hospital of Chengdu, No. 33 Mashi Street, Wenjiang District, Chengdu, 611130 China
| | - Haitao Huang
- 2Department of Respiratory, The Fifth People's Hospital of Chengdu, No. 33 Mashi Street, Wenjiang District, Chengdu, 611130 China
| | - Xiaomei Xu
- 1Department of Gastroenterology, The Fifth People's Hospital of Chengdu, No. 33 Mashi Street, Wenjiang District, Chengdu, 611130 China
| | - Haiying Wang
- 3Department of Gynecology, The Fifth People's Hospital of Chengdu, No. 33 Mashi Street, Wenjiang District, Chengdu, 611130 China
| | - Jianxiang Wang
- 1Department of Gastroenterology, The Fifth People's Hospital of Chengdu, No. 33 Mashi Street, Wenjiang District, Chengdu, 611130 China
| | - Zuoyi Yao
- 4Department of General surgery, The Fifth People's Hospital of Chengdu, No. 33 Mashi Street, Wenjiang District, Chengdu, 611130 China
| | - Xiaoyan Xu
- 5Department of Anesthesiology, Chengdu Women's & Children's Central Hospital, Chengdu Riyue Avenue 1617, Chengdu, 610091 China
| | - Qian Wu
- 1Department of Gastroenterology, The Fifth People's Hospital of Chengdu, No. 33 Mashi Street, Wenjiang District, Chengdu, 611130 China
| | - Fenlan Xu
- Department of Anesthesiology, Chengdu Public Health Clinical Medical Center, Jingming Road 377, Chengdu, 610066 China
| |
Collapse
|
48
|
Hao YR, Zhang DJ, Fu ZM, Guo YY, Guan GF. Long non-coding RNA ANRIL promotes proliferation, clonogenicity, invasion and migration of laryngeal squamous cell carcinoma by regulating miR-181a/Snai2 axis. Regen Ther 2019; 11:282-289. [PMID: 31667207 PMCID: PMC6813643 DOI: 10.1016/j.reth.2019.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/10/2019] [Accepted: 07/24/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Laryngeal squamous cell carcinoma (LSCC) is the common cancer with poor prognosis. Long non-coding RNA (lncRNA) ANRIL has been proven to play an important role in many cancers. However up to now, the role of ANRIL in LSCC is still poorly understood. The present study aimed to investigate the role and underlying mechanisms of ANRIL and miR-181a in LSCC. METHODS Expression of ANRIL, miR-181a and Snai2 in both LSCC tissues and cells was determined by qRT-PCR. CCK-8 assay, colony formation assay, flow cytometry analysis and transwell assay were conducted to detect cell proliferation, clonogenicity, apoptosis, invasion and migration, respectively. The binding between ANRIL and miR-181a, as well miR-181a and Snai2 was confirmed by dual luciferase reporter assay. Western blotting was used to determine the protein levels of Snail, Slug, E-cadherin, N-cadherin and Vimentin. RESULTS ANRIL was up-regulated while miR-181a was down-regulated in LSCC tissues. ANRIL was negatively correlated with miR-181a and was positively correlated with Snai1 and Snai2. Dual luciferase reporter assay showed ANRIL could directly sponge miR-181a to counteract its suppression on Snai2, serving as a positive regulator of Snai2. Either knockdown of ANRIL or overexpression of miR-181a significantly inhibited the proliferation, clonogenicity, invasion, migration and epithelial mesenchymal transformation (EMT), as well as promoted the apoptosis of LSCC cells, and knockdown of miR-181a reversed the effects. CONCLUSION Inhibition of ANRIL could suppress cell proliferation, clonogenicity, invasion and migration, as well as enhance cell apoptosis of LSCC cells through regulation of miR-181a/Snai2 axis, indicating that ANRIL might be a promising therapeutic target during the treatment of LSCC.
Collapse
Affiliation(s)
| | | | | | | | - Guo-Fang Guan
- Department of Otolaryngology, Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China
| |
Collapse
|
49
|
Zhao Y, Wang N, Zhang X, Liu H, Yang S. LncRNA ZEB1-AS1 down-regulation suppresses the proliferation and invasion by inhibiting ZEB1 expression in oesophageal squamous cell carcinoma. J Cell Mol Med 2019; 23:8206-8218. [PMID: 31638344 PMCID: PMC6850966 DOI: 10.1111/jcmm.14692] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/28/2019] [Accepted: 08/24/2019] [Indexed: 12/23/2022] Open
Abstract
Multiple studies have unveiled that long non‐coding RNAs (lncRNAs) play a pivotal role in tumour progression and metastasis. However, the biological role of lncRNA ZEB1‐AS1 in oesophageal squamous cell carcinoma (ESCC) remains under investigation, and thus, the current study was to investigate the functions of ZEB1‐AS1 in proliferation and invasion of ESCC. Here, we discovered that ZEB1‐AS1 and ZEB1 were markedly up‐regulated in ESCC tissues and cells relative to their corresponding normal control. ZEB1‐AS1 and ZEB1 overexpressions were both related to TNM staging and lymph node metastasis as well as poor prognosis in ESCC. The hypomethylation of ZEB1‐AS1 promoter triggered ZEB1‐AS1 overexpression in ESCC tissues and cells. In addition, ZEB1‐AS1 knockdown mediated by siRNA markedly suppressed the proliferation and invasion in vitro in EC9706 and TE1 cells, which was similar with ZEB1 siRNA treatment, coupled with EMT alterations including the up‐regulation of E‐cadherin level as well as the down‐regulation of N‐cadherin and vimentin levels. Notably, ZEB1‐AS1 depletion dramatically down‐regulated ZEB1 expression in EC9706 and TE1 cells, and ZEB1 overexpression obviously reversed the inhibitory effects of proliferation and invasion triggered by ZEB1‐AS1 siRNA. ZEB1‐AS1 shRNA evidently inhibited tumour growth and weight, whereas ZEB1 elevation partly recovered the tumour growth in ESCC EC9706 and TE1 xenografted nude mice. In conclusion, ZEB1‐AS1 overexpression is tightly involved in the development and progression of ESCC, and it exerts the antitumour efficacy by regulating ZEB1 level in ESCC.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Ning Wang
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaosan Zhang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongtao Liu
- College of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Shujun Yang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
50
|
Ye Y, Gu B, Wang Y, Shen S, Huang W. YY1-Induced Upregulation of Long Noncoding RNA ARAP1-AS1 Promotes Cell Migration and Invasion in Colorectal Cancer Through the Wnt/β-Catenin Signaling Pathway. Cancer Biother Radiopharm 2019; 34:519-528. [PMID: 31173500 DOI: 10.1089/cbr.2018.2745] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Introduction: It has been reported that long noncoding RNAs (lncRNAs) are crucial regulators in progression of human cancers, including colorectal cancer (CRC). However, the function of lncRNA ARAP1 antisense RNA 1 (ARAP1-AS1) in CRC remains unclear. Aim: The aim of this study was to investigate the function and molecular mechanism of lncRNA ARAP1-AS1 in CRC. Results: ARAP1-AS1 was highly expressed in CRC tissues and cell lines. ARAP1-AS1 knockdown suppressed cell migration, invasion, and epithelial-mesenchymal transition (EMT). YY1 transcription factor (YY1) enhanced the transcription activity of ARAP1-AS1. The YY1/ARAP1-AS1 axis promoted CRC cell migration and invasion. YY1/ARAP1-AS1 could regulate the Wnt/β-catenin signaling pathway. Conclusions: This study revealed that YY1-induced upregulation of ARAP1-AS1 promoted cell migration, invasion, and EMT process in CRC through the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yaqun Ye
- The Operating Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Binbin Gu
- Nutrition Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Nutrition Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sudan Shen
- Nutrition Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Huang
- Nutrition Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|