1
|
Regulation of the Epithelial to Mesenchymal Transition in Osteosarcoma. Biomolecules 2023; 13:biom13020398. [PMID: 36830767 PMCID: PMC9953423 DOI: 10.3390/biom13020398] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) is a cellular process that has been linked to the promotion of aggressive cellular features in many cancer types. It is characterized by the loss of the epithelial cell phenotype and a shift to a more mesenchymal phenotype and is accompanied by an associated change in cell markers. EMT is highly complex and regulated via multiple signaling pathways. While the importance of EMT is classically described for carcinomas-cancers of epithelial origin-it has also been clearly demonstrated in non-epithelial cancers, including osteosarcoma (OS), a primary bone cancer predominantly affecting children and young adults. Recent studies examining EMT in OS have highlighted regulatory roles for multiple proteins, non-coding nucleic acids, and components of the tumor micro-environment. This review serves to summarize these experimental findings, identify key families of regulatory molecules, and identify potential therapeutic targets specific to the EMT process in OS.
Collapse
|
2
|
Zhu C, Fu Y, Xia L, Li F, Huang K, Sun X. Expression Profiles, Prognosis, and ceRNA Regulation of SRY-Related HMG-Box Genes in Stomach Adenocarcinoma. J Environ Pathol Toxicol Oncol 2023; 42:79-91. [PMID: 36749091 DOI: 10.1615/jenvironpatholtoxicoloncol.2022044640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aberrant expression of the SRY-related HMG-box (SOX) genes contributes to tumor development and progression. This research aimed to identify the regulation of the SOX genes in stomach adenocarcinoma (STAD). Expression profiles downloaded from The Cancer Genome Atlas (TCGA) were conducted to analyze the expression and function of the SOX genes. A competing endogenous RNAs (ceRNA) network mediated by the SOX genes was effectively constructed consisting of 64 lncRNAs, 29 miRNAs, and 11 SOX genes based on predicted miRNAs shared by lncRNAs and mRNAs using miRDB, TargetScan, miRTarBase, miRcode, and starBase v2.0. SOX9 was identified as a prognostic signature, which showed the usefulness of diagnosis and prognosis of STAD by the receiver operating characteristic (ROC) and Kaplan-Meier curves. SOX9 was also shown specifically in STAD and identified as highly expressed in the gastrointestinal tract. Gene Ontology (GO) enrichment analysis showed that SOX9 might influence the genes related to the pattern specification process, sodium ion homeostasis, and potassium ion transport, mainly including FEZF1, HOXC13, HOXC10, HOXC9, HOXA11, DPP6, ATP4B, CASQ2, KCNA1, ATP4A, and SFRP1. Furthermore, HOTAIR knockdown, miR-206-mimic transfection, the Cell Count Kit-8 (CCK-8) assay were performed to verify the function of HOTAIR/miR-206/SOX9 axis, which was identified in the ceRNA network analysis. HOTAIR could induce proliferation potentially by competitively binding miR-206/SOX9 axis in STAD. These findings provide new clues with prognostic and therapeutic implications in STAD and suggest that HOTAIR/miR-206/SOX9 might be a potential new strategy for therapeutic targeting of gastric cancer.
Collapse
Affiliation(s)
- Chang Zhu
- Department of Gastrointestinal Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Yuxiang Fu
- Department of Gastrointestinal Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Ligang Xia
- Department of Gastrointestinal Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Fang Li
- Department of Gastrointestinal Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Kaibin Huang
- Department of Gastrointestinal Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Xiao Sun
- Department of Gastrointestinal Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| |
Collapse
|
3
|
Shenoy US, Adiga D, Gadicherla S, Kabekkodu SP, Hunter KD, Radhakrishnan R. HOX cluster-embedded lncRNAs and epithelial-mesenchymal transition in cancer: Molecular mechanisms and therapeutic opportunities. Biochim Biophys Acta Rev Cancer 2023; 1878:188840. [PMID: 36403923 DOI: 10.1016/j.bbcan.2022.188840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Although there has been substantial improvement in the treatment modalities, cancer remains the major cause of fatality worldwide. Metastasis, recurrence, and resistance to oncological therapies are the leading causes of cancer mortality. Epithelial-mesenchymal transition (EMT) is a complex biological process that allows cancer cells to undergo morphological transformation into a mesenchymal phenotype to acquire invasive potential. It encompasses reversible and dynamic ontogenesis by neoplastic cells during metastatic dissemination. Hence, understanding the molecular landscape of EMT is imperative to identify a reliable clinical biomarker to combat metastatic spread. Accumulating evidence reveals the role of HOX (homeobox) cluster-embedded long non-coding RNAs (lncRNAs) in EMT and cancer metastasis. They play a crucial role in the induction of EMT, modulating diverse biological targets. The present review emphasizes the involvement of HOX cluster-embedded lncRNAs in EMT as a molecular sponge, chromatin remodeler, signaling regulator, and immune system modulator. Furthermore, the molecular mechanisms behind therapy resistance and the potential use of novel drugs targeting HOX cluster-embedded lncRNAs in the clinical management of distant metastasis will be discussed.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Srikanth Gadicherla
- Deparment of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Keith D Hunter
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India; Oral and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
4
|
Overexpression of lncRNA HOXA-AS2 promotes the progression of oral squamous cell carcinoma by mediating SNX5 expression. BMC Mol Cell Biol 2022; 23:59. [PMID: 36528556 PMCID: PMC9759889 DOI: 10.1186/s12860-022-00457-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is one of the most common head and neck cancers. Long non-coding RNA HOXA-AS2 (lncRNA HOXA-AS2) have been extensively studied in various cancers. However, the expression and function of HOXA-AS2 in OSCC still remain unknown. The aim of this study is to investigate the roles of HOXA-AS2 in OSCC. METHODS OSCC tissues and adjacent normal tissues were obtained from OSCC patients. RT-qPCR and Western blot assays were used to detect the expression of target genes in OSCC tissues or cells. Cells proliferation, migration and invasion were detected by CCK-8 and transwell assays, respectively. The target gene of HOXA-AS2 was confirmed by dual-luciferase reporter gene assay. RESULTS We found that HOXA-AS2 expression was remarkably upregulated in OSCC tissues and cell lines. The downregulation of HOXA-AS2 inhibited cells proliferation, migration and invasion. Our bioinformatics analysis found that HOXA-AS2 can target miR-520c-3p, which was confirmed by dual-luciferase reporter gene assay. The expression of HOXA-AS2 was found to be negatively associated with miR-520c-3p in OSCC tissues. Moreover, sorting nexin 5 (SNX5), a downstream target of miR-520c-3p, was inhibited by miR-520c-3p overexpression. SNX5 was also increased in OSCC tissues and cell lines. Additionally, we found that the higher expression of SNX5 was strongly associated with the tumor grade of OSCC patients in Oncomine database. Most importantly, the knockdown of HOXA-AS2 induced cells apoptosis by promoting autophagy by regulating SNX5. CONCLUSION HOXA-AS2 served an oncogene and promoted OSCC progression via the miR-520c-3p/SNX5 axis. Thus, HOXA-AS2 may be a new biomarker for diagnosis and treatment of OSCC.
Collapse
|
5
|
Zhang F, Zhang G, Zhang H, Pu X, Chi F, Zhang D, Xin X, Gao M, Luo W, Li X. HOXA-AS2 may be a potential prognostic biomarker in human cancers: A meta-analysis and bioinformatics analysis. Front Genet 2022; 13:944278. [DOI: 10.3389/fgene.2022.944278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Background: Dysregulation of long non-coding (lncRNA) has been reported in various solid tumors. HOXA cluster antisense RNA 2 (HOXA-AS2) is a newly identified lncRNA with abnormal expression in several human malignancies. However, its prognostic value remains controversial. This meta-analysis synthesized available data to clarify the association between HOXA-AS2 expression levels and clinical prognosis in multiple cancers.Methods: Four public databases (Embase, PubMed, Web of Science, The Cochrane Library) were used to identify eligible studies. Hazard ratios (HRs) and odds ratios (ORs) with their 95% confidence intervals (CIs) were combined to assess the correlation of HOXA-AS2 expression with survival outcomes and clinicopathological features of cancer patients. Publication bias was measured using Begg’s funnel plot and Egger’s regression test, and the stability of the combined results was measured using sensitivity analysis. Additionally, multiple public databases were screened and extracted to validate the results of this meta-analysis.Results: The study included 20 studies, containing 1331 patients. The meta-analysis showed that the overexpression of HOXA-AS2 was associated with poor overall survival (HR = 2.06, 95% CI 1.58–2.69, p < 0.001). In addition, the high expression of HOXA-AS2 could forecast advanced tumor stage (OR = 3.89, 95% CI 2.90–5.21, p < 0.001), earlier lymph node metastasis (OR = 3.48, 95% CI 2.29–5.29, p < 0.001), larger tumor size (OR = 2.36, 95% CI 1.52–3.66, p < 0.001) and earlier distant metastasis (OR = 3.54, 95% CI 2.00–6.28, p < 0.001). However, other clinicopathological features, including age (OR = 1.09, 95% CI 0.86–1.38, p = 0.467), gender (OR = 0.92, 95% CI 0.72–1.18, p = 0.496), depth of invasion (OR = 2.13, 95% CI 0.77–5.90, p = 0.146) and differentiation (OR = 1.02, 95% CI 0.65–1.59, p = 0.945) were not significantly different from HOXA-AS2 expression.Conclusion: Our study showed that the overexpression of HOXA-AS2 was related to poor overall survival and clinicopathological features. HOXA-AS2 may serve as a potential prognostic indicator and therapeutic target for tumor treatment.
Collapse
|
6
|
Wang Q, Zhang W, Deng C, Lin S, Zhou Y. HOXA-AS2 may predict the prognosis of solid tumors among Chinese patients: A meta-analysis and bioinformatic analysis. Front Oncol 2022; 12:1030825. [PMID: 36387249 PMCID: PMC9659612 DOI: 10.3389/fonc.2022.1030825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Background HOXA cluster antisense RNA 2 (lncRNA HOXA-AS2) is a long noncoding RNA (lncRNA) that aberrantly expressed in various cancers and is closely associated with cancer progression. To overcome the limitation of small sample sizes that are inherent to single studies, a meta-analysis was conducted to explore the relationship between the expression level of HOXA-AS2 and cancer prognosis. Methods Correlational studies were retrieved by searching the databases of PubMed, Embase and Web of Science (up to August 10, 2022). The survival and prognosis data included overall survival (OS), and clinical parameters were gathered and analyzed. Results Eighteen publications with 1181 patients who were diagnosed with solid tumors were ultimately included. The results showed that, compared with patients with low HOXA-AS2 expression, patients with high HOXA-AS2 expression tended to have poorer overall survival (OS) (HR= 2.52, 95% CI 1.87-3.38, P < 0.01) and shorter disease-free survival (DFS) (HR=7.19, 95% CI 3.20-16.17, P < 0.01). In addition, elevated HOXA-AS2 expression indicated a larger tumor size (OR =2.43, 95% CI 1.53–3.88,P < 0.01), more advanced TNM stage (OR=3.85, 95% CI 2.79-5.31, P < 0.01), earlier lymph node metastasis (LNM) (OR = 4.41, 95% CI 3.05-6.39, P < 0.01) and distant metastasis (DM) (OR= 2.96, 95% CI 1.87-4.7, P < 0.01). Furthermore, HOXA-AS2 expression was notassociated with age (OR=1.15, 95% CI 0.90-1.47), gender (OR=1.16, 95% CI 0.89-1.53), or tumor differentiation (OR=1.21, 95% CI 0.56-2.63). Moreover, aberrant HOXA-AS2 expression was related to drug sensitivity in various types of cancers. Conclusion The overexpression of HOXA-AS2 predicted poor cancer prognosis in the Chinese population, including poor OS, DFS, TNM, LNM, and DM. HOXA-AS2 could serve as a promising prognostic biomarker and therapeutic target. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022352604.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of General Surgery, Jianyang People’s Hospital, Jianyang, China
| | - Wei Zhang
- Department of General Surgery, Jianyang People’s Hospital, Jianyang, China
| | - Chao Deng
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shicheng Lin
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yejiang Zhou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Yejiang Zhou,
| |
Collapse
|
7
|
Qi S, Xu L, Han Y, Chen H, Cheng A. miR-29a-3p mitigates the development of osteosarcoma through modulating IGF1 mediated PI3k/Akt/FOXO3 pathway by activating autophagy. Cell Cycle 2022; 21:1980-1995. [PMID: 35575588 DOI: 10.1080/15384101.2022.2078614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Osteosarcoma (OS), occurring in mesenchymal tissues and with a high degree of malignancy, is most common in children and adolescents. At present, we intend to figure out the expression and functions of miR-29a-3p in OS development. Reverse transcription-polymerase chain reaction (RT-PCR) was adopted to monitor the expression of miR-29a-3p and IGF1 in OS tissues and adjacent non-tumor tissues. Then, the 3- (4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay, colony formation experiment, western blot and Transwell assay were conducted to validate OS cell proliferation, colony formation ability, apoptosis, migration and invasion. Next, the association between miR-29a-3p and IGF1 was corroborated by the dual-luciferase reporter assay and the Pearson correlation analysis. Finally, WB was implemented to test the levels of autophagy-related proteins LC3-I/LC3-II, Beclin-1, p62, and the IGF-1R/PI3k/Akt/FOXO3 axis in OS cells. As a result, miR-29a-3p was down-regulated in OS tissues (versus adjacent non-tumor tissues) and OS cell lines. Overexpressing miR-29a-3p aggravated apoptosis, dampened cell proliferation, colony formation, migration and invasion, and promoted autophagy of OS cells. IGF1 was identified as a target of miR-29a-3p. IGF1 induced oncogenic effects in OS by activating IGF-1R/ PI3k/Akt pathway, and it dampened the tumor-suppressive effect of miR-29a-3p on OS. Taken together, miR-29a-3p repressed the OS evolvement through inducing autophagy and inhibiting IGF1 mediated PI3k/Akt/FOXO3 pathway.
Collapse
Affiliation(s)
- Song Qi
- Department of Trauma Surgery, Wuhan No 1 Hospital, Wuhan 430022, Hubei, China
| | - Li Xu
- Department of Trauma Surgery, Wuhan No 1 Hospital, Wuhan 430022, Hubei, China
| | - Yongyuan Han
- Orthopedics Department I, Zaozhuang Chinese Medicine Hospital, Zaozhuang 277000, Shandong, China
| | - Hongkun Chen
- Pediatric Surgery, Zaozhuang Municipal Hospital, Zaozhuang 277102, Shandong, China
| | - Anyuan Cheng
- Department of Trauma Surgery, Wuhan No 1 Hospital, Wuhan 430022, Hubei, China
| |
Collapse
|
8
|
Zhao Z, Xing Y, Yang F, Zhao Z, Shen Y, Song J, Jing S. LncRNA HOXA-AS2 Promotes Oral Squamous Cell Proliferation, Migration, and Invasion via Upregulating EZH2 as an Oncogene. Technol Cancer Res Treat 2021; 20:15330338211039109. [PMID: 34519570 PMCID: PMC8445530 DOI: 10.1177/15330338211039109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common types of cancer worldwide. Accumulating evidence has shown that long noncoding RNAs (lncRNAs) serve important roles in the development of OSCC. The purpose of this study was to investigate the biological function and underlying regulatory mechanism of lncRNA homeobox A cluster antisense RNA2 (HOXA-AS2) in OSCC. RT-qPCR was performed to analyze the HOXA-AS2 expressions in human immortalized oral epithelial cell (HIOEC) line, human OSCC cell lines, and plasma. The expression of HOXA-AS2 and enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) in Tca-8113 cells were knocked down or overexpressed by transfection with shRNA-HOXA-AS2 or pcDNA-EZH2, respectively. The interaction between HOXA-AS2 and EZH2 was validated by RNA immunoprecipitation assay. In addition, cell proliferation was assessed by CCK-8 and EdU assays. Cell cycle distribution was analyzed by flow cytometry. Cell migration and invasion were detected using wound healing and Transwell assays, respectively. Apoptosis was detected by TUNEL staining. The protein expression levels of cell cycle and apoptosis-related proteins were measured by western blot analysis. Compared with HIOEC cells, HOXA-AS2 expression in OSCC cells was upregulated. HOXA-AS2 knockdown significantly inhibited Tca-8113 cell proliferation, blocked the cell cycle by arresting cells in the G0/G1 phase, promoted apoptosis, and suppressed migration and invasion. In addition, HOXA-AS2 was predicted to directly target EZH2 and positively regulate EZH2 expression. EZH2 overexpression could reverse the inhibitory effect of HOXA-AS2 knockdown on the proliferation, migration, and invasion of Tca-8113 cells. In summary, the findings suggested that HOXA-AS2 may inhibit cell proliferation, invasion, and migration, induce cell cycle arrest in the G0/G1 phase, and increase cell apoptosis by targeting EZH2. The research indicated that HOXA-AS2/EZH2 axis may play a key role in the development of OSCC.
Collapse
Affiliation(s)
- Zhen Zhao
- 117878The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Yan Xing
- Shijiazhuang No. 1 Hospital, Shijiazhuang, Hebei, P.R. China
| | - Fei Yang
- 117878The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Zhijun Zhao
- 117878The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Yupeng Shen
- The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Junjian Song
- 117878The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Shanghua Jing
- 117878The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| |
Collapse
|
9
|
Liu W, Luo W, Zhou P, Cheng Y, Qian L. Bioinformatics Analysis and Functional Verification of ADAMTS9-AS1/AS2 in Lung Adenocarcinoma. Front Oncol 2021; 11:681777. [PMID: 34395250 PMCID: PMC8358405 DOI: 10.3389/fonc.2021.681777] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/29/2021] [Indexed: 01/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), as competitive endogenous RNAs (ceRNAs), play a critical role in biological processes of cancer. However, the roles of specific lncRNAs in ceRNA network of lung adenocarcinoma (LUAD) remains largely unclear. Herein, we identified the roles of lncRNA ADAMTS9-AS1/AS2 (ADAMTS-AS1/AS2) in lung adenocarcinoma by bioinformatics analyses and functional verification. First, differentially expressed genes ADAMTS9-AS1, ADAMTS9-AS2 and ADAMTS9 were screened out from GSE130779. Then the expression correlation of these three genes was analyzed. The results showed that ADAMTS9-AS1, ADAMTS9-AS2 and ADAMTS9 were down-regulated in LUAD, and were positively correlated with each other. After that, miRcode was used to find miR-150 which binds to ADAMTS9-AS1/ADAMTS9-AS2/ADAMTS9. Next, co-expression analysis and functional enrichment analyses were performed to further analyze differentially expressed genes. The results showed that the differentially expressed genes were mainly enriched in Beta3 integrin cell surface interactions and epithelial-to-mesenchymal transition. Finally, the cell functions of ADAMTS9-AS1 and ADAMTS9-AS2 in A549 and NCI-H1299 cell lines were verified. In vitro cell studies confirmed that ADAMTS9-AS1 and ADAMTS9-AS2 play an inhibitory role in LUAD cells.
Collapse
Affiliation(s)
- Wei Liu
- Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenguang Luo
- Department of Radiation Oncology, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Peijie Zhou
- Department of Radiation Oncology, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Yong Cheng
- Department of Radiation Oncology, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Liting Qian
- Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
10
|
Wu Q, Lu S, Zhang L, Zhao L. LncRNA HOXA-AS2 Activates the Notch Pathway to Promote Cervical Cancer Cell Proliferation and Migration. Reprod Sci 2021; 28:3000-3009. [PMID: 34076871 DOI: 10.1007/s43032-021-00626-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/16/2021] [Indexed: 01/23/2023]
Abstract
Long non-coding RNAs (lncRNAs) are crucial participants in cancer development. HOXA cluster antisense RNA 2 (HOXA-AS2) plays a tumor promoter role in bladder cancer. However, the functional role of HOXA-AS2 in cervical cancer remains unclear. Our study first found that HOXA-AS2 expression was up-regulated in cervical cancer cells. Then functional analysis including cell counting kit-8 (CCK-8), colony formation, transwell, and wound healing uncovered that reduction of HOXA-AS2 remarkably impeded cell proliferation and migration in cervical cancer. Additionally, luciferase reporter assays were performed to confirm that HOXA-AS2 activated Notch signaling pathway via the mediation of independent recombination signal binding protein for JK (RBP-JK) activity. As we know, Notch intracellular domain (NICD) is associated with RBP-JK in the nucleus to promote target genes in the Notch pathway. Through RNA immunoprecipitation (RIP), RNA pull down, and fluorescent in situ hybridization (FISH) assays, we observed that HOXA-AS2 combined with NICD. Moreover, the data from Co-IP assays indicated that HOXA-AS2 reduction weakened the interaction of NICD and RBP-JK. Collectively, HOXA-AS2 played a cancer-promoting role in cervical cancer development by modulating the Notch pathway, which might become a novel target for cervical cancer treatment.
Collapse
Affiliation(s)
- Qunxiong Wu
- Department of Obstetrics and Gynecology, Ningbo Women and Children's Hospital, Ningbo, 315000, Zhejiang, China
| | - Shentao Lu
- Department of Gynecological Pelvic Floor and Oncology, Chongqing Health Center for Women and Children, Chongqing, 401120, China.
| | - Li Zhang
- Department of Obstetrics and Gynecology, Ningbo Women and Children's Hospital, Ningbo, 315000, Zhejiang, China
| | - Lingjun Zhao
- Department of Obstetrics and Gynecology, Ningbo Women and Children's Hospital, Ningbo, 315000, Zhejiang, China
| |
Collapse
|
11
|
Huang R, Liao X, Wang X, Li Q. Comprehensive investigation of the clinical significance of long non-coding RNA HOXA-AS2 in acute myeloid leukemia using genome-wide RNA sequencing dataset. J Cancer 2021; 12:2151-2164. [PMID: 33754013 PMCID: PMC7974522 DOI: 10.7150/jca.48045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/09/2020] [Indexed: 12/20/2022] Open
Abstract
Objective: The present study aimed to determine the prognostic value of HOXA cluster antisense RNA2 (HOXA-AS2) in acute myeloid leukemia (AML), and to explore its potential molecular mechanisms. We also screening of potential drugs targeting HOXA-AS2 in AML. Methods: The level 3 raw genome-wide RNA sequencing dataset of AML was download from The Cancer Genome Atlas (TCGA) Data Portal, and the potential molecular mechanisms and drugs prediction of HOXA-AS2 in AML were explored using multiple bioinformatics analysis approaches. Results: TCGA AML cohort dataset indicated that HOXA-AS2 was significantly up-regulated in AML bone marrow tissues, and high HOXA-AS2 expression was related to poor overall survival (log-rank P=0.0284, hazard ratio 1.640, 95% confidence interval 1.046-2.573). Functional enrichment of differentially expressed genes (DEGs) suggested that the difference in prognosis between AML patients with high- and low-HOXA-AS2 expression may be due to differences in biological processes and pathways, including cell adhesion, angiogenesis, mitogen-activated protein kinase, cell differentiation, and other biological processes, and phosphatidylinositol 3 kinase-protein kinase B and Wnt signaling pathways. We also screened out three potential HOXA-AS2-targeted therapeutic drugs for AML, megestrol, carmustine, and cefoxitin, based on these DEGs. Functional enrichment analysis of HOXA-AS2-co-expressed genes revealed that HOXA-AS2 may act a part in AML by regulating nuclear factor-κB transcription factor activity, DNA methylation, angiogenesis, apoptosis, cell migration, Toll-like receptor 4, and Wnt signaling pathways. Conclusion: Our findings suggest that HOXA-AS2 is up-regulated in the bone marrow in patients with AML, and may serve as a novel prognostic biomarker for AML.
Collapse
Affiliation(s)
- Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Qiaochuan Li
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
12
|
Paço A, Aparecida de Bessa Garcia S, Leitão Castro J, Costa-Pinto AR, Freitas R. Roles of the HOX Proteins in Cancer Invasion and Metastasis. Cancers (Basel) 2020; 13:E10. [PMID: 33375038 PMCID: PMC7792759 DOI: 10.3390/cancers13010010] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Invasion and metastasis correspond to the foremost cause of cancer-related death, and the molecular networks behind these two processes are extremely complex and dependent on the intra- and extracellular conditions along with the prime of the premetastatic niche. Currently, several studies suggest an association between the levels of HOX genes expression and cancer cell invasion and metastasis, which favour the formation of novel tumour masses. The deregulation of HOX genes by HMGA2/TET1 signalling and the regulatory effect of noncoding RNAs generated by the HOX loci can also promote invasion and metastasis, interfering with the expression of HOX genes or other genes relevant to these processes. In this review, we present five molecular mechanisms of HOX deregulation by which the HOX clusters products may affect invasion and metastatic processes in solid tumours.
Collapse
Affiliation(s)
- Ana Paço
- BLC3—Biomassa Lenho-Celulósica de 3ª Geração, Campus of Technology and Innovation, 3405-169 Oliveira do Hospital, Portugal
| | - Simone Aparecida de Bessa Garcia
- I3S—Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal; (S.A.d.B.G.); (J.L.C.); (A.R.C.-P.); (R.F.)
| | - Joana Leitão Castro
- I3S—Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal; (S.A.d.B.G.); (J.L.C.); (A.R.C.-P.); (R.F.)
| | - Ana Rita Costa-Pinto
- I3S—Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal; (S.A.d.B.G.); (J.L.C.); (A.R.C.-P.); (R.F.)
| | - Renata Freitas
- I3S—Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal; (S.A.d.B.G.); (J.L.C.); (A.R.C.-P.); (R.F.)
- ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
13
|
Feng Y, Hu S, Li L, Peng X, Chen F. Long noncoding RNA HOXA-AS2 functions as an oncogene by binding to EZH2 and suppressing LATS2 in acute myeloid leukemia (AML). Cell Death Dis 2020; 11:1025. [PMID: 33268767 PMCID: PMC7710717 DOI: 10.1038/s41419-020-03193-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022]
Abstract
Acute myeloid leukemia (AML) is the most common hematological malignancy in the world. Long noncoding RNAs (lncRNAs) play an important role in the development of physiology and pathology. Many reports have shown that lncRNA HOXA cluster antisense RNA 2 (HOXA-AS2) is a carcinogen and plays an important role in many tumors, but little is known about its role in AML. The aim of this study was to explore the potential mechanism and role of HOXA-AS2 in AML. HOXA-AS2 was upregulated in AML cell lines and tissues, and the overexpression of HOXA-AS2 is negatively correlated with the survival of patients. Silencing HOXA-AS2 can inhibit the proliferation and induce differentiation of AML cells in vitro and in vivo. Overexpressing HOXA-AS2 showed the opposite result. Moreover, more in-depth mechanism studies showed that carcinogenicity of HOXA-AS2 exerted mainly through binding with the epigenetic inhibitor Enhancer of zeste homolog 2 (EZH2) and then inhibiting the expression of Large Tumor Suppressor 2 (LATS2). Taken together, our findings highlight the important role of HOXA-AS2 in AML, suggesting that HOXA-AS2 may be an effective therapeutic target for patients with AML.
Collapse
Affiliation(s)
- Yubin Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui, China
| | - Shuang Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui, China
| | - Lanlan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui, China
| | - Xiaoqing Peng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China. .,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui, China.
| | - Feihu Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China. .,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui, China.
| |
Collapse
|
14
|
Ooki A, Onodera S, Saito A, Oguchi A, Murakawa Y, Sakamoto T, Sueishi K, Nishii Y, Azuma T. CAGE-seq analysis of osteoblast derived from cleidocranial dysplasia human induced pluripotent stem cells. Bone 2020; 141:115582. [PMID: 32795676 DOI: 10.1016/j.bone.2020.115582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
Non-coding RNAs (ncRNAs) comprise a major portion of transcripts and serve an essential role in biological processes. Although the importance of major transcriptomes in osteogenesis has been extensively studied, the function of ncRNAs in human osteogenesis remains unclear. Previously, we developed hiPSCs from patients with cleidocranial dysplasia (CCD) caused by runt-related transcription factor 2 (RUNX2) haploinsufficiency. To gain insight into ncRNAs in osteogenesis, we surveyed differential ncRNA expression profiling and promoter differences of RUNX2 using patient-specific iPSCs and cap analysis gene expression (CAGE) technology to define the promoter landscape. Revertant iPSCs (Rev1 iPSCs) edited by CRISPR/Cas9 system to harbor mutation-corrected RUNX2 exhibited increased proximal promoter expression of RUNX2, while CCD iPSCs did not. We identified 2271 ncRNA genes with altered expression levels before and after differentiation, 31 of which showed at least 20-fold higher expression in Rev1 iPSCs. Bioinformatic analysis also categorized AC007392.3, LINC00379, RP11-122D10.1, and RP11-90J7.2 as enhancer regulatory regions, and HOXA-AS2, MIR219-2, and RP11-834C11.3 as dyadic regulatory regions of these ncRNAs. In addition, two miRNAs, termed MIR199A2 and MIR152, were found to have high enrichment of osteogenic-related terms. Upon further examination of the role of MIR152 on osteoblast differentiation, we found that MIR152 knockdown induced upregulation of ALP and COL1A1 in Saos-2 cells. Thus, ncRNAs were found to regulate the osteogenic differentiation potentials of hiPSCs that are used for bone regeneration and repair owing to their differentiation potentials. These data allow understanding ncRNA profiles of hiPSCs during osteogenesis.
Collapse
Affiliation(s)
- Akio Ooki
- Department of Orthodontics, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Akiko Saito
- Department of Biochemistry, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Akiko Oguchi
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan; RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama, Kanagawa 230-0045, Japan
| | - Yasuhiro Murakawa
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan; RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama, Kanagawa 230-0045, Japan
| | - Teruo Sakamoto
- Department of Orthodontics, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Kenji Sueishi
- Department of Orthodontics, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Yasushi Nishii
- Department of Orthodontics, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, Tokyo 101-0061, Japan; Oral Health Science Center, Tokyo Dental College, Tokyo 101-0061, Japan.
| |
Collapse
|
15
|
Wang J, Hu X, Hu X, Gao F, Li M, Cui Y, Wei X, Qin Y, Zhang C, Zhao Y, Gao Y. MicroRNA-520c-3p targeting of RelA/p65 suppresses atherosclerotic plaque formation. Int J Biochem Cell Biol 2020; 131:105873. [PMID: 33166679 DOI: 10.1016/j.biocel.2020.105873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease, and it's the leading cause of death worldwide. Dysregulation of microRNAs (miRNAs) has been found to be associated with atherosclerosis. miR-520c-3p has been implicated in several types of cancer. However, little is known about the role of miR-520c-3p in atherosclerosis. In this study, we found that miR-520c-3p agomir decreased atherosclerotic plaque size, collagen content, the quantity of PCNA-positive cell and RelA/p65 expression of vascular smooth muscle cells (VSMCs) in the aortic valve of apoE-/- mice in vivo. The possible mechanisms of the protective effects of miR-520c-3p on atherosclerotic mice were then investigated in VSMCs. in vitro experiments showed that miR-520c-3p expressions were significantly reduced in human aortic vascular smooth muscle cell (HASMCs) treated with platelet-derived growth factor (PDGF-BB). miR-520c-3p mimics repress PDGF-BB-mediated the proliferation, migration and decrease in the percentage of cells in G2/M phase, which was associated with downregulation of RelA/p65. Mechanistically, miRNA pull-down, luciferase reporter and mRNA stability assays confirmed miR-520c-3p mimics was able to directly target 3'-UTR of RelA/p65 mRNA and decreased half-life of RelA/p65 mRNA in HASMCs. Overexpression of RelA/p65 reversed the inhibition of cell proliferation induced by miR-520c-3p mimics in HASMCs. In conclusion, our findings suggest that miR-520c-3p inhibits PDGF-BB-mediated the proliferation and migration of HASMCs by targeting RelA/p65, which may provide potential therapeutic strategies in atherosclerosis treatment.
Collapse
MESH Headings
- Animals
- Aortic Valve/metabolism
- Aortic Valve/pathology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/therapy
- Becaplermin/pharmacology
- Cell Line
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Disease Models, Animal
- Gene Expression Regulation
- Genes, Reporter
- Humans
- Luciferases/genetics
- Luciferases/metabolism
- Mice
- Mice, Knockout, ApoE
- MicroRNAs/agonists
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Oligoribonucleotides/genetics
- Oligoribonucleotides/metabolism
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Plaque, Atherosclerotic/therapy
- Primary Cell Culture
- Signal Transduction
- Transcription Factor RelA/genetics
- Transcription Factor RelA/metabolism
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiaoyan Hu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xinxin Hu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Fuhua Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Mei Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ying Cui
- Liaoning Provincial Core Lab of Medical Molecular Biology, Dalian Medical University, Dalian, China
| | - Xiaoqing Wei
- Liaoning Provincial Core Lab of Medical Molecular Biology, Dalian Medical University, Dalian, China
| | - Yuanhua Qin
- Department of Parasite, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chenghong Zhang
- Morphological Laboratory, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ying Zhao
- Liaoning Provincial Core Lab of Medical Molecular Biology, Dalian Medical University, Dalian, China.
| | - Ying Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China; Liaoning Provincial Core Lab of Medical Molecular Biology, Dalian Medical University, Dalian, China.
| |
Collapse
|
16
|
Wang H, Yu S, Peng H, Shu Y, Zhang W, Zhu Q, Wu Y, Xu Y, Yan J, Xiang H. Long noncoding RNA Linc00337 functions as an E2F1 co-activator and promotes cell proliferation in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 2020; 39:216. [PMID: 33054826 PMCID: PMC7557102 DOI: 10.1186/s13046-020-01725-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Long noncoding RNA (lncRNA) Linc00337 has been implicated in lung, gastric, colorectal and esophageal squamous cell carcinoma progression via various mechanisms; however, its clinicopathological significance and role in pancreatic ductal adenocarcinoma (PDAC) progression remains largely unknown. METHODS Multiple approaches such as bioinformatic analysis, Transfection, quantitative real-time-PCR, Western blotting, animal studies, RNA-immunoprecipitation (RIP), RNA-pulldown and RNA-Fluorescence in situ hybridization (RNA-FISH) and were utilized to explore the role of Linc00337 in PDAC. RESULTS Here we identified Linc00337 is an oncogenic lncRNA during PDAC progression. We found that the expression of Linc00337 is elevated in PDAC tissues and the higher Linc00337 predicts dismal prognosis. Functionally, Linc00337 promotes PDAC cell proliferation and cell cycle transition both in vitro and in vivo. Mechanistically, Linc00337 binds to E2F1 and functions as an E2F1 coactivator to trigger the targets expression during PDAC progression. CONCLUSION Our results demonstrate a reciprocal regulation mechanism between Linc00337 and E2F1 in PDAC progression and report the clinical value of Linc00337 for PDAC prognosis and treatment.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Movement
- Cell Proliferation
- E2F1 Transcription Factor/genetics
- E2F1 Transcription Factor/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Prognosis
- RNA, Long Noncoding/genetics
- Survival Rate
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Pancreatic Neoplasms
Collapse
Affiliation(s)
- Huakai Wang
- Department of General Surgery Pudong New Area People's Hospital Pudong New Area, No. 490, South Chuanhuan Road, Shanghai, 201200, China
| | - Shiyong Yu
- Department of General Surgery Pudong New Area People's Hospital Pudong New Area, No. 490, South Chuanhuan Road, Shanghai, 201200, China
| | - Huan Peng
- Department of General Surgery Pudong New Area People's Hospital Pudong New Area, No. 490, South Chuanhuan Road, Shanghai, 201200, China
| | - Yijun Shu
- Department of General Surgery Pudong New Area People's Hospital Pudong New Area, No. 490, South Chuanhuan Road, Shanghai, 201200, China
| | - Wenjie Zhang
- Department of General Surgery, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, No. 1655, Kongjiang Road, Shanghai, 200092, China
| | - Qi Zhu
- Department of General Surgery Pudong New Area People's Hospital Pudong New Area, No. 490, South Chuanhuan Road, Shanghai, 201200, China
| | - Yingxia Wu
- Department of General Surgery Pudong New Area People's Hospital Pudong New Area, No. 490, South Chuanhuan Road, Shanghai, 201200, China
| | - Yijun Xu
- Department of General Surgery Pudong New Area People's Hospital Pudong New Area, No. 490, South Chuanhuan Road, Shanghai, 201200, China
| | - Jiqi Yan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Honggang Xiang
- Department of General Surgery Pudong New Area People's Hospital Pudong New Area, No. 490, South Chuanhuan Road, Shanghai, 201200, China.
| |
Collapse
|
17
|
Zhou AY, Zhao YY, Zhou ZJ, Duan JX, Zhu YZ, Cai S, Chen P. Microarray Analysis of Long Non-Coding RNAs in Lung Tissues of Patients with COPD and HOXA-AS2 Promotes HPMECs Proliferation via Notch1. Int J Chron Obstruct Pulmon Dis 2020; 15:2449-2460. [PMID: 33116460 PMCID: PMC7555270 DOI: 10.2147/copd.s259601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background and Objectives Long non-coding RNAs (lncRNAs) play an important role in the pathogenesis of many diseases, including cancer, pulmonary fibrosis and chronic obstructive pulmonary disease (COPD). In this study, we intended to identify the differentially expressed lncRNAs and the role of HOXA cluster antisense RNA 2 (HOXA-AS2) in patients with COPD. Methods We analyzed lncRNA profiles of three non-COPD and seven COPD patients’ lungs via microarray and then validated the expression of the top differentially expressed lncRNAs by using real-time polymerase chain reaction (PCR). To identify the mechanism of HOXA-AS2 during COPD pathogenesis and endothelial cell proliferation, we knocked down and overexpressed HOXA-AS2 with siRNA and lentivirus transfection approach in human pulmonary microvascular endothelial cells (HPMECs). Results Among 29,150 distinct lncRNA transcripts, 353 lncRNAs were significantly (≥2-fold change and P<0.05) upregulated and 552 were downregulated in COPD patients. The fold change of HOXA-AS2 is 9.32; real-time PCR confirmed that HOXA-AS2 was downregulated in COPD patients. In in vitro experiments, cigarette smoke extract (CSE) treatment reduced the expression of HOXA-AS2 and cell proliferation of HPMECs. Knocking down HOXA-AS2 inhibited HPMECs proliferation and the expression of Notch1 in HPMECs. Overexpressing Notch1 could partly rescue the inhibition of cell viability induced by the silence of HOXA-AS2. Conclusion Our results demonstrated that differentially expressed lncRNAs may act as potential molecular biomarkers for the diagnosis of COPD, and HOXA-AS2 was involved in the pathogenesis of COPD by regulating HPMECs proliferation via Notch1, which may provide a new approach for COPD treatment.
Collapse
Affiliation(s)
- Ai-Yuan Zhou
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, People's Republic of China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Yi-Yang Zhao
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, People's Republic of China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Zi-Jing Zhou
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, People's Republic of China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Jia-Xi Duan
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, People's Republic of China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Yi-Zhang Zhu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, People's Republic of China
| | - Shan Cai
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, People's Republic of China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, People's Republic of China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, People's Republic of China
| |
Collapse
|
18
|
Wang S, You H, Yu S. Long non-coding RNA HOXA-AS2 promotes the expression levels of hypoxia-inducible factor-1α and programmed death-ligand 1, and regulates nasopharyngeal carcinoma progression via miR-519. Oncol Lett 2020; 20:245. [PMID: 32973958 PMCID: PMC7509505 DOI: 10.3892/ol.2020.12107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a rare malignancy arising from the nasopharyngeal epithelium and belongs to the group of head and neck cancer types, which are usually associated with viral and/or environmental influences, as well as heredity causes. A recent study reported that the long non-coding RNA (lncRNA) HOXA cluster antisense RNA 2 (HOXA-AS2) may be a prognostic biomarker in NPC; however, the specific mechanisms underlying NCP progression are yet to be determined. The aim of the present study was to investigate the biological role of HOXA-AS2 in NPC. In the present study, the gene expression levels of HOXA-AS2, miR-519, hypoxia-inducible factor (HIF-1α) and programmed death-ligand 1 (PD-L1) were detected using reverse transcription-quantitative PCR (RT-qPCR) analysis and western blotting. Bioinformatics analysis and a dual luciferase reporter assay were performed to predict and confirm the direct interactions between HOXA-AS2 and microRNA (miR)-519, as well as between miR-519 and HIF-1α. A MTT assay was used to detect the cell viability, while cell migratory and invasive abilities were assessed using wound healing and Transwell assays. HOXA-AS2 and HIF-1α were found to be significantly upregulated in NPC tumor tissues, as well as in NPC cell lines. The overexpression of HOXA-AS2 significantly enhanced NPC progression, including the cell proliferative, migratory and invasive abilities. HOXA-AS2 was identified to directly bind to miR-519, whereas a miR-519 inhibitor significantly rescued the HOXA-AS2 knockdown-attenuated progression of NPC. Moreover, miR-519 could bind to HIF-1α and PD-L1. Overexpression of HIF-1α and PD-L1 significantly promoted NPC progression and partially recovered the phenotype of NPC cells attenuated by HOXA-AS2 knockdown. In conclusion, the present study demonstrated that HOXA-AS2/miR-519/HIF-1α and/or HOXA-AS2/miR-519/PD-L1 may be a novel mechanism regulating the progression of NPC, which may facilitate the development of targeted clinical therapy.
Collapse
Affiliation(s)
- Shuyong Wang
- Department of Otolaryngology, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong 261041, P.R. China
| | - Huizeng You
- Department of Otolaryngology, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong 261041, P.R. China
| | - Sa Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang 311800, P.R. China
| |
Collapse
|
19
|
Zhang Y, Pu Y, Wang J, Li Z, Wang H. Research progress regarding the role of long non-coding RNAs in osteosarcoma. Oncol Lett 2020; 20:2606-2612. [PMID: 32782578 PMCID: PMC7400499 DOI: 10.3892/ol.2020.11807] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma is a malignant tumor that occurs in children and adolescents. Although treatments for osteosarcoma have improved, the likelihood of survival remains low for most patients with metastasis and recurrence. Elucidating the mechanism underlying the development of osteosarcoma and chemotherapy resistance will be important to improve diagnosis and treatment. Long non-coding RNAs (lncRNAs), which are longer than 200 nucleotides in length and do not encode for proteins, have been shown to play a regulatory role in the occurrence and development of osteosarcoma, and are expected to serve as biomarkers and molecular targets. This review discusses the progress in the study of the role of lncRNAs in osteosarcoma, and highlights the recent developments in this field.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| | - Yanchuan Pu
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| | - Jin Wang
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| | - Zicai Li
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| | - Hulin Wang
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| |
Collapse
|
20
|
Safa A, Taheri M, Fallah H, Salmani T, Arsang-Jang S, Ghafouri-Fard S, Omrani MD. Downregulation of Cancer-Associated lncRNAs in Peripheral Blood of Multiple Sclerosis Patients. J Mol Neurosci 2020; 70:1533-1540. [PMID: 32578033 DOI: 10.1007/s12031-020-01646-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/19/2020] [Indexed: 01/01/2023]
Abstract
Recent studies have shown contribution of long non-coding RNAs (lncRNAs) in the pathogenesis of immune-related disorders including multiple sclerosis (MS). Based on the role of these transcripts in the regulation of immune response, peripheral levels of lncRNAs can reflect the level of immune activation. In the present study, we quantified expression of four lncRNAs namely SPRY4-IT1, HOXA-AS2, LINC-ROR, and MEG3 in venous blood of MS patients and controls using quantitative real-time PCR method. Relative expressions of SPRY4-IT1, HOXA-AS2, LINC-ROR, and MEG3 were significantly lower in female MS patients compared with female healthy subjects. For MEG3, this pattern of expression was also observed in male subjects. However, for other lncRNAs, no significant difference was detected between male patients and male controls. Expression of HOXA-AS2 was correlated with progression index (r = 0.36, P < 0.001). Besides, there was a significant correlation between expression of this lncRNA and expression of LINC-ROR in MS patients (r = 0.44, P < 0.0001). There was no other correlation between expression of lncRNAs and clinical data in MS patients. In control group, expressions of none of lncRNAs were correlated with age of persons. Notably, significant correlations were demonstrated between expression levels of all lncRNAs in healthy subjects with r values ranging from 0.23 to 0.42. The current investigation shows dysregulation of lncRNAs in MS patients in a sex-specific manner and warrants further studies to unravel the clinical and therapeutic implications of such dysregulation.
Collapse
Affiliation(s)
- Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.,Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Mohammad Taheri
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Fallah
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebali Salmani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Arsang-Jang
- Department of Biostatistics and Epidemiology, Cancer Gene Therapy Research Center, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mir Davood Omrani
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Chen PY, Li XD, Ma WN, Li H, Li MM, Yang XY, Li SY. Comprehensive Transcriptomic Analysis and Experimental Validation Identify lncRNA HOXA-AS2/miR-184/COL6A2 as the Critical ceRNA Regulation Involved in Low-Grade Glioma Recurrence. Onco Targets Ther 2020; 13:4999-5016. [PMID: 32581558 PMCID: PMC7276213 DOI: 10.2147/ott.s245896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose The recurrence and metastasis of glioma are closely related to complex regulatory networks among protein-coding genes, lncRNAs and microRNAs. The aim of this study was to investigate core genes, lncRNAs, miRNAs and critical ceRNA regulatory mechanisms, which are involved in lower-grade glioma (LGG) recurrence. Materials and Methods We employed multiple datasets from Chinese Glioma Genome Atlas (CGGA) database and The Cancer Genome Atlas (TCGA) to perform comprehensive transcriptomic analysis. Further in vitro experiments including cell proliferation assay, luciferase reporter assay, and Western blot were performed to validate our results. Results Recurrent LGG and glioblastoma (GBM) showed different transcriptome characteristics with less overlap of differentially expressed protein-coding genes (DEPs), lncRNAs (DELs) and miRNAs (DEMs) compared with primary samples. There were no overlapping gene in ontology (GO) terms related to GBM recurrence in the TCGA and CGGA databases, but there were overlaps associated with LGG recurrence. GO analysis and protein–protein interaction (PPI) network analysis identified three core genes: TIMP1, COL1A1 and COL6A2. By hierarchical cluster analysis of them, LGGs could be clustered as Low_risk and High_risk group. The High_risk group with high expression of TIMP1, COL1A1, and COL6A2 showed worse prognosis. By coexpression networks analysis, competing endogenous RNA (ceRNA) network analysis, cell proliferation assay and luciferase reporter assay, we confirmed that lncRNA HOXA-AS2 functioned as a ceRNA for miR-184 to regulate expression of COL6A2, which induced cell proliferation of low-grade glioma. Conclusion In this study, we revealed a 3-hub protein-coding gene signature to improve prognostic prediction in LGG, and identified a critical ceRNA regulation involved in LGG recurrence.
Collapse
Affiliation(s)
- Peng-Yu Chen
- Department of Neurosurgery, Shengjing Hospital Affiliated to China Medical University, Shenyang, People's Republic of China
| | - Xiao-Dong Li
- Department of Neurosurgery, Shengjing Hospital Affiliated to China Medical University, Shenyang, People's Republic of China
| | - Wei-Ning Ma
- Department of Neurosurgery, Shengjing Hospital Affiliated to China Medical University, Shenyang, People's Republic of China
| | - Han Li
- Department of Neurosurgery, Shengjing Hospital Affiliated to China Medical University, Shenyang, People's Republic of China
| | - Miao-Miao Li
- Department of Neurosurgery, Shengjing Hospital Affiliated to China Medical University, Shenyang, People's Republic of China
| | - Xin-Yu Yang
- Department of Neurosurgery, Shengjing Hospital Affiliated to China Medical University, Shenyang, People's Republic of China
| | - Shao-Yi Li
- Department of Neurosurgery, Shengjing Hospital Affiliated to China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
22
|
Zhu K, Yuan Y, Wen J, Chen D, Zhu W, Ouyang Z, Wang W. LncRNA Sox2OT-V7 promotes doxorubicin-induced autophagy and chemoresistance in osteosarcoma via tumor-suppressive miR-142/miR-22. Aging (Albany NY) 2020; 12:6644-6666. [PMID: 32302291 PMCID: PMC7202483 DOI: 10.18632/aging.103004] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
Doxorubicin (Dox) is one of the most commonly used chemotherapeutic drugs for osteosarcoma (OS) treatment. In the present study, we attempted to investigate the mechanism by which Sox2OT-V7 dysregulation affects Dox chemoresistance to provide a novel experimental basis for developing neoadjuvant therapy. Sox2OT-V7 expression is upregulated in OS tissues, particularly in chemoresistant OS tissues, and in OS cell lines compared to controls. Dox treatment induces autophagy and Sox2OT-V7 expression in U2OS cells, and Dox-induced autophagy is partially attenuated by Sox2OT-V7 silencing. Knocking down Sox2OT-V7 or blocking autophagy in Dox-resistant U2OS/Dox cells resensitizes the cells to Dox treatment in vitro. Moreover, Sox2OT-V7 directly targets miR-142/miR-22 to inhibit their expression, and the effect of Sox2OT-V7 silencing on U2OS cell autophagy and U2OS/Dox cell sensitivity to Dox can be reversed by miR-142/miR-22 inhibition. Sox2OT-V7 silencing enhances the suppressive effects of Dox on U2OS/Dox cell-derived tumor growth in vivo, while miR-22 inhibition or miR-142 inhibition reverses the effects of Sox2OT-V7 silencing on Dox-induced suppression on tumor growth. Finally, miR-142 directly targets ULK1, ATG4A, and ATG5, while miR-22 directly targets ULK1 to inhibit the expression of the target gene; The Sox2OT-V7/miR-142/miR-22 axis modulates autophagy in OS cells by regulating ULK1, ATG4A, and ATG5.
Collapse
Affiliation(s)
- Kewei Zhu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yang Yuan
- Department of Orthopedics, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Jie Wen
- Department of Pediatric Orthopedics, Hunan Provincial Peoples' Hospital, Changsha, Hunan 410006, China
| | - Ding Chen
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Weihong Zhu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhengxiao Ouyang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
23
|
Wang L, Wang L, Zhang X. Knockdown of lncRNA HOXA-AS2 Inhibits Viability, Migration and Invasion of Osteosarcoma Cells by miR-124-3p/E2F3. Onco Targets Ther 2019; 12:10851-10861. [PMID: 31853184 PMCID: PMC6914662 DOI: 10.2147/ott.s220072] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022] Open
Abstract
Background Osteosarcoma (OS) is one of the most frequent bone malignancies. Long noncoding RNAs (lncRNAs) have been revealed to participate in many cancers, including OS. This study aimed to explore the biological function of lncRNA homeobox A cluster antisense RNA2 (HOXA-AS2) and its potential mechanism in OS progression. Methods Twenty-seven OS patients were recruited for this study. U2OS and MG-63 cells were cultured for in vitro analyses. The levels of HOXA-AS2, microRNA-124-3p (miR-124-3p) and E2F transcription factor 3 (E2F3) were measured by quantitative real-time polymerase chain reaction or Western blot. OS progression was investigated by cell viability, migration and invasion using cell counting kit-8 or trans-well assay. The interaction among HOXA-AS2, miR-124-3p and E2F3 was explored by bioinformatics analysis, luciferase reporter assay, RNA immunoprecipitation and biotinylated RNA pull-down. Xenograft model was established by injecting U2OS cells into nude mice. Results HOXA-AS2 expression was increased in OS tissues and cells and associated with poor survival of patients. Knockdown of HOXA-AS2 inhibited cell viability, migration and invasion in OS cells. miR-124-3p could bind with HOXA-AS2 and its deficiency reversed the suppressive role of HOXA-AS2 knockdown. Moreover, E2F3 acted as a target of miR-124-3p and positively regulated by HOXA-AS2. Silence of E2F3 suppressed OS progression, which was abolished by miR-124-3p exhaustion. Interference of HOXA-AS2 attenuated U2OS xenograft tumor growth via upregulating miR-124-3p and downregulating E2F3. Conclusion HOXA-AS2 silence impeded OS progression possibly by functioning as a decoy of miR-124-3p to target E2F3, indicating novel evidence of HOXA-AS2 as a promising therapeutic target of OS.
Collapse
Affiliation(s)
- Linyi Wang
- Department of Spinal Trauma Surgery, Shouguang People's Hospital of Shandong Province, Shandong 262700, People's Republic of China
| | - Lijuan Wang
- Department of Anesthesiology, Shouguang People's Hospital of Shandong Province, Shouguang, Shandong 262700, People's Republic of China
| | - Xinhua Zhang
- Department of Spinal Trauma Surgery, Shouguang People's Hospital of Shandong Province, Shandong 262700, People's Republic of China
| |
Collapse
|
24
|
Wang J, Zhang C, Wu Y, He W, Gou X. Identification and analysis of long non-coding RNA related miRNA sponge regulatory network in bladder urothelial carcinoma. Cancer Cell Int 2019; 19:327. [PMID: 31827401 PMCID: PMC6892182 DOI: 10.1186/s12935-019-1052-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background The aim of this study was to investigate the regulatory network of lncRNAs as competing endogenous RNAs (ceRNA) in bladder urothelial carcinoma (BUC) based on gene expression data derived from The Cancer Genome Atlas (TCGA). Materials and methods RNA sequence profiles and clinical information from 414 BUC tissues and 19 non-tumor adjacent tissues were downloaded from TCGA. Differentially expressed RNAs derived from BUC and non-tumor adjacent samples were identified using the R package “edgeR”. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed using the “clusterProfiler” package. Gene ontology and protein–protein interaction (PPI) networks were analyzed for the differentially expressed mRNAs using the “STRING” database. The network for the dysregulated lncRNA associated ceRNAs was then constructed for BUC using miRcode, miRTarBase, miRDB, and TargetScan. Cox regression analysis was performed to identify independent prognostic RNAs associated with BUC overall survival (OS). Survival analysis for the independent prognostic RNAs within the ceRNA network was calculated using Kaplan–Meier curves. Results Based on our analysis, a total of 666, 1819 and 157 differentially expressed lncRNAs, mRNAs and miRNAs were identified respectively. The ceRNA network was then constructed and contained 59 lncRNAs, 23 DEmiRNAs, and 52 DEmRNAs. In total, 5 lncRNAs (HCG22, ADAMTS9-AS1, ADAMTS9-AS2, AC078778.1, and AC112721.1), 2 miRNAs (hsa-mir-145 and hsa-mir-141) and 6 mRNAs (ZEB1, TMEM100, MAP1B, DUSP2, JUN, and AIFM3) were found to be related to OS. Two lncRNAs (ADAMTS9-AS1 and ADAMTS9-AS2) and 4 mRNA (DUSP2, JUN, MAP1B, and TMEM100) were validated using GEPIA. Thirty key hub genes were identified using the ranking method of degree. KEGG analysis demonstrated that the majority of the DEmRNAs were involved in pathways associated with cancer. Conclusion Our findings provide an understanding of the important role of lncRNA–related ceRNAs in BUC. Additional experimental and clinical validations are required to support our findings.
Collapse
Affiliation(s)
- Jiawu Wang
- 1Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Chengyao Zhang
- 2Department of Head and Neck Cancer Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Shapingba District, Chongqing, China
| | - Yan Wu
- 3Department of General Surgery, University-Town Hospital of Chongqing Medical University, Shapingba District, Chongqing, China
| | - Weiyang He
- 1Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Xin Gou
- 1Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| |
Collapse
|
25
|
Sun X, Xu W, Zang C, Li N. miRNA-520c-3p accelerates progression of nasopharyngeal carcinoma via targeting RAB22A. Oncol Lett 2019; 19:771-776. [PMID: 31897193 PMCID: PMC6924133 DOI: 10.3892/ol.2019.11144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/13/2019] [Indexed: 12/29/2022] Open
Abstract
Biological function of microRNA-20c-3p (miRNA-520c-3p) in the progression of nasopharyngeal carcinoma (NPC) and the potential mechanism were investigated. Relative level of miRNA-520c-3p in NPC tissues and adjacent normal tissues was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Particularly, miRNA-520c-3p level in NPC with different tumor stages and tumor sizes was examined. Subsequently, miRNA-520c-3p level in nasopharyngeal epithelial cells and NPC cells was detected. The potential influence of miRNA-520c-3p on the proliferative ability and cell cycle progression of NPC cells were evaluated through cell counting kit-8 (CCK-8) and flow cytometry. The target gene of miRNA-520c-3p was verified by dual-luciferase reporter gene assay. Regulatory role of miRNA-520c-3p/RAB22A in the malignant progression of NPC was identified. miRNA-520c-3p was downregulated in NPC tissues and cell lines. Its level was lower in NPC with worse tumor grade and larger tumor size. Overexpression of miRNA-520c-3p suppressed the proliferative ability and arrested cell cycle in G0/G1 phase. RAB22A was confirmed to be the downstream target of miRNA-520c-3p. In NPC tissues and cell lines, RAB22A remained in higher abundance relative to controls. Overexpression of RAB22A reversed the inhibitory effects of overexpressed miRNA-520c-3p on proliferative ability and cell cycle progression of NPC cells. miRNA-520c-3p is downregulated in NPC, which accelerates the malignant progression of NPC by targeting RAB22A.
Collapse
Affiliation(s)
- Xiaohan Sun
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wenrui Xu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Chuanshan Zang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Na Li
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
26
|
Gao H, Li X, Zhan G, Zhu Y, Yu J, Wang J, Li L, Wu W, Liu N, Guo X. Long noncoding RNA MAGI1-IT1 promoted invasion and metastasis of epithelial ovarian cancer via the miR-200a/ZEB axis. Cell Cycle 2019; 18:1393-1406. [PMID: 31122127 PMCID: PMC6592227 DOI: 10.1080/15384101.2019.1618121] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy, and its vulnerability to metastasis contributes to the poor outcomes of EOC patients. Long noncoding RNAs (lncRNAs) were verified to play a pivotal role in EOC metastasis. However, the potential role of lncRNA membrane-associated guanylate kinase inverted 1 (MAGI1) intronic transcript (MAGI1-IT1) in EOC is largely unknown. In this study, the function and mechanisms of MAGI1-IT1 in EOC metastasis were explored profoundly. First, MAGI1-IT1 expression was found to be significantly decreased in overexpressing miR-200a EOC cells. Second, MAGI1-IT1 expression was remarkably increased in metastatic EOC tissues, and high MAGI1-IT1 was dramatically associated with EOC FIGO III-IV stage; in addition, MAGI1-IT1 might be related to EOC dissemination via epithelial-mesenchymal transition (EMT). Next, a series of gain- and loss-of-function assays verified that, although MAGI1-IT1 has no significant role in EOC proliferation and subcutaneous xenograft growth, the upregulation of MAGI1-IT1 can remarkably facilitate EOC EMT phenotype, cells migration and invasion ability and intraperitoneal metastasis in nude mice, while downregulation of MAGI1-IT1 led to the opposite effect in vitro. Moreover, MAGI1-IT1 was validated to promote EOC metastasis through upregulation of ZEB1 and ZEB2 by competitively binding miR-200a, and the restrictive effects of MAGI1-IT1 depletion on EOC metastasis could be reversed by inhibition of miR-200a and upregulation of ZEB1 and ZEB2. Collectively, these results suggest that MAGI1-IT1 may work as a ceRNA in promoting EOC metastasis through miR-200a and ZEB1/2 and may be a potential therapeutic target for EOC.
Collapse
Affiliation(s)
- Hao Gao
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Xiaofeng Li
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Guangxi Zhan
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Yong Zhu
- b Department of Obstetrics and Gynecology , Central Theater of the Chinese PLA , Wuhan , China
| | - Jing Yu
- c Department of Pathology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Jiapo Wang
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Li Li
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Weimin Wu
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Na Liu
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Xiaoqing Guo
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| |
Collapse
|
27
|
Liu Y, Lin X, Zhou S, Zhang P, Shao G, Yang Z. Long noncoding RNA HOXA-AS2 promotes non-small cell lung cancer progression by regulating miR-520a-3p. Biosci Rep 2019; 39:BSR20190283. [PMID: 31064819 PMCID: PMC6542977 DOI: 10.1042/bsr20190283] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Background: The HOXA cluster antisense RNA 2 (HOXA-AS2) has recently been discovered to be involved in carcinogenesis in multiple cancers. However, the role and underlying mechanism of HOXA-AS2 in non-small cell lung cancer (NSCLC) yet need to be unraveled. Methods: HOXA-AS2 expression in NSCLC tissues and cell lines was detected using quantitative real-time PCR (qRT-PCR). Furthermore, the effects of HOXA-AS2 on NSCLC cell proliferation, apoptosis, migration, and invasion were assessed by MTS, flow cytometry, wound healing and transwell invasion assays, respectively. Starbase2.0 predicted and luciferase reporter and RNA immunoprecipitation (RIP) assays were used to validate the association of HOXA-AS2 and miR-520a-3p in NSCLC cells. Results: Our results revealed that HOXA-AS2 in NSCLC tissues were up-regulated and cell lines, and were associated with poor prognosis and overall survival. Further functional assays demonstrated that HOXA-AS2 knockdown significantly inhibited NSCLC cell proliferation, induced cell apoptosis and suppressed migration and invasion. Starbase2.0 predicted that HOXA-AS2 sponge miR-520a-3p at 3'-UTR, which was confirmed using luciferase reporter and RIP assays. miR-520a-3p expression was inversely correlated with HOXA-AS2 expression in NSCLC tissues. In addition, miR-520a-3p inhibitor attenuated the inhibitory effect of HOXD-AS2-depletion on cell proliferation, migration and invasion of NSCLC cells. Moreover, HOXA-AS2 could regulate HOXD8 and MAP3K2 expression, two known targets of miR-520a-3p in NSCLC. Conclusion: These findings implied that HOXA-AS2 promoted NSCLC progression by regulating miR-520a-3p, suggesting that HOXA-AS2 could serve as a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yunpeng Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xingyu Lin
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shiyao Zhou
- Department of Anaesthesia, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Peng Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guoguang Shao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhiguang Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
28
|
Zhou Y, Yin L, Li H, Liu LH, Xiao T. The LncRNA LINC00963 facilitates osteosarcoma proliferation and invasion by suppressing miR-204-3p/FN1 axis. Cancer Biol Ther 2019; 20:1141-1148. [PMID: 30975024 DOI: 10.1080/15384047.2019.1598766] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Purpose: It remains unclear that long noncoding RNAs' role in cancer initiation and progression, including osteosarcoma. Long noncoding RNA LINC00963 was found to be participated in carcinogenesis and progression of osteosarcoma. However, the molecular mechanisms of LINC00963 engaged in osteosarcoma (OS) still needs to be explored. Methods: LINC00963 and miR-204-3p RNA expression levels were quantified by PCR in OS tissues and cells. CCK 8 assay, wound healing assay and transwell migration and invasion assay were chosen to assess cell growth, viability, migration, and invasion. Luciferase reporter assays were performed to verify direct interaction between LINC00963 and miR-204-3p and miR-204-3p and Fibronectin-1. Western blot was conducted to evaluate Fibronectin-1 expression in OS cells. Results: LINC00963 was verified to be highly expressed in OS samples and cells. Specifically, elevated expression of LINC00963 was correlated with poor prognosis in patients. Furthermore, LINC00963 overexpression was found to promote proliferation, migration, and invasion in vitro. The luciferase reporter assay showed that LINC00963 can suppress miR-204-3p by directly binding miR-204-3p. Rescue experiment results indicated that function of LINC00963 in osteosarcoma was miR-204-3p dependant. Besides, we initially explored Fibronectin-1 (FN1) as the target of LINC00963/miR-204-3p axis in osteosarcoma. Conclusions: Our findings implied that LINC00963/miR-204-3p/FN1 can play an important role in proliferation and progression in osteosarcoma. LINC00963 has the potential to be a therapeutic target for osteosarcoma treatment.
Collapse
Affiliation(s)
- You Zhou
- a Department of Orthopedics , The Second Xiangya Hospital, Central South University , Changsha , Hunan China
| | - Ling Yin
- b Department of Oncology , Xiangya Hospital, Central South University , Changsha , Hunan China
| | - Hui Li
- a Department of Orthopedics , The Second Xiangya Hospital, Central South University , Changsha , Hunan China
| | - Li-Hong Liu
- a Department of Orthopedics , The Second Xiangya Hospital, Central South University , Changsha , Hunan China
| | - Tao Xiao
- a Department of Orthopedics , The Second Xiangya Hospital, Central South University , Changsha , Hunan China
| |
Collapse
|
29
|
Long non-coding RNA Taurine upregulated gene 1 promotes osteosarcoma cell metastasis by mediating HIF-1α via miR-143-5p. Cell Death Dis 2019; 10:280. [PMID: 30911001 PMCID: PMC6433912 DOI: 10.1038/s41419-019-1509-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/17/2019] [Accepted: 03/07/2019] [Indexed: 12/22/2022]
Abstract
Early aggressive metastasis of osteosarcoma (OS) leads to rapid progression and poor prognosis. Increasing evidence has demonstrated that long non-coding RNAs (lncRNAs) could serve as crucial regulators to modulate tumour metastasis. In this study, we reported the critical role of lncRNA TUG1 in determining OS metastasis. TUG1 was significantly upregulated in OS tissues and associated with tumour size, distant metastasis, TNM stage, and overall and recurrence-free survival, which further indicated poor prognosis. Furthermore, CAFs-derived TGF-β could upregulate TUG1 expression, and the crosstalk between CAFs and OS cells induced TUG1 to promote OS cell metastasis. Dysregulated TUG1 expression could act as an miRNA “sponge” to competitively protect the HIF-1α mRNA 3′UTR from miR-143-5p. Our study emphasised the effects of TUG1 in OS and demonstrated a novel axis by which TUG1 regulated OS cell metastasis, angiogenesis, and proliferation in vivo and in vitro. Collectively, TUG1 might be a prognostic indicator for OS and could be a therapeutic target for OS.
Collapse
|
30
|
Wang X, Hu K, Chao Y, Wang L. LncRNA SNHG16 promotes proliferation, migration and invasion of osteosarcoma cells by targeting miR-1301/BCL9 axis. Biomed Pharmacother 2019; 114:108798. [PMID: 30909141 DOI: 10.1016/j.biopha.2019.108798] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play a key role in regulating tumor growth and metastasis of osteosarcoma (OS). Recent studies have reported that lncRNA small nucleolar RNA host gene 16 (SNHG16) is highly expressed in OS tissues and contributes to the proliferation, migration and invasion of OS cells. However, the molecular mechanism involved in the oncogenic role of SNHG16 in OS remains poorly known. In the current study, we confirmed that SNHG16 expression was markedly up-regulated in OS tissues compared to paracancerous tissues. The elevated level of SNHG16 closely associated with advanced tumor stages, larger tumor size and more distance metastasis. Furthermore, OS patients with high SNHG16 level had a significant poorer overall survival compared to patients with low SNHG16 level. Knockdown of SNHG16 suppressed the proliferation, migration and invasion of U2OS and MG63 cells. Mechanistically, SNHG16 acted as a competing endogenous RNA (ceRNA) by directly interacting with miR-1301 and inversely regulated its abundance in OS cells. Notably, suppression of miR-1301 rescued SNHG16 knockdown attenuated OS cell proliferation, migration and invasion. SNHG16 knockdown reduced the expression of BCL9 protein in OS cells. Accordingly, BCL9 restoration facilitated the proliferation, migration and invasion of OS cells with SNHG16 knockdown. Collectively, these results suggest that SNHG16 is a potential prognostic biomarker for OS patients. SNHG16 promotes BCL9 expression by sponging miR-1301 to facilitate the proliferation, migration and invasion of OS cells.
Collapse
Affiliation(s)
- Xueli Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province, 710077, China
| | - Kejun Hu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province, 710077, China
| | - Yu Chao
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province, 710077, China
| | - Lei Wang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province, 710077, China.
| |
Collapse
|
31
|
Zhao W, Li L. SP1-induced upregulation of long non-coding RNA HCP5 promotes the development of osteosarcoma. Pathol Res Pract 2019; 215:439-445. [PMID: 30554864 DOI: 10.1016/j.prp.2018.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/19/2018] [Accepted: 12/09/2018] [Indexed: 12/11/2022]
Abstract
Long non-coding RNAs (LncRNAs) are acknowledged as crucial regulators in tumorigenesis and tumor progression. In this study, we explored the mechanism and function of lncRNA HCP5 in osteosarcoma (OS). At first, five lncRNAs were chosen from GeneCard and subjected to qRT-PCR examination. The results indicated that HCP5 was significantly overexpressed in four OS cell lines. Northern blot assay further proved the higher expression of HCP5 in OS cell lines. To identify the biological role of HCP5 in OS, we silenced the expression of HCP5 in U2OS and MG-63 cells which possessed the highest level of HCP5. CCK-8 and colony formation assay revealed the inhibitory effect of HCP5 knockdown on cell proliferation. Cell apoptosis was found to be increased in cells transfected with sh-HCP5#1. Moreover, cell invasion and epithelial-mesenchymal transition (EMT) were reversed by the silencing of HCP5. The results of functional assays showed that HCP5 acted as an oncogene in osteosarcoma. Mechanically, HCP5 was found to be activated by the transcription factor SP1. Finally, rescue assays were conducted to demonstrate the function of SP1/HCP5 axis in osteosarcoma. In conclusion, we confirmed that SP1-induced upregulation of long non-coding RNA HCP5 promotes the development of osteosarcoma.
Collapse
Affiliation(s)
- Weidong Zhao
- Food Nutrition Center, West China Hospital, Sichuan University, Chengdu, 610041, No. 37, Guoxue Xiang, Wuhou District, Sichuan, China
| | - Li Li
- Department of Lymphoma, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chendu, 610041, No. 55 Section 4 South Renmin Road, Sichuan, China.
| |
Collapse
|
32
|
Wang F, Wu D, Chen J, Chen S, He F, Fu H, Wu Q, Liu S, Li X, Wang W. Long non-coding RNA HOXA-AS2 promotes the migration, invasion and stemness of bladder cancer via regulating miR-125b/Smad2 axis. Exp Cell Res 2019; 375:1-10. [DOI: 10.1016/j.yexcr.2018.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 10/13/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023]
|