1
|
Benedicto I, Hamczyk MR, Nevado RM, Barettino A, Carmona RM, Espinós-Estévez C, Gonzalo P, de la Fuente-Pérez M, Andrés-Manzano MJ, González-Gómez C, Dorado B, Andrés V. Endothelial cell-specific progerin expression does not cause cardiovascular alterations and premature death. Aging Cell 2024:e14389. [PMID: 39479939 DOI: 10.1111/acel.14389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder caused by a mutation in the LMNA gene that provokes the synthesis of progerin, a mutant version of the nuclear protein lamin A that accelerates aging and precipitates death. The most clinically relevant feature of HGPS is the development of cardiac anomalies and severe vascular alterations, including massive loss of vascular smooth muscle cells, increased fibrosis, and generalized atherosclerosis. However, it is unclear if progerin expression in endothelial cells (ECs) causes the cardiovascular manifestations of HGPS. To tackle this question, we generated atherosclerosis-free mice (LmnaLCS/LCSCdh5-CreERT2) and atheroprone mice (Apoe-/-LmnaLCS/LCSCdh5-CreERT2) with EC-specific progerin expression. Like progerin-free controls, LmnaLCS/LCSCdh5-CreERT2 mice did not develop heart fibrosis or cardiac electrical and functional alterations, and had normal vascular structure, body weight, and lifespan. Similarly, atheroprone Apoe-/-LmnaLCS/LCSCdh5-CreERT2 mice showed no alteration in body weight or lifespan versus Apoe-/-LmnaLCS/LCS controls and did not develop vascular alterations or aggravated atherosclerosis. Our results indicate that progerin expression in ECs is not sufficient to cause the cardiovascular phenotype and premature death associated with progeria.
Collapse
Affiliation(s)
- Ignacio Benedicto
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Magda R Hamczyk
- CIBER en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | - Rosa M Nevado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ana Barettino
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Rosa M Carmona
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Pilar Gonzalo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - María J Andrés-Manzano
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Cristina González-Gómez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Beatriz Dorado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
2
|
Puspitasari YM, Ministrini S, Han J, Karch C, Prisco F, Liberale L, Bengs S, Akhmedov A, Montecucco F, Beer JH, Lüscher TF, Bongiovanni D, Camici GG. Hutchinson-Gilford progeria syndrome mice display accelerated arterial thrombus formation and increased platelet reactivity. Thromb Res 2024; 241:109100. [PMID: 39032390 DOI: 10.1016/j.thromres.2024.109100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION Hutchinson-Gilford Progeria Syndrome (HGPS) is an ultra-rare premature aging genetic disorder caused by a point mutation in the lamin A gene, LMNA. Children with HGPS display short lifespans and typically die due to myocardial infarction or ischemic stroke, both acute cardiovascular events that are tightly linked to arterial thrombosis. Despite this fact, the effect of the classic HGPS LMNA gene mutation on arterial thrombosis remains unknown. METHODS Heterozygous LmnaG609G knock-in (LmnaG609G/+) mice, yielding an equivalent classic mutation observed in HGPS patients (c.1824C>T; pG608G mutation in the human LMNA gene) and corresponding wild-type (WT) control littermates underwent photochemically laser-induced carotid injury to trigger thrombosis. Coagulation and fibrinolytic factors were measured. Furthermore, platelet activation and reactivity were investigated. RESULTS LmnaG609G/+ mice displayed accelerated arterial thrombus formation, as underlined by shortened time to occlusion compared to WT littermates. Levels of factors involved in the coagulation and fibrinolytic system were comparable between groups, while LmnaG609G/+ animals showed higher plasma levels of thrombin-antithrombin complex and lower levels of antithrombin. Bone marrow analysis showed larger megakaryocytes in progeric mice. Lastly, enhanced platelet activation upon adenosine diphosphate, collagen-related peptide, and thrombin stimulation was observed in LmnaG609G/+ animals compared to the WT group, indicating a higher platelet reactivity in progeric animals. CONCLUSIONS LMNA mutation in HGPS mice accelerates arterial thrombus formation, which is mediated, at least in part, by enhanced platelet reactivity, which consequently augments thrombin generation. Given the wide spectrum of antiplatelet agents available clinically, further investigation is warranted to consider the most suitable antiplatelet regimen for children with HGPS to mitigate disease mortality and morbidity.
Collapse
Affiliation(s)
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Internal Medicine, Angiology and Atherosclerosis, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Jiaying Han
- Department of Internal Medicine I, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Caroline Karch
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Francesco Prisco
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Susan Bengs
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Jürg H Beer
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Department of Internal Medicine, Cantonal Hospital of Baden, Baden, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Department of Cardiology, Royal Brompton & Harefield Hospitals, National Heart & Lung Institute, Imperial College, London, United Kingdom
| | - Dario Bongiovanni
- Department of Internal Medicine I, Cardiology, University Hospital Augsburg, University of Augsburg, Augsburg, Germany; Department of Cardiovascular Medicine, Humanitas Clinical and Research Center IRCCS and Humanitas University, Rozzano, Milan, Italy
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Department of Research and Education, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Kiskin FN, Yang Y, Yang H, Zhang JZ. Cracking the code of the cardiovascular enigma: hPSC-derived endothelial cells unveil the secrets of endothelial dysfunction. J Mol Cell Cardiol 2024; 192:65-78. [PMID: 38761989 DOI: 10.1016/j.yjmcc.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Endothelial dysfunction is a central contributor to the development of most cardiovascular diseases and is characterised by the reduced synthesis or bioavailability of the vasodilator nitric oxide together with other abnormalities such as inflammation, senescence, and oxidative stress. The use of patient-specific and genome-edited human pluripotent stem cell-derived endothelial cells (hPSC-ECs) has shed novel insights into the role of endothelial dysfunction in cardiovascular diseases with strong genetic components such as genetic cardiomyopathies and pulmonary arterial hypertension. However, their utility in studying complex multifactorial diseases such as atherosclerosis, metabolic syndrome and heart failure poses notable challenges. In this review, we provide an overview of the different methods used to generate and characterise hPSC-ECs before comprehensively assessing their effectiveness in cardiovascular disease modelling and high-throughput drug screening. Furthermore, we explore current obstacles that will need to be overcome to unleash the full potential of hPSC-ECs in facilitating patient-specific precision medicine. Addressing these challenges holds great promise in advancing our understanding of intricate cardiovascular diseases and in tailoring personalised therapeutic strategies.
Collapse
Affiliation(s)
- Fedir N Kiskin
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Yuan Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Hao Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Joe Z Zhang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
4
|
Deng D, Zhang Y, Tang B, Zhang Z. Sources and applications of endothelial seed cells: a review. Stem Cell Res Ther 2024; 15:175. [PMID: 38886767 PMCID: PMC11184868 DOI: 10.1186/s13287-024-03773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024] Open
Abstract
Endothelial cells (ECs) are widely used as donor cells in tissue engineering, organoid vascularization, and in vitro microvascular model development. ECs are invaluable tools for disease modeling and drug screening in fundamental research. When treating ischemic diseases, EC engraftment facilitates the restoration of damaged blood vessels, enhancing therapeutic outcomes. This article presents a comprehensive overview of the current sources of ECs, which encompass stem/progenitor cells, primary ECs, cell lineage conversion, and ECs derived from other cellular sources, provides insights into their characteristics, potential applications, discusses challenges, and explores strategies to mitigate these issues. The primary aim is to serve as a reference for selecting suitable EC sources for preclinical research and promote the translation of basic research into clinical applications.
Collapse
Affiliation(s)
- Dan Deng
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yu Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Bo Tang
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Zhihui Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
5
|
Lemmens TP, Bröker V, Rijpkema M, Hughes CCW, Schurgers LJ, Cosemans JMEM. Fundamental considerations for designing endothelialized in vitro models of thrombosis. Thromb Res 2024; 236:179-190. [PMID: 38460307 DOI: 10.1016/j.thromres.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Endothelialized in vitro models for cardiovascular disease have contributed greatly to our current understanding of the complex molecular mechanisms underlying thrombosis. To further elucidate these mechanisms, it is important to consider which fundamental aspects to incorporate into an in vitro model. In this review, we will focus on the design of in vitro endothelialized models of thrombosis. Expanding our understanding of the relation and interplay between the different pathways involved will rely in part on complex models that incorporate endothelial cells, blood, the extracellular matrix, and flow. Importantly, the use of tissue-specific endothelial cells will help in understanding the heterogeneity in thrombotic responses between different vascular beds. The dynamic and complex responses of endothelial cells to different shear rates underlines the importance of incorporating appropriate shear in in vitro models. Alterations in vascular extracellular matrix composition, availability of bioactive molecules, and gradients in concentration and composition of these molecules can all regulate the function of both endothelial cells and perivascular cells. Factors modulating these elements in in vitro models should therefore be considered carefully depending on the research question at hand. As the complexity of in vitro models increases, so can the variability. A bottom-up approach to designing such models will remain an important tool for researchers studying thrombosis. As new techniques are continuously being developed and new pathways are brought to light, research question-dependent considerations will have to be made regarding what aspects of thrombosis to include in in vitro models.
Collapse
Affiliation(s)
- Titus P Lemmens
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Vanessa Bröker
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Minke Rijpkema
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, and Department of Biomedical Engineering, University of California, Irvine, USA
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
6
|
Pitrez PR, Monteiro LM, Borgogno O, Nissan X, Mertens J, Ferreira L. Cellular reprogramming as a tool to model human aging in a dish. Nat Commun 2024; 15:1816. [PMID: 38418829 PMCID: PMC10902382 DOI: 10.1038/s41467-024-46004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
The design of human model systems is highly relevant to unveil the underlying mechanisms of aging and to provide insights on potential interventions to extend human health and life span. In this perspective, we explore the potential of 2D or 3D culture models comprising human induced pluripotent stem cells and transdifferentiated cells obtained from aged or age-related disorder-affected donors to enhance our understanding of human aging and to catalyze the discovery of anti-aging interventions.
Collapse
Affiliation(s)
- Patricia R Pitrez
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Luis M Monteiro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
- IIIUC-institute of Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Coimbra, 3030-789, Portugal
| | - Oliver Borgogno
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Xavier Nissan
- CECS, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic diseases, Evry cedex, France
| | - Jerome Mertens
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Lino Ferreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.
| |
Collapse
|
7
|
Singh AA, Shetty DK, Jacob AG, Bayraktar S, Sinha S. Understanding genomic medicine for thoracic aortic disease through the lens of induced pluripotent stem cells. Front Cardiovasc Med 2024; 11:1349548. [PMID: 38440211 PMCID: PMC10910110 DOI: 10.3389/fcvm.2024.1349548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
Thoracic aortic disease (TAD) is often silent until a life-threatening complication occurs. However, genetic information can inform both identification and treatment at an early stage. Indeed, a diagnosis is important for personalised surveillance and intervention plans, as well as cascade screening of family members. Currently, only 20% of heritable TAD patients have a causative mutation identified and, consequently, further advances in genetic coverage are required to define the remaining molecular landscape. The rapid expansion of next generation sequencing technologies is providing a huge resource of genetic data, but a critical issue remains in functionally validating these findings. Induced pluripotent stem cells (iPSCs) are patient-derived, reprogrammed cell lines which allow mechanistic insights, complex modelling of genetic disease and a platform to study aortic genetic variants. This review will address the need for iPSCs as a frontline diagnostic tool to evaluate variants identified by genomic discovery studies and explore their evolving role in biological insight through to drug discovery.
Collapse
Affiliation(s)
| | | | | | | | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| |
Collapse
|
8
|
Lian J, Du L, Li Y, Yin Y, Yu L, Wang S, Ma H. Hutchinson-Gilford progeria syndrome: Cardiovascular manifestations and treatment. Mech Ageing Dev 2023; 216:111879. [PMID: 37832833 DOI: 10.1016/j.mad.2023.111879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS), also known as hereditary progeria syndrome, is caused by mutations in the LMNA gene and the expression of progerin, which causes accelerated aging and premature death, with most patients dying of heart failure or other cardiovascular complications in their teens. HGPS patients are able to exhibit cardiovascular phenotypes similar to physiological aging, such as extensive atherosclerosis, smooth muscle cell loss, vascular lesions, and electrical and functional abnormalities of the heart. It also excludes the traditional risk causative factors of cardiovascular disease, making HGPS a new model for studying aging-related cardiovascular disease. Here, we analyzed the pathogenesis and pathophysiological characteristics of HGPS and the relationship between HGPS and cardiovascular disease, provided insight into the molecular mechanisms of cardiovascular disease pathogenesis in HGPS patients and treatment strategies for this disease. Moreover, we summarize the disease models used in HGPS studies to improve our understanding of the pathological mechanisms of cardiovascular aging in HGPS patients.
Collapse
Affiliation(s)
- Jing Lian
- Medical School of Yan'an University, Yan'an, China
| | - Linfang Du
- Medical School of Yan'an University, Yan'an, China
| | - Yang Li
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Lu Yu
- Department of Pathology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | | | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
9
|
Walther BK, Sears AP, Mojiri A, Avazmohammadi R, Gu J, Chumakova OV, Pandian NKR, Dominic A, Martiel JL, Yazdani SK, Cooke JP, Ohayon J, Pettigrew RI. Disrupted Stiffness Ratio Alters Nuclear Mechanosensing. MATTER 2023; 6:3608-3630. [PMID: 37937235 PMCID: PMC10627551 DOI: 10.1016/j.matt.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The ability of endothelial cells to sense and respond to dynamic changes in blood flow is critical for vascular homeostasis and cardiovascular health. The mechanical and geometric properties of the nuclear and cytoplasmic compartments affect mechanotransduction. We hypothesized that alterations to these parameters have resulting mechanosensory consequences. Using atomic force microscopy and mathematical modeling, we assessed how the nuclear and cytoplasmic compartment stiffnesses modulate shear stress transfer to the nucleus within aging endothelial cells. Our computational studies revealed that the critical parameter controlling shear transfer is not the individual mechanics of these compartments, but the stiffness ratio between them. Replicatively aged cells had a reduced stiffness ratio, attenuating shear transfer, while the ratio was not altered in a genetic model of accelerated aging. We provide a theoretical framework suggesting that dysregulation of the shear stress response can be uniquely imparted by relative mechanical changes in subcellular compartments.
Collapse
Affiliation(s)
- Brandon K. Walther
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Texas A&M University, Department of Biomedical Engineering, College Station, TX 77843, USA
| | - Adam P. Sears
- Texas A&M University, Department of Biomedical Engineering, College Station, TX 77843, USA
- Houston Methodist Hospital, Houston, TX 77030, USA
| | - Anahita Mojiri
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Reza Avazmohammadi
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Texas A&M University, Department of Biomedical Engineering, College Station, TX 77843, USA
- Texas A&M University, Department of Mechanical Engineering, College Station, TX 77843, USA
| | - Jianhua Gu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Olga V. Chumakova
- University of Texas Health Science Center, Department of Integrative Biology and Pharmacology, Houston, TX 77030, USA
| | | | - Abishai Dominic
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | | | - Saami K. Yazdani
- Wake Forest University, Department of Engineering, Winston-Salem, NC 27101, USA
| | - John P. Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Texas A&M University, Department of Biomedical Engineering, College Station, TX 77843, USA
| | - Jacques Ohayon
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- University Grenoble Alpes, CNRS, TIMC UMR 5525, 38000 Grenoble, France
- Savoie Mont-Blanc University, Polytech Annecy-Chambéry, 73376 Le Bourget du Lac, France
| | - Roderic I. Pettigrew
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Texas A&M University, Department of Biomedical Engineering, College Station, TX 77843, USA
- Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
10
|
Xu Q, Mojiri A, Boulahouache L, Morales E, Walther BK, Cooke JP. Vascular senescence in progeria: role of endothelial dysfunction. EUROPEAN HEART JOURNAL OPEN 2022; 2:oeac047. [PMID: 36117952 PMCID: PMC9472787 DOI: 10.1093/ehjopen/oeac047] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 06/02/2022] [Accepted: 07/25/2022] [Indexed: 11/14/2022]
Abstract
Aims Hutchinson-Gilford progeria syndrome (HGPS) is a pre-mature aging disorder caused by the mutation of the LMNA gene leading to an irreversibly farnesylated lamin A protein: progerin. The major causes of death in HGPS are coronary and arterial occlusive disease. In the murine model of HGPS, vascular smooth muscle cell (VSMC) loss is the primary vascular manifestation, which is different from the arterial occlusive disease seen in older patients. Methods and results To identify the mechanisms of HGPS vascular disease in humans, we differentiated isogenic endothelial cells (ECs) and VSMCs from HGPS-induced pluripotent stem cells (iPSCs) and control-iPSCs. Both HGPS-ECs and HGPS-VSMCs manifested cellular hallmarks of aging, including dysmorphic nuclei, impaired proliferation, increased β-galactosidase staining, shortened telomeres, up-regulated secretion of inflammatory cytokines, increased DNA damage, loss of heterochromatin, and altered shelterin protein complex (SPC) expression. However, at similar days after differentiation, even with lower levels of progerin, HGPS-ECs manifested more severe signs of senescence, as indicated in part by a higher percentage of β-galactosidase positive cells, shorter telomere length, and more DNA damage signals. We observed increased γH2A.X binding to RAP1 and reduced TRF2 binding to lamin A in HGPS-ECs but not in HGPS-VSMCs. The expression of γH2A.X was greater in HGPS-ECs than in HGPS-VSMCs and is associated with greater telomere shortening, impaired SPC interactions, and loss of heterochromatin. Conclusion Although progerin expression has a deleterious effect on both ECs and VSMCs, the dysfunction is greater in HGPS-ECs compared with HGPS-VSMCs. This study suggests that an endothelial-targeted therapy may be useful for HGPS patients.
Collapse
Affiliation(s)
- Qiu Xu
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston 77030, TX, USA
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Anahita Mojiri
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston 77030, TX, USA
| | - Luay Boulahouache
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston 77030, TX, USA
| | - Elisa Morales
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston 77030, TX, USA
| | - Brandon K Walther
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston 77030, TX, USA
| | - John P Cooke
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston 77030, TX, USA
| |
Collapse
|
11
|
Jiang Y, Ji JY. Progerin-Induced Impairment in Wound Healing and Proliferation in Vascular Endothelial Cells. FRONTIERS IN AGING 2022; 3:844885. [PMID: 35821855 PMCID: PMC9261432 DOI: 10.3389/fragi.2022.844885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/27/2022] [Indexed: 11/29/2022]
Abstract
Progerin as a mutated isoform of lamin A protein was first known to induce premature atherosclerosis progression in patients with Hutchinson-Gilford progeria syndrome (HGPS), and its role in provoking an inflammatory response in vascular cells and accelerating cell senescence has been investigated recently. However, how progerin triggers endothelial dysfunction that often occurs at the early stage of atherosclerosis in a mechanical environment has not been studied intensively. Here, we generated a stable endothelial cell line that expressed progerin and examined its effects on endothelial wound repair under laminar flow. We found decreased wound healing rate in progerin-expressing ECs under higher shear stress compared with those under low shear. Furthermore, the decreased wound recovery could be due to reduced number of cells at late mitosis, suggesting potential interference by progerin with endothelial proliferation. These findings provided insights into how progerin affects endothelial mechanotransduction and may contribute to the disruption of endothelial integrity in HGPS vasculature, as we continue to examine the mechanistic effect of progerin in shear-induced endothelial functions.
Collapse
|
12
|
Manakanatas C, Ghadge SK, Agic A, Sarigol F, Fichtinger P, Fischer I, Foisner R, Osmanagic-Myers S. Endothelial and systemic upregulation of miR-34a-5p fine-tunes senescence in progeria. Aging (Albany NY) 2022; 14:195-224. [PMID: 35020601 PMCID: PMC8791216 DOI: 10.18632/aging.203820] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/25/2021] [Indexed: 11/25/2022]
Abstract
Endothelial defects significantly contribute to cardiovascular pathology in the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). Using an endothelium-specific progeria mouse model, we identify a novel, endothelium-specific microRNA (miR) signature linked to the p53-senescence pathway and a senescence-associated secretory phenotype (SASP). Progerin-expressing endothelial cells exert profound cell-non-autonomous effects initiating senescence in non-endothelial cell populations and causing immune cell infiltrates around blood vessels. Comparative miR expression analyses revealed unique upregulation of senescence-associated miR34a-5p in endothelial cells with strong accumulation at atheroprone aortic arch regions but also, in whole cardiac- and lung tissues as well as in the circulation of progeria mice. Mechanistically, miR34a-5p knockdown reduced not only p53 levels but also late-stage senescence regulator p16 with no effect on p21 levels, while p53 knockdown reduced miR34a-5p and partially rescued p21-mediated cell cycle inhibition with a moderate effect on SASP. These data demonstrate that miR34a-5p reinforces two separate senescence regulating branches in progerin-expressing endothelial cells, the p53- and p16-associated pathways, which synergistically maintain a senescence phenotype that contributes to cardiovascular pathology. Thus, the key function of circulatory miR34a-5p in endothelial dysfunction-linked cardiovascular pathology offers novel routes for diagnosis, prognosis and treatment for cardiovascular aging in HGPS and potentially geriatric patients.
Collapse
Affiliation(s)
- Christina Manakanatas
- Max Perutz Labs, Center for Medical Biochemistry, Medical University of Vienna, Vienna Biocenter Campus (VBC), Vienna A-1030, Austria
| | - Santhosh Kumar Ghadge
- Max Perutz Labs, Center for Medical Biochemistry, Medical University of Vienna, Vienna Biocenter Campus (VBC), Vienna A-1030, Austria
| | - Azra Agic
- Max Perutz Labs, Center for Medical Biochemistry, Medical University of Vienna, Vienna Biocenter Campus (VBC), Vienna A-1030, Austria
| | - Fatih Sarigol
- Max Perutz Labs, Center for Medical Biochemistry, Medical University of Vienna, Vienna Biocenter Campus (VBC), Vienna A-1030, Austria
| | - Petra Fichtinger
- Max Perutz Labs, Center for Medical Biochemistry, Medical University of Vienna, Vienna Biocenter Campus (VBC), Vienna A-1030, Austria
| | - Irmgard Fischer
- Max Perutz Labs, Center for Medical Biochemistry, Medical University of Vienna, Vienna Biocenter Campus (VBC), Vienna A-1030, Austria
| | - Roland Foisner
- Max Perutz Labs, Center for Medical Biochemistry, Medical University of Vienna, Vienna Biocenter Campus (VBC), Vienna A-1030, Austria
| | - Selma Osmanagic-Myers
- Max Perutz Labs, Center for Medical Biochemistry, Medical University of Vienna, Vienna Biocenter Campus (VBC), Vienna A-1030, Austria
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna A-1090, Austria
| |
Collapse
|
13
|
Mojiri A, Walther BK, Jiang C, Matrone G, Holgate R, Xu Q, Morales E, Wang G, Gu J, Wang R, Cooke JP. Telomerase therapy reverses vascular senescence and extends lifespan in progeria mice. Eur Heart J 2021; 42:4352-4369. [PMID: 34389865 PMCID: PMC8603239 DOI: 10.1093/eurheartj/ehab547] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/29/2021] [Accepted: 08/12/2021] [Indexed: 12/28/2022] Open
Abstract
AIMS Hutchinson-Gilford progeria syndrome (HGPS) is an accelerated ageing syndrome associated with premature vascular disease and death due to heart attack and stroke. In HGPS a mutation in lamin A (progerin) alters nuclear morphology and gene expression. Current therapy increases the lifespan of these children only modestly. Thus, greater understanding of the underlying mechanisms of HGPS is required to improve therapy. Endothelial cells (ECs) differentiated from induced pluripotent stem cells (iPSCs) derived from these patients exhibit hallmarks of senescence including replication arrest, increased expression of inflammatory markers, DNA damage, and telomere erosion. We hypothesized that correction of shortened telomeres may reverse these measures of vascular ageing. METHODS AND RESULTS We generated ECs from iPSCs belonging to children with HGPS and their unaffected parents. Telomerase mRNA (hTERT) was used to treat HGPS ECs. Endothelial morphology and functions were assessed, as well as proteomic and transcriptional profiles with attention to inflammatory markers, DNA damage, and EC identity genes. In a mouse model of HGPS, we assessed the effects of lentiviral transfection of mTERT on measures of senescence, focusing on the EC phenotype in various organs. hTERT treatment of human HGPS ECs improved replicative capacity; restored endothelial functions such as nitric oxide generation, acetylated low-density lipoprotein uptake and angiogenesis; and reduced the elaboration of inflammatory cytokines. In addition, hTERT treatment improved cellular and nuclear morphology, in association with a normalization of the transcriptional profile, effects that may be mediated in part by a reduction in progerin expression and an increase in sirtuin 1 (SIRT1). Progeria mice treated with mTERT lentivirus manifested similar improvements, with a reduction in inflammatory and DNA damage markers and increased SIRT1 in their vasculature and other organs. Furthermore, mTERT therapy increased the lifespan of HGPS mice. CONCLUSION Vascular rejuvenation using telomerase mRNA is a promising approach for progeria and other age-related diseases.
Collapse
Affiliation(s)
- Anahita Mojiri
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
| | - Brandon K Walther
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St., College Station, TX 77840, USA
| | - Chongming Jiang
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gianfranco Matrone
- British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Rhonda Holgate
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
| | - Qiu Xu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
| | - Elisa Morales
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
| | - Guangyu Wang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Jianhua Gu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
| | - Rongfu Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - John P Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
| |
Collapse
|
14
|
Fli1 + cells transcriptional analysis reveals an Lmo2-Prdm16 axis in angiogenesis. Proc Natl Acad Sci U S A 2021; 118:2008559118. [PMID: 34330825 DOI: 10.1073/pnas.2008559118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A network of molecular factors drives the development, differentiation, and maintenance of endothelial cells. Friend leukemia integration 1 transcription factor (FLI1) is a bona fide marker of endothelial cells during early development. In zebrafish Tg( f li1:EGFP) y1 , we identified two endothelial cell populations, high-fli1 + and low-fli1 +, by the intensity of green fluorescent protein signal. By comparing RNA-sequencing analysis of non-fli1 expressing cells (fli1 -) with these two (fli1 +) cell populations, we identified several up-regulated genes, not previously recognized as important, during endothelial development. Compared with fli1 - and low-fli1 + cells, high-fli1 + cells showed up-regulated expression of the zinc finger transcription factor PRDI-BF1 and RIZ homology domain containing 16 (prdm16). Prdm16 knockdown (KD) by morpholino in the zebrafish larva was associated with impaired angiogenesis and increased number of low-fli1 + cells at the expense of high-fli1 + cells. In addition, PRDM16 KD in endothelial cells derived from human-induced pluripotent stem cells impaired their differentiation and migration in vitro. Moreover, zebrafish mutants (mut) with loss of function for the oncogene LIM domain only 2 (lmo2) also showed reduced prdm16 gene expression combined with impaired angiogenesis. Prdm16 expression was reduced further in endothelial (CD31+) cells compared with CD31- cells isolated from l mo2-mutants (l mo2-mut) embryos. Chromatin immunoprecipitation-PCR demonstrated that Lmo2 binds to the promoter and directly regulates the transcription of prdm16 This work unveils a mechanism by which prdm16 expression is activated in endothelial cells by Lmo2 and highlights a possible therapeutic pathway by which to modulate endothelial cell growth and repair.
Collapse
|
15
|
Su L, Kong X, Loo SJ, Gao Y, Kovalik JP, Su X, Ma J, Ye L. Diabetic Endothelial Cells Differentiated From Patient iPSCs Show Dysregulated Glycine Homeostasis and Senescence Associated Phenotypes. Front Cell Dev Biol 2021; 9:667252. [PMID: 34136485 PMCID: PMC8201091 DOI: 10.3389/fcell.2021.667252] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Induced pluripotent stem cells derived cells (iPSCs) not only can be used for personalized cell transfer therapy, but also can be used for modeling diseases for drug screening and discovery in vitro. Although prior studies have characterized the function of rodent iPSCs derived endothelial cells (ECs) in diabetes or metabolic syndrome, feature phenotypes are largely unknown in hiPSC-ECs from patients with diabetes. Here, we used hiPSC lines from patients with type 2 diabetes mellitus (T2DM) and differentiated them into ECs (dia-hiPSC-ECs). We found that dia-hiPSC-ECs had disrupted glycine homeostasis, increased senescence, and impaired mitochondrial function and angiogenic potential as compared with healthy hiPSC-ECs. These signature phenotypes will be helpful to establish dia-hiPSC-ECs as models of endothelial dysfunction for understanding molecular mechanisms of disease and for identifying and testing new targets for the treatment of endothelial dysfunction in diabetes.
Collapse
Affiliation(s)
- Liping Su
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Xiaocen Kong
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Sze Jie Loo
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Yu Gao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jean-Paul Kovalik
- Programme in Cardiovascular & Metabolic Disorders, Duke-National University of Singapore, Singapore, Singapore
| | - Xiaofei Su
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lei Ye
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| |
Collapse
|
16
|
Molecular and Cellular Mechanisms Driving Cardiovascular Disease in Hutchinson-Gilford Progeria Syndrome: Lessons Learned from Animal Models. Cells 2021; 10:cells10051157. [PMID: 34064612 PMCID: PMC8151355 DOI: 10.3390/cells10051157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease that recapitulates many symptoms of physiological aging and precipitates death. Patients develop severe vascular alterations, mainly massive vascular smooth muscle cell loss, vessel stiffening, calcification, fibrosis, and generalized atherosclerosis, as well as electrical, structural, and functional anomalies in the heart. As a result, most HGPS patients die of myocardial infarction, heart failure, or stroke typically during the first or second decade of life. No cure exists for HGPS, and therefore it is of the utmost importance to define the mechanisms that control disease progression in order to develop new treatments to improve the life quality of patients and extend their lifespan. Since the discovery of the HGPS-causing mutation, several animal models have been generated to study multiple aspects of the syndrome and to analyze the contribution of different cell types to the acquisition of the HGPS-associated cardiovascular phenotype. This review discusses current knowledge about cardiovascular features in HGPS patients and animal models and the molecular and cellular mechanisms through which progerin causes cardiovascular disease.
Collapse
|
17
|
Chen F, Ye X, Jiang H, Zhu G, Miao S. MicroRNA-151 Attenuates Apoptosis of Endothelial Cells Induced by Oxidized Low-density Lipoprotein by Targeting Interleukin-17A (IL-17A). J Cardiovasc Transl Res 2020; 14:400-408. [PMID: 32975761 DOI: 10.1007/s12265-020-10065-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
Abstract
Apoptosis of endothelial cells plays an important role in atherosclerosis (AS). MicroRNAs (miRNAs) have been confirmed to participate in the process of endothelial cell apoptosis. The main purpose of this study was to investigate the mechanism of miR-151 and interleukin-17A (IL-17A) in apoptosis of atherosclerotic endothelial cells. The expression levels of miR-151 in human aortic endothelial cells (HAEC) after Ox-LDL treatment were detected by qRT-PCR. The expression levels of IL-17A were detected by qRT-PCR and Western blot. The effects of miR-151 and IL-17A on the apoptosis rate were detected by flow cytometry. The relationship between miR-151 and IL-17A was assessed by bioinformatics analysis and luciferase assay. The expression levels of miR-151 in HAEC after Ox-LDL treatment were reduced, and the expression of IL-17A was upregulated. MiR-151 and si-IL-17A inhibited the apoptosis rate of aortic endothelial cells treated by Ox-LDL. MiR-151 and si-IL-17A reduced the expression levels of c-caspase-9, c-caspase-3, and BAX proteins in Ox-LDL-treated HAEC and increased the expression levels of Bcl-2. MiR-151 inhibited the apoptosis of endothelial cells in AS, and IL-17A was a new target for miR-151. Our findings provided a potential treatment for atherosclerosis in the treatment of AS. Graphical abstract.
Collapse
Affiliation(s)
- Fanfeng Chen
- Department of Vascular Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, 325015, Zhejiang Province, People's Republic of China
| | - Xiaoning Ye
- The First Clinical Medical Institute, Wenzhou Medical University, Wenzhou City, 325015, Zhejiang Province, People's Republic of China
| | - Haote Jiang
- The First Clinical Medical Institute, Wenzhou Medical University, Wenzhou City, 325015, Zhejiang Province, People's Republic of China
| | - Guanxia Zhu
- Department of Oncology, The First Clinical Medical College of Wenzhou Medical University, Wenzhou City, 325015, Zhejiang Province, People's Republic of China
| | - Shouliang Miao
- Department of Radiology, The First Affiliated Hospital, Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou City, 325015, Zhejiang Province, People's Republic of China.
| |
Collapse
|
18
|
Saxena S, Kumar S. Pharmacotherapy to gene editing: potential therapeutic approaches for Hutchinson-Gilford progeria syndrome. GeroScience 2020; 42:467-494. [PMID: 32048129 PMCID: PMC7205988 DOI: 10.1007/s11357-020-00167-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS), commonly called progeria, is an extremely rare disorder that affects only one child per four million births. It is characterized by accelerated aging in affected individuals leading to premature death at an average age of 14.5 years due to cardiovascular complications. The main cause of HGPS is a sporadic autosomal dominant point mutation in LMNA gene resulting in differently spliced lamin A protein known as progerin. Accumulation of progerin under nuclear lamina and activation of its downstream effectors cause perturbation in cellular morphology and physiology which leads to a systemic disorder that mainly impairs the cardiovascular system, bones, skin, and overall growth. Till now, no cure has been found for this catastrophic disorder; however, several therapeutic strategies are under development. The current review focuses on the overall progress in the field of therapeutic approaches for the management/cure of HGPS. We have also discussed the new disease models that have been developed for the study of this rare disorder. Moreover, we have highlighted the therapeutic application of extracellular vesicles derived from stem cells against aging and aging-related disorders and, therefore, suggest the same for the treatment of HGPS.
Collapse
Affiliation(s)
- Saurabh Saxena
- Department of Medical Laboratory Sciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India.
| | - Sanjeev Kumar
- Faculty of Technology and Sciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India
| |
Collapse
|