1
|
Zhao S, Tao Y, Huang L, Xue H, Chen R, Li X, Chen K, Tang Q, Wang M. Effects of polysaccharide from Pueraria lobata on osteoarthritis in rats. Int J Biol Macromol 2024; 278:134901. [PMID: 39173791 DOI: 10.1016/j.ijbiomac.2024.134901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
The effects of Pueraria lobata polysaccharide (PPL-1) on osteoarthritis (OA) disease were comprehensively evaluated by using chondrocytes and synoviocytes extracted from the joints of SD rats based on in vitro cell experiments and by establishing pathological models of OA rats. The results showed that concentrations of 1.25-10 and 0.2-1.6 μg/mL, PPL-1 did not inhibit or promote chondrocytes and synoviocytes in vitro. However, at concentrations of 1.25-10 and 0.2-1.6 μg/mL, it can promote cartilage and synovial membrane cells after LPS stimulation of cell activity and inhibite LPS-induced apoptosis. The results of animal experiments showed that PPL-1 can reduce the symptoms of joint swelling in OA rats, decrease the production of serum inflammatory cytokines TNF-α, IL-1β, and IL-6, and slow down the occurrence of inflammation. Therefore, from the perspective of symptoms, inflammatory factors and pathology, PPL-1 has therapeutic effects on OA rats and alleviates the development of inflammation. It indicated that PPL-1 has the potential to be developed into an OA therapeutic drug with anti-inflammatory properties that protects and activates chondrocytes.
Collapse
Affiliation(s)
- Shifan Zhao
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yijiong Tao
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Linjie Huang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Hualei Xue
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Rong Chen
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xiao Li
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Kai Chen
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Qi Tang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Mi Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| |
Collapse
|
2
|
Wang H, Zhang Z, Cheng X, Hou Z, Wang Y, Liu Z, Gao Y. Machine learning algorithm-based biomarker exploration and validation of mitochondria-related diagnostic genes in osteoarthritis. PeerJ 2024; 12:e17963. [PMID: 39282111 PMCID: PMC11397131 DOI: 10.7717/peerj.17963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 08/01/2024] [Indexed: 09/18/2024] Open
Abstract
The role of mitochondria in the pathogenesis of osteoarthritis (OA) is significant. In this study, we aimed to identify diagnostic signature genes associated with OA from a set of mitochondria-related genes (MRGs). First, the gene expression profiles of OA cartilage GSE114007 and GSE57218 were obtained from the Gene Expression Omnibus. And the limma method was used to detect differentially expressed genes (DEGs). Second, the biological functions of the DEGs in OA were investigated using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Wayne plots were employed to visualize the differentially expressed mitochondrial genes (MDEGs) in OA. Subsequently, the LASSO and SVM-RFE algorithms were employed to elucidate potential OA signature genes within the set of MDEGs. As a result, GRPEL and MTFP1 were identified as signature genes. Notably, GRPEL1 exhibited low expression levels in OA samples from both experimental and test group datasets, demonstrating high diagnostic efficacy. Furthermore, RT-qPCR analysis confirmed the reduced expression of Grpel1 in an in vitro OA model. Lastly, ssGSEA analysis revealed alterations in the infiltration abundance of several immune cells in OA cartilage tissue, which exhibited correlation with GRPEL1 expression. Altogether, this study has revealed that GRPEL1 functions as a novel and significant diagnostic indicator for OA by employing two machine learning methodologies. Furthermore, these findings provide fresh perspectives on potential targeted therapeutic interventions in the future.
Collapse
Affiliation(s)
- Hongbo Wang
- Department of Urology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zongye Zhang
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xingbo Cheng
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenxing Hou
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yubo Wang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, China
| | - Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Chen R, Tong Y, Hu X, Wang W, Liao F. circSLTM knockdown attenuates chondrocyte inflammation, apoptosis and ECM degradation in osteoarthritis by regulating the miR-515-5p/VAPB axis. Int Immunopharmacol 2024; 138:112435. [PMID: 38981227 DOI: 10.1016/j.intimp.2024.112435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024]
Abstract
Osteoarthritis (OA) is a prevalent joint disorder characterized by cartilage degeneration. Circular RNAs (circRNAs) have emerged as pivotal players in OA progression, orchestrating various biological processes such as proliferation, apoptosis, inflammation, and extracellular matrix (ECM) reorganization. Among these circRNAs, circSLTM exhibits aberrant expression in OA, yet its precise regulatory mechanism remains elusive. This study aimed to elucidate the regulatory mechanisms of circSLTM in OA pathogenesis, with a focus on its role as a competing endogenous RNA (ceRNA). Human cartilage tissues were procured from both OA patients and non-OA individuals, while human chondrocyte cells were subjected to lipopolysaccharide (LPS) treatment to mimic OA-like conditions. Our findings revealed upregulation of circSLTM in OA patients and LPS-treated chondrocytes. Loss-of-function assays were conducted, demonstrating that silencing circSLTM via shRNAs mitigated LPS-induced effects on chondrocytes, as evidenced by enhanced proliferation, reduced apoptosis, and inflammatory factors, and altered expression of extracellular matrix proteins. Further exploration into the regulatory mechanism of circSLTM unveiled its interaction with microRNA-515-5p (miR-515-5p) to modulate vesicle-associated membrane protein (VAPB) expression in chondrocytes. VAPB, also upregulated in OA, was positively regulated by circSLTM. Rescue assays corroborated that VAPB overexpression reinstated the protective effects of circSLTM knockdown on LPS-treated chondrocytes. Moreover, concurrent knockdown of both circSLTM and VAPB demonstrated synergistic protection against LPS-induced chondrocyte injury. Additionally, we delineated that LPS triggered the activation of the NF-κB pathway in chondrocytes, which was counteracted by circSLTM silencing. To assess the effects of circSLTM on OA in vivo, anterior cruciate ligament transection (ACLT) mouse models were established, revealing that circSLTM deficiency ameliorated cartilage defects in vivo. In conclusion, circSLTM exacerbates osteoarthritis progression by orchestrating the miR-515-5p/VAPB axis and activating the NF-κB pathway, providing novel insights for targeted therapy in OA management.
Collapse
Affiliation(s)
- Rijiang Chen
- Department of Orthopedics, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian 364000, China.
| | - Yan Tong
- Department of Endocrine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian 364000, China.
| | - Xiunian Hu
- Department of Orthopedics, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian 364000, China.
| | - Wantao Wang
- Department of Orthopedics, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian 364000, China.
| | - Fake Liao
- Department of Orthopedics, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian 364000, China.
| |
Collapse
|
4
|
Arai Y, Cha R, Nakagawa S, Inoue A, Nakamura K, Takahashi K. Cartilage Homeostasis under Physioxia. Int J Mol Sci 2024; 25:9398. [PMID: 39273346 PMCID: PMC11395513 DOI: 10.3390/ijms25179398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Articular cartilage receives nutrients and oxygen from the synovial fluid to maintain homeostasis. However, compared to tissues with abundant blood flow, articular cartilage is exposed to a hypoxic environment (i.e., physioxia) and has an enhanced hypoxic stress response. Hypoxia-inducible factors (HIFs) play a pivotal role in this physioxic environment. In normoxic conditions, HIFs are downregulated, whereas in physioxic conditions, they are upregulated. The HIF-α family comprises three members: HIF-1α, HIF-2α, and HIF-3α. Each member has a distinct function in articular cartilage. In osteoarthritis, which is primarily caused by degeneration of articular cartilage, HIF-1α is upregulated in chondrocytes and is believed to protect articular cartilage by acting anabolically on it. Conversely, in contrast to HIF-1α, HIF-2α exerts a catabolic influence on articular cartilage. It may therefore be possible to develop a new treatment for OA by controlling the expression of HIF-1α and HIF-2α with drugs or by altering the oxygen environment in the joints.
Collapse
Affiliation(s)
- Yuji Arai
- Department of Sports and Para-Sports Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Ryota Cha
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shuji Nakagawa
- Department of Sports and Para-Sports Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Atsuo Inoue
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kei Nakamura
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kenji Takahashi
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
5
|
Weng L, Luo Y, Luo X, Yao K, Zhang Q, Tan J, Yin Y. The common link between sleep apnea syndrome and osteoarthritis: a literature review. Front Med (Lausanne) 2024; 11:1401309. [PMID: 39234045 PMCID: PMC11371730 DOI: 10.3389/fmed.2024.1401309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Patients with Osteoarthritis (OA) often also suffer from Sleep Apnea Syndrome (SAS), and many scholars have started to notice this link, although the relationship between the two is still unclear. In this review, we aim to summarize the current literature on these two diseases, integrate evidence of the OA and OSA connection, explore and discuss their potential common mechanisms, and thus identify effective treatment methods for patients with both OA and SAS. Some shared characteristics of the two conditions have been identified, notably aging and obesity as mutual risk factors. Both diseases are associated with various biological processes or molecular pathways, including mitochondrial dysfunction, reactive oxygen species production, the NF-kB pathway, HIF, IL-6, and IL-8. SAS serves as a risk factor for OA, and conversely, OA may influence the progression of SAS. The effects of OA on SAS are underreported in the literature and require more investigation. To effectively manage these patients, timely intervention for SAS is necessary while treating OA, with weight reduction being a primary requirement, alongside combined treatments such as Continuous positive airway pressure (CPAP) and medications. Additionally, numerous studies in drug development are now aimed at inhibiting or clearing certain molecular pathways, including ROS, NF-KB, IL-6, and IL-8. Improving mitochondrial function might represent a viable new strategy, with further research into mitochondrial updates or transplants being essential.
Collapse
Affiliation(s)
- Lian Weng
- Luzhou Longmatan District People's Hospital, Luzhou, China
| | - Yuxi Luo
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xiongjunjie Luo
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Kaitao Yao
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Qian Zhang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Junjie Tan
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yiran Yin
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Shakeri M, Aminian A, Mokhtari K, Bahaeddini M, Tabrizian P, Farahani N, Nabavi N, Hashemi M. Unraveling the molecular landscape of osteoarthritis: A comprehensive review focused on the role of non-coding RNAs. Pathol Res Pract 2024; 260:155446. [PMID: 39004001 DOI: 10.1016/j.prp.2024.155446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Osteoarthritis (OA) poses a significant global health challenge, with its prevalence anticipated to increase in the coming years. This review delves into the emerging molecular biomarkers in OA pathology, focusing on the roles of various molecules such as metabolites, noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Advances in omics technologies have transformed biomarker identification, enabling comprehensive analyses of the complex pathways involved in OA pathogenesis. Notably, ncRNAs, especially miRNAs and lncRNAs, exhibit dysregulated expression patterns in OA, presenting promising opportunities for diagnosis and therapy. Additionally, the intricate interplay between epigenetic modifications and OA progression highlights the regulatory role of epigenetics in gene expression dynamics. Genome-wide association studies have pinpointed key genes undergoing epigenetic changes, providing insights into the inflammatory processes and chondrocyte hypertrophy typical of OA. Understanding the molecular landscape of OA, including biomarkers and epigenetic mechanisms, holds significant potential for developing innovative diagnostic tools and therapeutic strategies for OA management.
Collapse
Affiliation(s)
- Mohammadreza Shakeri
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Aminian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammadreza Bahaeddini
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Pouria Tabrizian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
7
|
Bi S, Han B, Fan H, Liu Y, Cui X. Mitochondria-Related Gene MAOB is a Key Biomarker of Osteoarthritis and Inhibition of Its Expression Reduces LPS-induced Chondrocyte Damage. Biochem Genet 2024; 62:2314-2331. [PMID: 37651071 DOI: 10.1007/s10528-023-10486-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/06/2023] [Indexed: 09/01/2023]
Abstract
The mitochondria are an important organelle in cells responsible for producing energy, and its abnormal function is closely related to the occurrence and development of osteoarthritis. Finding key genes associated with mitochondrial dysfunction in osteoarthritis can provide new ideas for the study of its pathogenesis. Firstly, 371 differential expressed genes (DEGs) were obtained through bioinformatics analysis of the GSE12021 and GSE55235 datasets in the GEO database, and 24 mitochondria-related DEGs (Mito-DEGs) were obtained by crossing differential genes with mitochondrial related genes. Next, KEGG and GO analysis of Mito-DEGs showed that upregulated Mito-DEGs were mainly enriched in small molecule catabolic process and tryptophan metabolism, while downregulated Mito-DEGs were mainly enriched in acetyl-CoA metabolic process and fatty acid biosynthesis. Furthermore, the key genes ME2 and MAOB were obtained through protein-protein interaction network analysis and lasso cox analysis of the 24 Mito-DEGs. In addition, the comparison results of immune cell scores showed differences between T cells CD4 memory resting, T cells regulatory (Tregs), Mast cells resting, and Mast cells activated in the OA group and the control group. More importantly, the potential regulatory mechanisms of key genes were studied through GSEA analysis and their correlation with immune infiltrating cells, immune checkpoints, m6A, and ferroptosis. Finally, in LPS-induced C28/I2 cells, silencing MAOB reduced inflammation injury and inhibited mitochondrial damage. Our research findings suggest that MAOB may hold potential as a target for the diagnosis and treatment of osteoarthritis.
Collapse
Affiliation(s)
- Shiqi Bi
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Bo Han
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Hongjuan Fan
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Yongming Liu
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Xuewen Cui
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
8
|
Liu Y, Zhou M, Zheng N, Xu H, Chen X, Duan Z, Lin T, Zeng R, Chen Q, Li M. Hsa_circ_0105040 promotes Cutbacterium acnes biofilm induced inflammation via sponge miR-146a in human keratinocyte. Int Immunopharmacol 2024; 127:111424. [PMID: 38141413 DOI: 10.1016/j.intimp.2023.111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Acne is a chronic inflammatory skin disease, and the pathogenesis of acne induced by Cutibacterium acnes (C.acnes) is not well understood. Recently, circular RNAs (circRNAs) have attracted much attention because of its involvement in various diseases. However, the mechanisms by which circRNAs regulated acne have rarely been reported. We identified several differentially expressed circRNAs by sequencing patient-derived acne tissues. Among them, hsa_circ_0105040 was determined to be low expressed in acne tissues and localized in the cytoplasm of human primary keratinocytes. We established a C.acnes biofilms model of acne in vitro and showed that hsa_circ_0105040 promoted inflammation via MAPK and NF-κB pathway. Mechanistically, hsa_circ_0105040 could directly bind to miR-146a and inhibit the expression of miR-146a. Moreover, hsa_circ_0105040 promoted the expression of IRAK1 and TRAF6 by sponging miR-146a, thereby elevating the level of inflammation in acne. Collectively, our data suggested that hsa_circ_0105040- miR-146a -IRAK1/TRAF6 axis was involved in regulating the inflammatory response in acne, which provided a potential therapeutic target for acne and a novel insight into the pathogenesis of inflammatory acne.
Collapse
Affiliation(s)
- Yuzhen Liu
- Department of Dermatology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China
| | - Meng Zhou
- Department of Laser Surgery, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Nana Zheng
- Department of Dermatology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210003, China
| | - Haoxiang Xu
- Department of Laser Surgery, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Xu Chen
- Department of Laser Surgery, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Zhimin Duan
- Department of Laser Surgery, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Tong Lin
- Department of Laser Surgery, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Rong Zeng
- Department of Laser Surgery, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Department of Dermatology, Yunnan Provincial Hospital of Traditional Chinese Medicine, No.120 Guanghua Rd, Kunming, Yunnan 650021, China.
| | - Qing Chen
- Department of Transfusion Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Min Li
- Department of Laser Surgery, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
9
|
Chen H, Li Z, Li X, Lu J, Chen B, Wang Q, Wu G. Biomaterial-Based Gene Delivery: Advanced Tools for Enhanced Cartilage Regeneration. Drug Des Devel Ther 2023; 17:3605-3624. [PMID: 38076630 PMCID: PMC10706074 DOI: 10.2147/dddt.s432056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Gene therapy has emerged as a promising and innovative approach in cartilage regeneration. Integrating biomaterials into gene therapy offers a unique opportunity to enhance gene delivery efficiency, optimize gene expression dynamics, modulate immune responses, and promote tissue regeneration. Despite the rapid progress in biomaterial-based gene delivery, there remains a deficiency of comprehensive discussions on recent advances and their specific application in cartilage regeneration. Therefore, this review aims to provide a thorough overview of various categories of biomaterials employed in gene delivery, including both viral and non-viral vectors, with discussing their distinct advantages and limitations. Furthermore, the diverse strategies employed in gene therapy are discussed and summarized, such as the utilization of growth factors, anti-inflammatory cytokines, and chondrogenic genes. Additionally, we highlights the significant challenges that hinder biomaterial-based gene delivery in cartilage regeneration, including immune response modulation, gene delivery efficiency, and the sustainability of long-term gene expression. By elucidating the functional properties of biomaterials-based gene therapy and their pivotal roles in cartilage regeneration, this review aims to enhance further advances in the design of sophisticated gene delivery systems for improved cartilage regeneration outcomes.
Collapse
Affiliation(s)
- Hongfeng Chen
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Zhen Li
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Xiaoqi Li
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Jiongjiong Lu
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Beibei Chen
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Qiongchao Wang
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Guangliang Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| |
Collapse
|
10
|
Zheng D, Yang K, Chen T, Lv S, Wang L, Gui J, Xu C. Inhibition of LncRNA SNHG14 protects chondrocyte from injury in osteoarthritis via sponging miR-137. Autoimmunity 2023; 56:2270185. [PMID: 37849308 DOI: 10.1080/08916934.2023.2270185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023]
Abstract
Long-chain noncoding small nucleolar RNA host gene 14 (LncRNA SNHG14) is highly expressed in various diseases and promotes diseases progression, but the role and mechanism of LncRNA SNHG14 on targeting miR-137 in promoting osteoarthritis (OA) chondrocyte injury remains unclear. To measure the expression of the LncRNAs SNHG14 and miR-137, cell survival, inflammatory response, chondrocyte apoptosis, and extracellular matrix (ECM) levels, we subjected human chondrocytes to a variety of lipopolysaccharide (LPS) concentrations. To measure the luciferase activity of SNHG14-WT and SNHG14-MUT transfected with miR-137 mimic or miR-NC mimic, luciferase reporter genes were utilized. The results showed that chondrocyte viability was significantly inhibited with LPS treatment and chondrocyte inflammatory response, apoptosis and extracellular matrix degradation were significantly increased. However, the above results were significantly reversed after LncRNA SNHG14 inhibition. The luciferase activity bound to miR-137 was decreased in SNHG14-WT group, but there was no change in SNHG14-mut group, which indicated that LncRNA SNHG14 inhibited miR-137 expression as a miRNA sponge. In conclusion, inhibition of LncRNA SNHG14 attenuates chondrocyte inflammatory response, apoptosis and extracellular matrix degradation by targeting miR-137 in LPS induced chondrocytes.
Collapse
Affiliation(s)
- Dong Zheng
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Kaiyuan Yang
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Tong Chen
- Department of Orthopedics, The Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Songwei Lv
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Jianchao Gui
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chao Xu
- Department of Trauma Center, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| |
Collapse
|
11
|
Zhou M, Liu Y, Xu H, Chen X, Zheng N, Duan Z, Ge Y, Li D, Lin T, Zeng R, Chen Q, Li M. YTHDC1-Modified m6A Methylation of Hsa_circ_0102678 Promotes Keratinocyte Inflammation Induced by Cutibacterium acnes Biofilm through Regulating miR-146a/TRAF6 and IRAK1 Axis. J Innate Immun 2023; 15:822-835. [PMID: 37903473 PMCID: PMC10684258 DOI: 10.1159/000534704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023] Open
Abstract
INTRODUCTION CircRNAs are closely related to many human diseases; however, their role in acne remains unclear. This study aimed to determine the role of hsa_circ_0102678 in regulating inflammation of acne. METHODS First, microarray analysis was performed to study the expression of circRNAs in acne. Subsequently, RNase R digestion assay and fluorescence in situ hybridization assay were utilized to confirm the characteristics of hsa_circ_0102678. Finally, qRT-PCR, Western blotting analysis, immunoprecipitation, luciferase reporter assay, circRNA probe pull-down assay, biotin-labeled miRNA pull-down assay, RNA immunoprecipitation assay, and m6A dot blot assay were utilized to reveal the functional roles of hsa_circ_0102678 on inflammation induced by C. acnes biofilm in human primary keratinocytes. RESULTS Our investigations showed that the expression of hsa_circ_0102678 was significantly decreased in acne tissues, and hsa_circ_0102678 was a type of circRNAs, which was mainly localized in the cytoplasm of primary human keratinocytes. Moreover, hsa_circ_0102678 remarkably affected the expression of IL-8, IL-6, and TNF-α, which induced by C. acnes biofilm. Importantly, mechanistic studies indicated that the YTHDC1 could bind directly to hsa_circ_0102678 and promote the export of N6-methyladenosine-modified hsa_circ_0102678 to the cytoplasm. Besides, hsa_circ_0102678 could bind to miR-146a and sponge miR-146a to promote the expression of IRAK1 and TRAF6. CONCLUSION Our findings revealed a previously unknown process by which hsa_circ_0102678 promoted keratinocyte inflammation induced by C. acnes biofilm via regulating miR-146a/TRAF6 and IRAK1 axis.
Collapse
Affiliation(s)
- Meng Zhou
- Department of Laser Surgery, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yuzhen Liu
- Department of Dermatology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Haoxiang Xu
- Department of Laser Surgery, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xu Chen
- Department of Laser Surgery, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Nana Zheng
- Department of Laser Surgery, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Zhimin Duan
- Department of Laser Surgery, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yiping Ge
- Department of Laser Surgery, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Dongqing Li
- Department of Laser Surgery, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Tong Lin
- Department of Laser Surgery, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Rong Zeng
- Department of Laser Surgery, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Department of Dermatology, Yunnan Provincial Traditional Chinese Medicine Hospital, Kunming, China
| | - Qing Chen
- Department of Transfusion Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Min Li
- Department of Laser Surgery, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Ouyang X, Ding Y, Yu L, Xin F, Yang X, Liu X, Tong S. Circular RNA CircDHRS3 Aggravates IL-1β-induced ECM Degradation, Apoptosis, and Inflammatory Response via Mediating MECP2 Expression. Inflammation 2023; 46:1670-1683. [PMID: 37340152 DOI: 10.1007/s10753-023-01832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/07/2023] [Accepted: 05/04/2023] [Indexed: 06/22/2023]
Abstract
Previous studies have reported that circular RNA hsa_circ_0010024 (circDHRS3), microRNA (miR)-193a-3p, and Methyl CpG binding protein 2 (MECP2) are unconventionally expressed in osteoarthritis (OA) cartilage samples. However, the regulatory mechanisms among circDHRS3, miR-193a-3p, and MECP2 in OA pathogenesis are unclear. Changes of circDHRS3, miR-193a-3p, and MECP2 mRNA were detected by qRT-PCR. Several protein levels were evaluated using western blotting. Cell proliferation was analyzed by 5-Ethynyl-2'-deoxyuridine (EdU) and cell counting assays. Cell apoptosis was determined by flow cytometry assay. Detection of pro-inflammatory cytokines was conducted using ELISA. The relationship between circDHRS3 or MECP2 and miR-193a-3p was validated by dual-luciferase reporter assay. We verified that circDHRS3 and MECP2 were overexpressed in OA cartilage samples, whereas miR-193a-3p was downregulated. CircDHRS3 silencing weakened IL-1β-induced chondrocyte cartilage extracellular matrix (ECM) degradation, apoptosis, and inflammatory response. CircDHRS3 adsorbed miR-193a-3p to modulate MECP2 expression. Also, silencing of miR-193a-3p impaired circDHRS3 silencing-mediated suppression on IL-1β-induced chondrocyte injury. Also, MECP2 overexpression alleviated miR-193a-3p mimic-mediated inhibition on IL-1β-prompted chondrocyte injury. CircDHRS3 silencing reduced MECP2 expression via sponging miR-193a-3p, thereby weakening IL-1β-induced chondrocyte ECM degradation, apoptosis, and inflammatory response.
Collapse
Affiliation(s)
- Xiao Ouyang
- Department of Orthopedic Surgery, Xuzhou Third People's Hospital, Affiliated Xuzhou Hospital of Jiangsu University, No.131, Huancheng Road, Gulou, Xuzhou, 221005, Jiangsu, China.
| | - Yunzhi Ding
- Department of Orthopedic Surgery, Xuzhou Third People's Hospital, Affiliated Xuzhou Hospital of Jiangsu University, No.131, Huancheng Road, Gulou, Xuzhou, 221005, Jiangsu, China
| | - Li Yu
- Department of Orthopedic Surgery, Xuzhou Third People's Hospital, Affiliated Xuzhou Hospital of Jiangsu University, No.131, Huancheng Road, Gulou, Xuzhou, 221005, Jiangsu, China
| | - Feng Xin
- Department of Orthopedic Surgery, Xuzhou Third People's Hospital, Affiliated Xuzhou Hospital of Jiangsu University, No.131, Huancheng Road, Gulou, Xuzhou, 221005, Jiangsu, China
| | - Xiaowei Yang
- Department of Orthopedic Surgery, Xuzhou Third People's Hospital, Affiliated Xuzhou Hospital of Jiangsu University, No.131, Huancheng Road, Gulou, Xuzhou, 221005, Jiangsu, China
| | - Xingyong Liu
- Department of Orthopedic Surgery, Xuzhou Third People's Hospital, Affiliated Xuzhou Hospital of Jiangsu University, No.131, Huancheng Road, Gulou, Xuzhou, 221005, Jiangsu, China
| | - Songming Tong
- Department of Orthopedic Surgery, Xuzhou Third People's Hospital, Affiliated Xuzhou Hospital of Jiangsu University, No.131, Huancheng Road, Gulou, Xuzhou, 221005, Jiangsu, China
| |
Collapse
|
13
|
Hjazi A, Sukmana BI, Ali SS, Alsaab HO, Gupta J, Ullah MI, Romero-Parra RM, Alawadi AHR, Alazbjee AAA, Mustafa YF. Functional role of circRNAs in osteogenesis: A review. Int Immunopharmacol 2023; 121:110455. [PMID: 37290324 DOI: 10.1016/j.intimp.2023.110455] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/20/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
The extracellular matrixes (ECM), as well as the microenvironmental signals, play an essential role in osteogenesis by regulating intercellular pathways. Recently, it has been demonstrated that a newly identified RNA, circular RNA, contributes to the osteogenesis process. Circular RNA (circRNA), the most recently identified RNA, is involved in the regulation of gene expression at transcription to translation levels. The dysregulation of circRNAs has been observed in several tumors and diseases. Also, various studies have shown that circRNAs expression is changed during osteogenic differentiation of progenitor cells. Therefore, understanding the role of circRNAs in osteogenesis might help the diagnosis as well as treatment of bone diseases such as bone defects and osteoporosis. In this review, circRNA functions and the related pathways in osteogenesis have been discussed.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Bayu Indra Sukmana
- Department of Oral Biology, Faculty of Dentistry, Lambung Mangkurat University, Banjarmasin, Indonesia
| | - Sally Saad Ali
- College of Dentistry, Al-Bayan University, Baghdad, Iraq
| | - Hashem O Alsaab
- Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406 U.P., India
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 75471, Aljouf, Saudi Arabia
| | | | - Ahmed H R Alawadi
- Medical Analysis Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| |
Collapse
|
14
|
Yang T, Qiu L, Chen S, Wang Z, Jiang Y, Bai H, Bi Y, Chen G, Chang G. Circ_PIAS1 Promotes the Apoptosis of ALV-J Infected DF1 Cells by Up-Regulating miR-183. Genes (Basel) 2023; 14:1260. [PMID: 37372440 DOI: 10.3390/genes14061260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
(1) Background: circRNAs are closed circular molecules with covalent bonds generated by reverse shearing, which have high stability and have different manifestations in different tissues, cells, or physiological conditions and play important roles in various disease processes and physiological processes. In addition, circ_PIAS1 has been screened out and verified, and the bioinformatics analyzed in previous studies. In this study, we investigated the function of circ_PIAS1 and studied its role in ALV-J infection to provide a basis for the role of circRNA in ALV-J infection. (2) Methods: the effect of circ_PIAS1 on apoptosis during ALV-J infection was studied by flow cytometry and detection of apoptotic gene expression, and miR-183 was screened by a biotin-labeled RNA pull-down technique. After overexpression and inhibition of miR-183, the effect of miR-183 on apoptosis in the process of ALV-J infection was studied by flow cytometry and detection of apoptotic gene expression. (3) Results: after overexpression of circ_PIAS1, flow cytometry and apoptotic gene expression showed that circ_PIAS1 promoted apoptosis. The results of RNA pull-down showed that 173 miRNAs could bind to circ_PIAS1, and circ_PIAS1 up-regulated the expression of miR-183. On the other hand, the same results were obtained whether miR-183 was overexpressed or inhibited that miR-183 affected ALV-J infection by promoting cell apoptosis. (4) Conclusions: circ_PIAS1 up-regulated the expression of miR-183 and influenced ALV-J infection by promoting cell apoptosis.
Collapse
Affiliation(s)
- Ting Yang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Lingling Qiu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shihao Chen
- Institute of Epigenetics and Epigenomics, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhixiu Wang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yong Jiang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Yulin Bi
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
15
|
Li H, Cao Y, Chang C, Huang W, Su S, Peng Z, Zhang J. Knockdown of circSOD2 ameliorates osteoarthritis progression via the miR-224-5p/PRDX3 axis. J Orthop Surg Res 2023; 18:432. [PMID: 37312219 DOI: 10.1186/s13018-023-03880-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 05/24/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Although the implications of circular RNAs (circRNAs) with the progression of diverse pathological conditions have been reported, the circRNA players in osteoarthritis (OA) are barely studied. METHODS In this study, twenty-five OA patients who received arthroplasty were recruited for cartilage tissue collection. Public circRNA microarray data from Gene Expression Omnibus was retrieved for circRNA identification. An in vitro cell model of OA-related damages was constructed by treating human chondrocytes (CHON-001 cell line) with IL-1β, and circSOD2 siRNA was used to silence circSOD2 expression to study its functional role in apoptosis, inflammatory responses, and extracellular matrix (ECM) degradation. Besides, we investigated the functional interactions among circSOD2, miR-224-5p, and peroxiredoxin 3 (PRDX3) by luciferase reporter assay, RNA-immunoprecipitation assay, and quantitative reverse transcription polymerase chain reaction. RESULTS Our findings revealed the overexpression of circSOD2 in the OA cartilage and cell samples, and circSOD2 knockdown alleviated ECM degradation, inflammation, and apoptosis in CHON-001 cell model. In addition, our findings suggested the regulatory function of circSOD2 knockdown on miR-224-5p expression, while miR-224-5p was capable of downregulating PRDX3 expression. The co-transfection of miR-224-5p inhibitor or pcDNA-PRDX3 could prevent the effect of circSOD2 knockdown. CONCLUSION Hence, our results demonstrated that knockdown of circSOD2 may serve as an intervention strategy to alleviate OA progression through modulating miR-224-5p/PRDX3 signaling axis.
Collapse
Affiliation(s)
- Hao Li
- Department of Sports Medicine, Shenzhen Second People's Hospital, Shenzhen, 518037, Guangdong, China
| | - Yong Cao
- Department of Orthopaedic Emergency, Chongqing Orthopedic Hospital of Traditional Chinese Medicine, Chongqing, 400000, China
| | - Chongfei Chang
- Shenzhen Cheerland Danlun Biomedical Co. Ltd, Shenzhen, 518108, Guangdong, China
| | - Wenping Huang
- Department of Traumatic Orthopedics, Chongqing Orthopedic Hospital of Traditional Chinese Medicine, 9 Jiefang West Road, Yuzhong District, Chongqing, 400000, China
| | - Songchuan Su
- Department of Traumatic Orthopedics, Chongqing Orthopedic Hospital of Traditional Chinese Medicine, 9 Jiefang West Road, Yuzhong District, Chongqing, 400000, China
| | - Zhenggang Peng
- Department of Traumatic Orthopedics, Chongqing Orthopedic Hospital of Traditional Chinese Medicine, 9 Jiefang West Road, Yuzhong District, Chongqing, 400000, China
| | - Jiajin Zhang
- Department of Traumatic Orthopedics, Chongqing Orthopedic Hospital of Traditional Chinese Medicine, 9 Jiefang West Road, Yuzhong District, Chongqing, 400000, China.
| |
Collapse
|
16
|
Li Z, Lu J. CircRNAs in osteoarthritis: research status and prospect. Front Genet 2023; 14:1173812. [PMID: 37229197 PMCID: PMC10203419 DOI: 10.3389/fgene.2023.1173812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease globally, and its progression is irreversible. The mechanism of osteoarthritis is not fully understood. Research on the molecular biological mechanism of OA is deepening, among which epigenetics, especially noncoding RNA, is an emerging hotspot. CircRNA is a unique circular noncoding RNA not degraded by RNase R, so it is a possible clinical target and biomarker. Many studies have found that circRNAs play an essential role in the progression of OA, including extracellular matrix metabolism, autophagy, apoptosis, the proliferation of chondrocytes, inflammation, oxidative stress, cartilage development, and chondrogenic differentiation. Differential expression of circRNAs was also observed in the synovium and subchondral bone in the OA joint. In terms of mechanism, existing studies have mainly found that circRNA adsorbs miRNA through the ceRNA mechanism, and a few studies have found that circRNA can serve as a scaffold for protein reactions. In terms of clinical transformation, circRNAs are considered promising biomarkers, but no large cohort has tested their diagnostic value. Meanwhile, some studies have used circRNAs loaded in extracellular vesicles for OA precision medicine. However, there are still many problems to be solved in the research, such as the role of circRNA in different OA stages or OA subtypes, the construction of animal models of circRNA knockout, and more research on the mechanism of circRNA. In general, circRNAs have a regulatory role in OA and have particular clinical potential, but further studies are needed in the future.
Collapse
Affiliation(s)
- Zhuang Li
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jun Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Xue Q, Huang Y, Chang J, Cheng C, Wang Y, Wang X, Miao C. CircRNA-mediated ceRNA mechanism in Osteoarthritis: special emphasis on circRNAs in exosomes and the crosstalk of circRNAs and RNA methylation. Biochem Pharmacol 2023; 212:115580. [PMID: 37148980 DOI: 10.1016/j.bcp.2023.115580] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Osteoarthritis (OA) is an age-related joint disease with chronic inflammation, progressive articular cartilage destruction and subchondral bone sclerosis. CircRNAs (circRNAs) are a class of non-coding RNA with a circular structure that participate in a series of important pathophysiological processes of OA, especially its ceRNA mechanisms, and play an important role in OA. CircRNAs may be potential biomarkers for the diagnosis and prognosis of OA. Additionally, differentially expressed circRNAs were found in patients with OA, indicating that circRNAs are involved in the pathogenesis of OA. Experiments have shown that the intra-articular injection of modified circRNAs can effectively relieve OA. Exosomal circRNAs and methylated circRNAs also provide new ideas for the treatment of OA. Clarifying the important roles of circRNAs in OA will deepen people's understanding of the pathogenesis of OA. CircRNAs may be developed as new biomarkers or drug targets for the diagnosis of OA and provide new methods for the treatment of OA.
Collapse
Affiliation(s)
- Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jun Chang
- Department of Orthopaedics, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Public Health Clinical Center, Hefei, China.
| | - Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yuting Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaomei Wang
- Department of Humanistic Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China.
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China; Institute of Rheumatism, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
18
|
Liu S, Pan Y, Li T, Zou M, Liu W, Li Q, Wan H, Peng J, Hao L. The Role of Regulated Programmed Cell Death in Osteoarthritis: From Pathogenesis to Therapy. Int J Mol Sci 2023; 24:ijms24065364. [PMID: 36982438 PMCID: PMC10049357 DOI: 10.3390/ijms24065364] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Osteoarthritis (OA) is a worldwide chronic disease that can cause severe inflammation to damage the surrounding tissue and cartilage. There are many different factors that can lead to osteoarthritis, but abnormally progressed programmed cell death is one of the most important risk factors that can induce osteoarthritis. Prior studies have demonstrated that programmed cell death, including apoptosis, pyroptosis, necroptosis, ferroptosis, autophagy, and cuproptosis, has a great connection with osteoarthritis. In this paper, we review the role of different types of programmed cell death in the generation and development of OA and how the different signal pathways modulate the different cell death to regulate the development of OA. Additionally, this review provides new insights into the radical treatment of osteoarthritis rather than conservative treatment, such as anti-inflammation drugs or surgical operation.
Collapse
Affiliation(s)
- Suqing Liu
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- Queen Marry College, Nanchang University, Nanchang 330006, China
| | - Yurong Pan
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- Queen Marry College, Nanchang University, Nanchang 330006, China
| | - Ting Li
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Mi Zou
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Wenji Liu
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Qingqing Li
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Huan Wan
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jie Peng
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
- Correspondence: (J.P.); (L.H.); Tel.: +86-15983280459 (J.P.); +86-13607008562 (L.H.)
| | - Liang Hao
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- Correspondence: (J.P.); (L.H.); Tel.: +86-15983280459 (J.P.); +86-13607008562 (L.H.)
| |
Collapse
|
19
|
Integration Analysis of circRNA–miRNA–mRNA and Identification of Critical Networks in Valgus-Varus Deformity (Gallus gallus). Genes (Basel) 2023; 14:genes14030622. [PMID: 36980895 PMCID: PMC10048443 DOI: 10.3390/genes14030622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Valgus-valgus deformity (VVD) is a common leg deformity in broilers with inward or outward deviation of the tibiotarsus and tarsometatarsus. The competing endogenous RNA (ceRNA) network plays an essential role in the study of leg disease. However, its role in the etiology and pathogenesis of VVD remains unclear. Here, based on case (VVD) and control (normal) group design, we performed analyses of differentially expressed circRNAs (DEcircRNAs), differentially expressed miRNAs (DEmiRNAs) and differentially expressed mRNAs (DEmRNAs). Transcriptome data derived 86 DEcircRNAs, 13 DEmiRNAs and 410 DEmRNAs. Functional analysis showed that DEmRNAs were significantly enriched in cell cycle, apoptosis, ECM-receptor interaction, FoxO signaling pathway and protein processing synthesis. DEcirc/miRNA-associated DEmRNAs were associated with skeletal and muscle growth and development pathways, including mTOR, Wnt, and VEGF signaling pathways. Subsequently, a circRNA–miRNA–mRNA regulatory network was constructed based on the ceRNA hypothesis, including 8 circRNAs, 6 miRNAs, and 31 mRNAs, which were significantly enriched in the skeletal developmental pathway. Finally, two key mRNAs (CDC20 and CTNNB1) and their regulatory axes were screened by the PPI network and cytohubba. The expression levels of CDC20 and CTNNB1 in cartilage and seven other tissues were also quantified by qPCR. In conclusion, we analyzed the functions of DEmRNA, DEcircRNA and DEmiRNA and constructed the hub ceRNA regulatory axis, and obtained two hub genes, CDC20 and CTNNB1. The study more deeply explored the etiology and pathogenesis of VVD and lays the foundation for further study of the role of the ceRNA network on skeletal development.
Collapse
|
20
|
He W, Lin X. LINC00313 promotes the proliferation and inhibits the apoptosis of chondrocytes via regulating miR-525-5p/GDF5 axis. J Orthop Surg Res 2023; 18:137. [PMID: 36823651 PMCID: PMC9951454 DOI: 10.1186/s13018-023-03610-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND The present study aimed to explore the potentials of lncRNA LINC00313 in osteoarthritis (OA). METHODS qRT-PCR was performed to detect the expression of LINC00313 in OA tissues and cells. CCK-8 and EDU were used to detect cell proliferation. The ELISA test kit was conducted to detect the expression of inflammatory factors. Flow cytometry was used to detect the apoptosis rates. Western blot was applied to measure the protein expression. The luciferase reporter gene test was carried out to verify the relationship between miR-525-5p and LINC00313 or GDF5. RESULTS The data showed that the expression of LINC00313 was significantly down-regulated in OA tissues and cells. Functionally, LINC00313 promoted the proliferation of chondrocytes and suppressed the secretion of inflammatory factors and cell apoptosis. Moreover, LINC00313 functioned as a ceRNA to up-regulate the expression of GDF5 via sponging miR-525-5p. Luciferase and RNA pull-down assays further verified the interaction between miR-525-5p and LINC00313 (or GDF5). Moreover, overexpression of miR-525-5p or down-regulated GDF5 degraded the cellular functions of chondrocyte. Rescue experiments showed that the overexpression of miR-525-5p reversed the increase in cell viability and the decrease in pro-inflammatory factors and apoptosis rate mediated by LINC00313. The knockdown of GDF5 reversed the promotion of miR-525-5p knockdown on cell viability and the inhibition of pro-inflammatory factors and apoptosis rate. CONCLUSIONS LINC00313 inhibited the development of OA through regulating miR-525-5p/GDF5 axis. LncRNA LINC00313 can be used as a potential target for the treatment of OA.
Collapse
Affiliation(s)
- Wen He
- Department of Orthopaedics, Fuzhou Second Hospital, No. 47, Shangteng Road, Cangshan District, Fuzhou, 350007, Fujian, China.
| | - Xuchao Lin
- grid.490567.9Department of Orthopaedics, Fuzhou Second Hospital, No. 47, Shangteng Road, Cangshan District, Fuzhou, 350007 Fujian China
| |
Collapse
|
21
|
Wang Y, Li N, Wu X. Circular RNA_0003800 exacerbates IL-1β-induced chondrocyte injury via miR-197-3p/SOX5 axis. Int Immunopharmacol 2023; 115:109643. [PMID: 36610331 DOI: 10.1016/j.intimp.2022.109643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a serious degenerative disease of articular cartilage, which has a great impact on the quality of life of patients. Circular RNA (circRNA) plays an important role in OA progression. Our study aims to explore the role and mechanism of circ_0003800 in OA. METHODS Circ_0003800, microRNA-197-3p (miR-197-3p) and SRY-box transcription factor 5 (SOX5) contents were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Cell Counting Kit-8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, western blot and enzyme-linked immunosorbent assay (ELISA) were deployed to evaluate cell proliferation, apoptosis, extracellular matrix (ECM) degradation, inflammatory response and oxidative stress. Interaction of miR-197-3p and circ_0003800 or SOX5 was evidenced by dual-luciferase reporter system, RNA immunoprecipitation (RIP) and RNA pull down assays. RESULTS OA tissues and model cells had higher abundance of circ_0003800 and SOX5, while miR-197-3p content was lower. Functionally, circ_0003800 knockdown alleviated IL-1β-mediated injury in C28/I2 cells. Mechanistically, circ_0003800 could sponge miR-197-3p, and miR-197-3p could target SOX5. Besides, in-miR-197-3p reversed the suppressive effect of circ_0003800 downregulation on IL-1β-induced C28/I2 cell injury, and SOX5 overexpression could also diminish the inhibitory effect of miR-197-3p on IL-1β-induced C28/I2 cell injury. CONCLUSION Circ_0003800 exacerbates IL-1β-induced chondrocyte injury via miR-197-3p/SOX5 axis.
Collapse
Affiliation(s)
- Yongsheng Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, China
| | - Ningbo Li
- Department of Orthopedics, The Affiliated Hospital of Henan University of Chinese Medicine, China
| | - Xuejian Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, China.
| |
Collapse
|
22
|
Zhang Y, Qiu Y, Zhang X, He X, Chen C, Chen M, Zhang H. USP6-associated soft tissue tumors with bone metaplasia: Clinicopathologic and genetic analysis and the identification of novel USP6 fusion partners. Front Oncol 2023; 12:1065071. [PMID: 36727055 PMCID: PMC9885078 DOI: 10.3389/fonc.2022.1065071] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/30/2022] [Indexed: 01/17/2023] Open
Abstract
Introduction Among those tumors with consistent USP6 rearrangement, some arise from soft tissue and show bone metaplasia, including myositis ossificans (MO), fibro-osseous pseudotumor of digits (FOPD), soft tissue aneurysmal bone cyst (ST-ABC) and fasciitis ossificans (FO). These lesions are easily confused with malignancies because they show a rapid growth rate and brisk mitoses. Here, we aim to clarify the clinicopathologic and genetic characteristics of this entity and analyze the correlations among the different subtypes in one of the largest cohorts. Materials and Methods The clinicopathologic features of 73 cases of MO, FOPD, ST-ABC and FO diagnosed at West China Hospital, Sichuan University from January 2010 to December 2021 were retrospectively analyzed. Forty-three undecalcified samples were analyzed by systematic genetic studies, including fluorescence in situ hybridization (FISH), reverse transcription polymerase chain reaction (RT-PCR), Sanger sequencing and next-generation-based sequencing were performed. Results This series included 40 males and 33 females aged 2 to 80 years old (median: 31 years). FOPD occurred in extremal soft tissue, while lower extremities (38/58, 65.5%) were the most commonly involved lesions in the other three subgroups. Histologically, proliferative myofibroblasts/fibroblasts with varying degrees of osteoid tissue were present. Fluorescence in situ hybridization (FISH) results indicated that 22 cases (22/27, 81.5%) were positive for USP6 rearrangement, and 5 cases were negative. Among those cases with positive FISH results, 18 underwent reverse transcription-polymerase chain reaction (RT-PCR) detection that successfully detected common USP6 fusion types. Thirteen cases showed COL1A1::USP6 fusion, one showed MYH9::USP6 fusion, and 4 were negative for common fusion types. Next-generation-based sequencing technology was performed on two lesions with negative RT-PCR results and novel fusion partners SNHG3 and UBE2G1 were discovered. Conclusions Our findings revealed that COL1A1 is the most common fusion partner in this entity, unlike primary aneurysmal bone cysts and nodular fasciitis. Notably, we believed that FO may demonstrate more similar clinicopathologic and genetic manifestations with MO/FOPD and ST-ABC instead of nodular fasciitis for involving lower limbs most frequently and showing recurrent COL1A1::USP6 fusion. Additionally, this study also found two novel USP6 fusion partners, which further expanded our knowledge of this neoplastic spectrum.
Collapse
|
23
|
Zhang XA, Kong H. Mechanism of HIFs in osteoarthritis. Front Immunol 2023; 14:1168799. [PMID: 37020556 PMCID: PMC10067622 DOI: 10.3389/fimmu.2023.1168799] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
Osteoarthritis (OA) is a common disabling disease which has a high incidence rate in the elderly. Studies have found that many factors are involved in the pathogenesis of OA. Hypoxia-inducible factors (HIFs) are core regulators that induce hypoxia genes, repair the cellular oxygen environment, and play an important role in the treatment of OA. For example, HIF-1α can maintain the stability of the articular cartilage matrix, HIF-2α is able to cause chondrocyte apoptosis and intensify in-flammatory response, and HIF-3α may be the target gene of HIF-1α and HIF-2α, thereby playing a negative regulatory role. This review examines the mechanism of HIFs in cartilage extracellular matrix degradation, apoptosis, inflammatory reaction, autophagy and then further expounds on the roles of HIFs in OA, consequently providing theoretical support for the pathogenesis of OA and a new target for OA treatment.
Collapse
|
24
|
Guo H, Huang J, Liang Y, Wang D, Zhang H. Focusing on the hypoxia-inducible factor pathway: role, regulation, and therapy for osteoarthritis. Eur J Med Res 2022; 27:288. [PMID: 36503684 PMCID: PMC9743529 DOI: 10.1186/s40001-022-00926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a common chronic disabling disease that affects hundreds of millions of people around the world. The most important pathological feature is the rupture and loss of articular cartilage, and the characteristics of avascular joint tissues lead to limited repair ability. Currently, there is no effective treatment to prevent cartilage degeneration. Studies on the mechanism of cartilage metabolism revealed that hypoxia-inducible factors (HIFs) are key regulatory genes that maintain the balance of cartilage catabolism-matrix anabolism and are considered to be the major OA regulator and promising OA treatment target. Although the exact mechanism of HIFs in OA needs to be further clarified, many drugs that directly or indirectly act on HIF signaling pathways have been confirmed by animal experiments and regarded as promising treatments for OA. Targeting HIFs will provide a promising strategy for the development of new OA drugs. This article reviews the regulation of HIFs on intra-articular cartilage homeostasis and its influence on the progression of osteoarthritis and summarizes the recent advances in OA therapies targeting the HIF system.
Collapse
Affiliation(s)
- Hanhan Guo
- grid.263817.90000 0004 1773 1790Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Jianghong Huang
- grid.452847.80000 0004 6068 028XDepartment of Spine Surgery and Orthopedics, Shenzhen Second People’s Hospital (First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, 518035 China ,grid.12527.330000 0001 0662 3178Innovation Leading Engineering Doctor, Tsinghua University Shenzhen International Graduate School, Class 9 of 2020, Shenzhen, 518055 China
| | - Yujie Liang
- grid.452897.50000 0004 6091 8446Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020 China
| | - Daping Wang
- grid.263817.90000 0004 1773 1790Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.452847.80000 0004 6068 028XDepartment of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000 China
| | - Huawei Zhang
- grid.263817.90000 0004 1773 1790Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055 China
| |
Collapse
|
25
|
A Study on the Potential Mechanism of Shujin Dingtong Recipe against Osteoarthritis Based on Network Pharmacology and Molecular Docking. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1873004. [DOI: 10.1155/2022/1873004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/15/2022] [Accepted: 10/28/2022] [Indexed: 11/28/2022]
Abstract
Background. With the aging of the social population, Osteoarthritis (OA) has already become a vital health and economic problem globally. Shujin Dingtong recipe (SJDTR) is an effective formula to treat OA in China. Although studies have shown that SJDTR can significantly alleviate OA symptoms, its mechanism still remains unclear. Purpose. This study is aimed at investigating the potential mechanism of SJDTR for the treatment of OA based on network pharmacology and molecular docking. Methods. Main ingredients of SJDTR were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. OA disease targets were obtained from the Gene Expression Omnibus (GEO) database. The overlapped targets and signaling pathways were explored using Protein-Protein Interaction (PPI) network, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG). Following this, the core targets were employed to dock with corresponding components via molecular docking in order to further explore the mechanism of SJDTR in the treatment of OA. Results. From network pharmacology, we found 100 active components of SJDTR, 31 drug and OA-related targets, 1161 GO items, and 91 signaling pathways. Based on the analysis with PPI network and molecular docking, TP53, CCNB1, and MMP-2 were selected for the core targets of SJDTR against OA. Molecular docking demonstrated that Quercetin, Baicalein, and Luteolin, had good binding with the TP53, CCNB1, and MMP-2 protein, respectively. Conclusion. To conclude, our study suggested the main ingredients of SJDTR might alleviate the progression of OA through multiple targets and pathways. Additionally, network pharmacology and molecular docking, as new approaches, were adopted for systematically exploring the potential mechanism of SJDTR for the treatment of OA.
Collapse
|
26
|
Fu G, Yin F, Zhao J. Depletion of circ_0128846 ameliorates interleukin-1β-induced human chondrocyte apoptosis and inflammation through the miR-940/PTPN12 pathway. Int Immunopharmacol 2022; 110:108996. [DOI: 10.1016/j.intimp.2022.108996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/07/2022] [Accepted: 06/21/2022] [Indexed: 11/05/2022]
|
27
|
Zhou JL, Deng S, Fang HS, Peng H, Hu QJ. CircSPI1_005 ameliorates osteoarthritis by sponging miR-370-3p to regulate the expression of MAP3K9. Int Immunopharmacol 2022; 110:109064. [DOI: 10.1016/j.intimp.2022.109064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/05/2022]
|
28
|
Liu K, Fan XE, Zhang L, Yang Y, Zhou XL. Circ-NCX1 inhibits LPS-induced chondrocyte apoptosis by regulating the miR-133a/SIRT1 axis. Kaohsiung J Med Sci 2022; 38:992-1000. [PMID: 35894157 DOI: 10.1002/kjm2.12564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 02/08/2022] [Accepted: 04/26/2022] [Indexed: 11/08/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease, which is characterized by the degeneration of articular cartilage, thickening of subchondral bone, and inflammation of the synovial membrane. In this study, we aimed to investigate the effects and underlying mechanisms of circ-NCX1 in lipopolysaccharide (LPS)-induced injury in SW1353 chondrocytes, an in vitro model of OA. The levels of circ-NCX1, miR-133a, and related apoptotic proteins were determined by RT-qPCR. MTT assay was used to evaluate the cell viability. The apoptosis was determined by flow cytometry, whereas the expression of apoptosis proteins was detected by Western blot. Immunofluorescence was used to detect cleaved caspase-3 expression in cells. Luciferase reporter assay was used to verify the interaction between circ-NCX1 and miR-133a, and between miR-133a and Silent information regulator 2 homolog 1 (Sirt1). The results showed that the overexpression of circ-NCX1 significantly upregulated the chondrocyte viability and proliferation, and alleviated apoptosis in LPS-induced SW1353 cells. Immunofluorescence results showed that the overexpression of circ-NCX1 significantly reduced expression of LPS-stimulated cleaved Caspase-3. The RT-qPCR results showed that the overexpression of circ-NCX1 inhibited mRNA levels of cleaved Caspase-3 and Bax, and promoted mRNA levels of Bcl-2. Luciferase reporter assay showed that circ-NCX1 targeted miR-133a, and miR-133a directly targeted the Sirt1. In addition, overexpression of circ-NCX1 inhibited chondrocyte apoptosis and promoted Akt phosphorylation via the miR-133a/Sirt1 axis in LPS-induced chondrocytes. In conclusion, circ-NCX1 may serve as an important regulator of LPS-induced chondrocyte apoptosis through the miR-133a/Sirt1 axis, and may be involved in the development of OA.
Collapse
Affiliation(s)
- Kai Liu
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | - Xiao-E Fan
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | - Li Zhang
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | - Ying Yang
- Yan'an University, Yan'an City, Shaanxi Province, China
| | - Xiao-Ling Zhou
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| |
Collapse
|
29
|
Literature Mining of Disease Associated Noncoding RNA in the Omics Era. Molecules 2022; 27:molecules27154710. [PMID: 35897884 PMCID: PMC9331993 DOI: 10.3390/molecules27154710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Noncoding RNAs (ncRNA) are transcripts without protein-coding potential that play fundamental regulatory roles in diverse cellular processes and diseases. The application of deep sequencing experiments in ncRNA research have generated massive omics datasets, which require rapid examination, interpretation and validation based on exiting knowledge resources. Thus, text-mining methods have been increasingly adapted for automatic extraction of relations between an ncRNA and its target or a disease condition from biomedical literature. These bioinformatics tools can also assist in more complex research, such as database curation of candidate ncRNAs and hypothesis generation with respect to pathophysiological mechanisms. In this concise review, we first introduced basic concepts and workflow of literature mining systems. Then, we compared available bioinformatics tools tailored for ncRNA studies, including the tasks, applicability, and limitations. Their powerful utilities and flexibility are demonstrated by examples in a variety of diseases, such as Alzheimer’s disease, atherosclerosis and cancers. Finally, we outlined several challenges from the viewpoints of both system developers and end users. We concluded that the application of text-mining techniques will booster disease-associated ncRNA discoveries in the biomedical literature and enable integrative biology in the current omics era.
Collapse
|
30
|
Zeng CY, Wang XF, Hua FZ. HIF-1α in Osteoarthritis: From Pathogenesis to Therapeutic Implications. Front Pharmacol 2022; 13:927126. [PMID: 35865944 PMCID: PMC9294386 DOI: 10.3389/fphar.2022.927126] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis is a common age-related joint degenerative disease. Pain, swelling, brief morning stiffness, and functional limitations are its main characteristics. There are still no well-established strategies to cure osteoarthritis. Therefore, better clarification of mechanisms associated with the onset and progression of osteoarthritis is critical to provide a theoretical basis for the establishment of novel preventive and therapeutic strategies. Chondrocytes exist in a hypoxic environment, and HIF-1α plays a vital role in regulating hypoxic response. HIF-1α responds to cellular oxygenation decreases in tissue regulating survival and growth arrest of chondrocytes. The activation of HIF-1α could regulate autophagy and apoptosis of chondrocytes, decrease inflammatory cytokine synthesis, and regulate the chondrocyte extracellular matrix environment. Moreover, it could maintain the chondrogenic phenotype that regulates glycolysis and the mitochondrial function of osteoarthritis, resulting in a denser collagen matrix that delays cartilage degradation. Thus, HIF-1α is likely to be a crucial therapeutic target for osteoarthritis via regulating chondrocyte inflammation and metabolism. In this review, we summarize the mechanism of hypoxia in the pathogenic mechanisms of osteoarthritis, and focus on a series of therapeutic treatments targeting HIF-1α for osteoarthritis. Further clarification of the regulatory mechanisms of HIF-1α in osteoarthritis may provide more useful clues to developing novel osteoarthritis treatment strategies.
Collapse
Affiliation(s)
- Chu-Yang Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xi-Feng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xi-Feng Wang, ; Fu-Zhou Hua,
| | - Fu-Zhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xi-Feng Wang, ; Fu-Zhou Hua,
| |
Collapse
|
31
|
Lai X, Song Y, Tian J. CircCDK14 ameliorates interleukin-1β-induced chondrocyte damage by the miR-1183/KLF5 pathway in osteoarthritis. Autoimmunity 2022; 55:408-417. [PMID: 35723551 DOI: 10.1080/08916934.2022.2081843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND The pathogenesis of osteoarthritis (OA), an endemic and debilitating disease, remains unclear. The study aimed to reveal the role of circular RNA cyclin dependent kinase 14 (circCDK14) in OA development and the underlying mechanism. METHODS Human chondrocytes were stimulated by 10 ng/mL interleukin-1β (IL-1β) to mimic OA cell model. The RNA expression of circCDK14, microRNA-1183 (miR-1183) and kruppel like factor 5 (KLF5) was checked through quantitative real-time polymerase chain reaction. Western blot was employed to detect protein expression. Cell viability, proliferation and apoptosis were investigated by cell counting kit-8, 5-Ethynyl-29-deoxyuridine and flow cytometry analysis, respectively. Starbase online database was performed to identify the interaction between miR-1183 and circCDK14 or KLF5. Exosomes were isolated by differential centrifugation and identified by transmission electron microscopy, nanoparticle tracking analysis and western blot analysis. RESULTS CircCDK14 and KLF5 expression were significantly decreased, while miR-1183 was increased in OA cartilage tissues and IL-1β-treated chondrocytes in comparison with controls. CircCDK14 overexpression attenuated the inhibitory effect of IL-1β treatment on cell proliferation and the promoting effects on cell apoptosis and extracellular matrix degradation. Additionally, miR-1183 was targeted by circCDK14, and miR-1183 mimics reversed circCDK14-mediated actions in IL-1β-treated chondrocytes. The knockdown of KLF5, a target mRNA of miR-1183, also rescued the effects of miR-1183 inhibitors in IL-1β-induced chondrocytes. Moreover, circCDK14 could induce KLF5 expression by interacting with miR-1183. Further, exosomal circCDK14 had a high diagnostic value in OA. CONCLUSION CircCDK14 reintroduction assuaged IL-1β-caused chondrocyte damage by the miR-1183/KLF5 pathway, providing a diagnostic biomarker for OA.
Collapse
Affiliation(s)
- Xiaowei Lai
- Department of Rheumatology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi City, China
| | - Yali Song
- Department of Rheumatology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi City, China
| | - Jimei Tian
- Department of Rheumatology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi City, China
| |
Collapse
|
32
|
Tuo B, Chen Z, Dang Q, Chen C, Zhang H, Hu S, Sun Z. Roles of exosomal circRNAs in tumour immunity and cancer progression. Cell Death Dis 2022; 13:539. [PMID: 35676257 PMCID: PMC9177590 DOI: 10.1038/s41419-022-04949-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023]
Abstract
Tumour immunity plays an important role in the development of cancer. Tumour immunotherapy is an important component of antitumour therapy. Exosomes, a type of extracellular vesicle, act as mediators of intercellular communication and molecular transfer and play an essential role in tumour immunity. Circular RNAs (circRNAs) are a new type of noncoding RNA that are enriched within exosomes. In this review, we describe the effects of exosomal circRNAs on various immune cells and the mechanisms of these effects, including macrophages, neutrophils, T cells, and Natural killer (NK) cells. Next, we elaborate on the latest progress of exosome extraction. In addition, the function of exosomal circRNAs as a potential prognostic and drug sensitivity marker is described. We present the great promise of exosomal circRNAs in regulating tumour immunity, predicting patient outcomes, and evaluating drug efficacy.
Collapse
Affiliation(s)
- Baojing Tuo
- grid.412633.10000 0004 1799 0733Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.207374.50000 0001 2189 3846Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Zhuang Chen
- grid.412633.10000 0004 1799 0733Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Qin Dang
- grid.412633.10000 0004 1799 0733Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Chen Chen
- grid.207374.50000 0001 2189 3846School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Hao Zhang
- grid.412633.10000 0004 1799 0733Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Shengyun Hu
- grid.412633.10000 0004 1799 0733Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Zhenqiang Sun
- grid.412633.10000 0004 1799 0733Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| |
Collapse
|
33
|
Qi A, Ru W, Yang H, Yang Y, Tang J, Yang S, Lan X, Lei C, Sun X, Chen H. Circular RNA ACTA1 Acts as a Sponge for miR-199a-5p and miR-433 to Regulate Bovine Myoblast Development through the MAP3K11/MAP2K7/JNK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3357-3373. [PMID: 35234473 DOI: 10.1021/acs.jafc.1c07762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Circular RNAs (circRNAs) are a special class of noncoding RNA molecules that regulate many different biological processes. Myogenesis, a complex process, is primarily regulated by myogenic regulatory factors (MRFs) and various noncoding RNAs. However, the functions and regulatory mechanisms of circRNAs in myoblast development are unclear. In this study, we analyzed circRNA sequencing data of bovine myocyte tissues and identified circACTA1. Functional assays showed that circACTA1 could inhibit bovine myocyte proliferation and promote cell apoptosis and cytodifferentiation. In addition, circACTA1 could promote muscle repair in vivo. Mechanistically, luciferase assay and RNA immunoprecipitation were used to examine the interaction between circACTA1, miR-199a-5p, miR-433, and the target genes MAP3K11 and MAPK8. Meanwhile, we found that miR-199a-5p and miR-433 could suppress the expression of MAP3K11 and MAPK8, respectively. However, circACTA1 could mitigate this effect and activate the JNK signaling pathway. In conclusion, our results suggest that circACTA1 regulates the multiplication, apoptosis, and cytodifferentiation of bovine myocytes by competitively combining with miR-199a-5p and miR-433 to activate the mitogen-activated protein kinase kinase kinase 11 (MAP3K11)/mitogen-activated protein kinase kinase 7 (MAP2K7)/JNK signaling pathway.
Collapse
Affiliation(s)
- Ao Qi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Wenxiu Ru
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Haiyan Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Yu Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Jia Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Shuling Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Xiuzhu Sun
- College of Grassland Agriculture, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
34
|
Lu S, Wu X, Xin S, Zhang J, Lin H, Miao Y, Li Y. Knockdown of circ_0001679 alleviates lipopolysaccharide-induced MLE-12 lung cell injury by regulating the miR-338-3p/ mitogen-activated protein kinase 1 axis. Bioengineered 2022; 13:5803-5817. [PMID: 35264058 PMCID: PMC8973724 DOI: 10.1080/21655979.2022.2034564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The upregulation of circ_0001679 was reported in lipopolysaccharide (LPS)-induced lung injury mouse model, but its functional roles and mechanisms in LPS-induced lung injury remain to be investigated. In this study, we aimed to explore the potential role of circ_0001679 in septic acute lung injury. We initially established an in vitro lung cell injury model using LPS-treated MLE-12 cells. siRNAs targeting circRNA_0001679 were employed to stably knock down circRNA_0001679, followed by functional assays to investigate the effect of circRNA_0001679 silencing. The levels of inflammatory cytokines such as IL-6, IL-β and TNF-α (Tumor necrosis factor-α) were detected by ELISA (Enzyme-linked immunosorbent assay). Meanwhile, protein levels of Bcl-2, cleaved-caspase 3, Bax, and MAPK1 (Mitogen-Activated Protein Kinase 1) proteins expression level were measured by Western blot. We found that Circ_0001679 was upregulated in LPS-induced MLE-12 cells, and silencing circ_0001679 attenuated the growth inhibition and suppressed apoptosis induced by LPS. Circ_0001679 knockdown also lowered levels of IL-6, IL-β and TNF-α, and prevent the activation of cleaved-caspase 3 protein. We further revealed that circ_0001679 functioned as a sponge of miR-338-3p to negatively regulate miR-338-3p activity. miR-338-3p downregulated its downstream target MAPK1, while the upregulation of circ_0001679 maintained a high-level expression of MAPK1 by suppressing miR-338-3p. Collectively, our study indicates that circ_0001679/miR-338-3p/MAPK1 axis may play an important role in the pathogenesis of acute lung injury (ALI).
Collapse
Affiliation(s)
- Shenggui Lu
- Intensive Care Unit, The 910th Hospital of People's Liberation Army Joint Logistic Support Force, Quanzhou, China
| | - Xinmiao Wu
- Department of Emergency, Hospital of Traditional Chinese Medicine, Quanzhou, Fujian Provice, China
| | - Shuai Xin
- Department of Anesthesiology, The 910th Hospital of People's Liberation Army Joint Logistic Support Force, China
| | - Jing Zhang
- Intensive Care Unit, The 910th Hospital of People's Liberation Army Joint Logistic Support Force, Quanzhou, China
| | - Hanying Lin
- Intensive Care Unit, The 910th Hospital of People's Liberation Army Joint Logistic Support Force, Quanzhou, China
| | - Yu Miao
- Department of Nursing, The 910th Hospital of People's Liberation Army Joint Logistic Support Force, Quanzhou, Fujian, China
| | - Yixin Li
- Intensive Care Unit, The 910th Hospital of People's Liberation Army Joint Logistic Support Force, Quanzhou, China
| |
Collapse
|
35
|
Zhang S, Luo J, Zeng S. Circ-LRP1B functions as a competing endogenous RNA to regulate proliferation, apoptosis and oxidative stress of LPS-induced human C28/I2 chondrocytes. J Bioenerg Biomembr 2022; 54:93-108. [PMID: 35274224 DOI: 10.1007/s10863-022-09932-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/26/2022] [Indexed: 01/09/2023]
Abstract
Circular RNAs (circRNAs) are crucial for the pathogenesis of human diseases, including osteoarthritis (OA). Here, we set to elucidate the biological action of circ-LRP1B in OA pathogenesis. Human C28/I2 chondrocytes were stimulated by lipopolysaccharide (LPS). Circ-LRP1B, nuclear factor, erythroid 2 like 1 (NRF1) and microRNA (miR)-34a-5p were quantified by quantitative real-time PCR (qRT-PCR) or immunoblotting. Cell viability, proliferation, and apoptosis abilities were gauged by MTT, 5-Ethynyl-2'-Deoxyuridine (EdU) staining, and flow cytometry assays, respectively. Direct relationship between miR-34a-5p and circ-LRP1B or NRF1 was validated by RNA pull-down and dual-luciferase reporter assays. Circ-LRP1B was found to be underexpressed in OA cartilage and LPS-stimulated C28/I2 chondrocytes. Enforced expression of circ-LRP1B promoted cell proliferation, and repressed apoptosis and oxidative stress, as well as impacted OA-specific hallmarks expression of LPS-stimulated C28/I2 cells. NRF1 was identified as a downstream effector of circ-LRP1B function. Moreover, NRF1 was identified as a miR-34a-5p target in LPS-stimulated C28/I2 cells. Circ-LRP1B acted as a competing endogenous RNA (ceRNA) for miR-34a-5p to involve the post-transcriptional regulation of NRF1 expression. Furthermore, the effects of circ-LRP1B overexpression partly depended on the reduction of available miR-34a-5p. These findings demonstrate that circ-LRP1B functions as a ceRNA to regulate the proliferation, apoptosis and oxidative stress of LPS-stimulated human C28/I2 chondrocytes by miR-34a-5p/NRF1 network.
Collapse
Affiliation(s)
- Sixiao Zhang
- Department of Orthopedics, Ningbo Hangzhou Bay Hospital, Shuai Zeng, No. 1155 Binghai Second Road, Hangzhou Bay New Zone, Zhejiang Province, 315336, Zhejiang, China
| | - Jian Luo
- Department of Orthopedics, Ningbo Hangzhou Bay Hospital, Shuai Zeng, No. 1155 Binghai Second Road, Hangzhou Bay New Zone, Zhejiang Province, 315336, Zhejiang, China
| | - Shuai Zeng
- Department of Orthopedics, Ningbo Hangzhou Bay Hospital, Shuai Zeng, No. 1155 Binghai Second Road, Hangzhou Bay New Zone, Zhejiang Province, 315336, Zhejiang, China.
| |
Collapse
|
36
|
Song L, Li X, Sun Q, Zhao Y. Fxyd5 activates the NF‑κB pathway and is involved in chondrocytes inflammation and extracellular matrix degradation. Mol Med Rep 2022; 25:134. [PMID: 35191523 PMCID: PMC8908309 DOI: 10.3892/mmr.2022.12650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/17/2021] [Indexed: 11/25/2022] Open
Abstract
It is known that increased inflammation and extracellular matrix (ECM) degradation in chondrocytes can promote the development of osteoarthritis (OA). The FXYD domain containing ion transport regulator 5 (Fxyd5) has been found to promote chronic inflammatory responses. The present study aimed to investigate the role of Fxyd5 in OA. Murine ATDC5 chondrocytes were transfected with short hairpin RNAs specifically targeting Fxyd5 to silence its expression. Subsequently, cells were induced with lipopolysaccharide (LPS). The protein expression levels of Fxyd5, MMPs and proteins related to ECM, apoptosis and NF-κB signaling were detected using western blot analysis. In addition, cell viability was assessed using a Cell Counting Kit-8 assay, while the secretion of the proinflammatory factors and those of the oxidative stress-related markers were measured using the corresponding kits. Finally, cells were treated with the NF-κB activator, betulinic acid (BA) and the above experiments were repeated. The results demonstrated that Fxyd5 was significantly upregulated in ATDC5 cells treated with LPS. Additionally, Fxyd5 knockdown increased cell viability, enhanced the protein expression of Bcl-2, Aggrecan and collagen II, while reduced the expression of Bax, cleaved caspase-3/caspase-3, MMP3 and MMP13 in LPS-induced ATDC5 cells. The production of IL-1β, IL-6 and IL-18 as well as reactive oxygen species and malondialdehyde, and the reduction of superoxide dismutase caused by LPS in ATDC5 cells, were also reversed by Fxyd5 silencing. Fxyd5 silencing inhibited the phosphorylation of p65 and IκBα induced by LPS. Finally, BA reversed the protective effect of Fxyd5 silencing on LPS induced chondrocytes injury. In conclusion, Fxyd5 could enhance chondrocyte inflammation and ECM degradation via activating the NF-κB signaling.
Collapse
Affiliation(s)
- Lulu Song
- Capital University of Physical Education and Sports, Haidian, Beijing 100191, P.R. China
| | - Xingxing Li
- Capital University of Physical Education and Sports, Haidian, Beijing 100191, P.R. China
| | - Qingwan Sun
- University of Derby, Derby DE1 3PF, United Kingdom
| | - Yifeng Zhao
- Faculty of Education, Beijing Normal University, Beijing 100875, P.R. China
| |
Collapse
|
37
|
Luobu Z, Wang L, Jiang D, Liao T, Luobu C, Qunpei L. CircSCAPER contributes to IL-1β-induced osteoarthritis in vitro via miR-140-3p/EZH2 axis. Bone Joint Res 2022; 11:61-72. [PMID: 35103493 PMCID: PMC8882325 DOI: 10.1302/2046-3758.112.bjr-2020-0482.r2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aims Circular RNA (circRNA) S-phase cyclin A-associated protein in the endoplasmic reticulum (ER) (circSCAPER, ID: hsa_circ_0104595) has been found to be highly expressed in osteoarthritis (OA) patients and has been associated with the severity of OA. Hence, the role and mechanisms underlying circSCAPER in OA were investigated in this study. Methods In vitro cultured human normal chondrocyte C28/I2 was exposed to interleukin (IL)-1β to mimic the microenvironment of OA. The expression of circSCAPER, microRNA (miR)-140-3p, and enhancer of zeste homolog 2 (EZH2) was detected using quantitative real-time polymerase chain reaction and Western blot assays. The extracellular matrix (ECM) degradation, proliferation, and apoptosis of chondrocytes were determined using Western blot, cell counting kit-8, and flow cytometry assays. Targeted relationships were predicted by bioinformatic analysis and verified using dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. The levels of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway-related protein were detected using Western blot assays. Results CircSCAPER was highly expressed in OA cartilage tissues and IL-1β-induced chondrocytes. Knockdown of circSCAPER reduced IL-1β-evoked ECM degradation, proliferation arrest, and apoptosis enhancement in chondrocytes. Mechanistically, circSCAPER directly bound to miR-140-3p, and miR-140-3p inhibition reversed the effects of circSCAPER knockdown on IL-1β-induced chondrocytes. miR-140-3p was verified to target EZH2, and overexpression of miR-140-3p protected chondrocytes against IL-1β-induced dysfunction via targeting EZH2. Additionally, we confirmed that circSCAPER could regulate EZH2 through sponging miR-140-3p, and the circSCAPER/miR-140-3p/EZH2 axis could activate the PI3K/AKT pathway. Conclusion CircSCAPER promoted IL-1β-evoked ECM degradation, proliferation arrest, and apoptosis enhancement in chondrocytes via regulating miR-140-3p/EZH2 axis, which gained a new insight into the pathogenesis of OA. Cite this article: Bone Joint Res 2022;11(2):61–72.
Collapse
Affiliation(s)
- Zhaxi Luobu
- Department of Orthopedics, Lhasa People's Hospital, Lhasa City, Tibet, China
| | - Lei Wang
- Department of Orthopedics, Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Dahai Jiang
- Department of Orthopedics, Lhasa People's Hospital, Lhasa City, Tibet, China
| | - Tao Liao
- Department of Orthopedics, Lhasa People's Hospital, Lhasa City, Tibet, China
| | - Ciren Luobu
- Department of Orthopedics, Lhasa People's Hospital, Lhasa City, Tibet, China
| | - Luosong Qunpei
- Department of Orthopedics, Lhasa People's Hospital, Lhasa City, Tibet, China
| |
Collapse
|
38
|
Du Y, Zhang JY, Gong LP, Feng ZY, Wang D, Pan YH, Sun LP, Wen JY, Chen GF, Liang J, Chen JN, Shao CK. Hypoxia-induced ebv-circLMP2A promotes angiogenesis in EBV-associated gastric carcinoma through the KHSRP/VHL/HIF1α/VEGFA pathway. Cancer Lett 2022; 526:259-272. [PMID: 34863886 DOI: 10.1016/j.canlet.2021.11.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022]
Abstract
EBV-encoded circular RNA LMP2A (ebv-circLMP2A) was found to be expressed in EBV-associated gastric carcinoma (EBVaGC) and associated with distant metastasis and poor prognosis. Angiogenesis is a key step in tumor invasion and metastasis and plays a crucial role in tumor progression. However, it is unclear whether and how ebv-circLMP2A is involved in angiogenesis. In this study, we showed that MVD, HIF1α, and VEGFA expression was increased in EBVaGC mouse xenografts with high expression of ebv-circLMP2A. The expression of ebv-circLMP2A was positively correlated with MVD, HIF1α, and VEGFA expression in clinical samples of EBVaGC. Knockdown of ebv-circLMP2A repressed tube formation and migration of HUVECs and decreased VEGFA and HIF1α expression in cancer cells under hypoxia, while ectopic expression of ebv-circLMP2A reversed these effects. Additionally, knockdown of HIF1α blocked the upregulation of ebv-circLMP2A by hypoxia, and ebv-circLMP2A interacted with KHSRP to enhance KHSRP-mediated decay of VHL mRNA, leading to the accumulation of HIF1α under hypoxia. There was a positive feedback loop between HIF1α and ebv-circLMP2A that promotes angiogenesis under hypoxia. ebv-circLMP2A was essential in regulating tumor angiogenesis in EBVaGC and might provide a valuable therapeutic target for EBVaGC.
Collapse
Affiliation(s)
- Yu Du
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing-Yue Zhang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li-Ping Gong
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Ying Feng
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Deyu Wang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu-Hang Pan
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li-Ping Sun
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing-Yun Wen
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gao-Feng Chen
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Liang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian-Ning Chen
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Chun-Kui Shao
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
39
|
Interplay between circular RNA, microRNA, and human diseases. Mol Genet Genomics 2022; 297:277-286. [PMID: 35084582 DOI: 10.1007/s00438-022-01856-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/04/2022] [Indexed: 12/09/2022]
Abstract
Circular RNAs (circRNAs) are endogenous RNA formed by the back splicing process. They are ubiquitous, stable, evolutionally conserved, and are tissue-specific. The biochemical and molecular features of circRNAs hold the potential to be used as biomarkers in various diseases to achieve pharmacological goals. CircRNAs have numerous latent modes of action, from acting as sponges for microRNAs and RNA binding proteins to serve as transcriptional regulators, epigenetic alterations, etc. Dysregulated functioning of several circular RNAs lead to the progression of a plethora of diseases. Due to their extremely stable nature and amazing tissue specificity, circRNAs have paved the way for advanced clinical studies as a novel method of early disease detection and treatment efficacy. Therefore, they have been recognized as a latent diagnostic biomarker for neurodegenerative diseases, diabetes, osteoarthritis, and cardiovascular diseases.
Collapse
|
40
|
Kim J. Dysregulated circular RNAs and their pathological implications in knee osteoarthritis: potential novel therapeutic targets and diagnostic biomarkers. ALL LIFE 2022. [DOI: 10.1080/26895293.2021.2020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Jaehee Kim
- Department of Alternative Medicine, Graduate School of Alternative Medicine, Kyonggi University (Seoul Campus), Seoul, Republic of Korea
| |
Collapse
|
41
|
Kong H, Sun ML, Zhang XA, Wang XQ. Crosstalk Among circRNA/lncRNA, miRNA, and mRNA in Osteoarthritis. Front Cell Dev Biol 2022; 9:774370. [PMID: 34977024 PMCID: PMC8714905 DOI: 10.3389/fcell.2021.774370] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a joint disease that is pervasive in life, and the incidence and mortality of OA are increasing, causing many adverse effects on people's life. Therefore, it is very vital to identify new biomarkers and therapeutic targets in the clinical diagnosis and treatment of OA. ncRNA is a nonprotein-coding RNA that does not translate into proteins but participates in protein translation. At the RNA level, it can perform biological functions. Many studies have found that miRNA, lncRNA, and circRNA are closely related to the course of OA and play important regulatory roles in transcription, post-transcription, and post-translation, which can be used as biological targets for the prevention, diagnosis, and treatment of OA. In this review, we summarized and described the various roles of different types of miRNA, lncRNA, and circRNA in OA, the roles of different lncRNA/circRNA-miRNA-mRNA axis in OA, and the possible prospects of these ncRNAs in clinical application.
Collapse
Affiliation(s)
- Hui Kong
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Ming-Li Sun
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xin-An Zhang
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
42
|
Hu B, Xiao L, Wang C, Liu C, Zhang Y, Ding B, Gao D, Lu Y, Xu H. Circ_0022382 ameliorated intervertebral disc degeneration by regulating TGF-β3 expression through sponge adsorption of miR-4726-5p. Bone 2022; 154:116185. [PMID: 34537436 DOI: 10.1016/j.bone.2021.116185] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022]
Abstract
Circular RNAs (circRNAs) participate in the progression of many diseases, but knowledge on the role of circRNAs in intervertebral disc degeneration (IDD) is limited. In this study, we discovered the characteristics of a new circRNA (circ_0022382) in human endplate chondrocytes. Currently, real-time quantitative polymerase chain reaction (RT-qPCR) showed that the relative expression level of circ_0022382 was significantly lower under intermittent cyclic tension stimulation than in the control group. circ_0022382, miR-4726-5p and Transforming growth factor 3 (TGF-β3) were evaluated by RT-qPCR, Western Blot and immunofluorescence assay. Additionally, the role and mechanism of circ_0022382 in vivo were also consistent in the rat model. Furthermore, Intermittent cyclic mechanical tension can cause degeneration of endplate chondrocytes. The tension-sensitive circRNA_0022382 was decreased, and we found that circRNA_0022382 promoted morphology of endplate chondrocytes by sponge-binding miR-4726-5p down-regulation of target gene the TGF-β3 expression, thereby alleviating IDD. In a rat model of acupuncture, intervertebral disc injection of circ_0022382 relieved the progression of IDD in vivo. In conclusion, the circ_0022382/miR-4726-5p/TGF-β3 axis plays a key role in the anabolism and catabolism of the endplate chondrocyte extracellular matrix (ECM). It is suggested that circ_0022382 may provide a new approach for the prevention and treatment of IDD.
Collapse
Affiliation(s)
- Bo Hu
- Yijishan Hospital of Wannan Medical College Wuhu, Anhui, China; Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Liang Xiao
- Yijishan Hospital of Wannan Medical College Wuhu, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher education Institution, Wannan Medical College, Wuhu 241001, China
| | - Chong Wang
- Yijishan Hospital of Wannan Medical College Wuhu, Anhui, China
| | - Chen Liu
- Yijishan Hospital of Wannan Medical College Wuhu, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher education Institution, Wannan Medical College, Wuhu 241001, China
| | - Yu Zhang
- Yijishan Hospital of Wannan Medical College Wuhu, Anhui, China
| | - Baiyang Ding
- Yijishan Hospital of Wannan Medical College Wuhu, Anhui, China
| | - Daokuan Gao
- Yijishan Hospital of Wannan Medical College Wuhu, Anhui, China
| | - Yanqing Lu
- Guangxi Medical University Nanning, Guangxi, China
| | - Hongguang Xu
- Yijishan Hospital of Wannan Medical College Wuhu, Anhui, China.
| |
Collapse
|
43
|
Yuan Y, Yang X, Xie D. Role of hsa_circ_0066966 in proliferation and migration of hepatitis B virus-related liver cancer cells. Exp Ther Med 2022; 23:87. [PMID: 34976133 PMCID: PMC8674973 DOI: 10.3892/etm.2021.11010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
A large proportion of liver cancer cases is caused by hepatitis B virus (HBV) infection. In recent years, an increasing number of reports have indicated that circular RNAs (circRNAs) exert regulatory effects in cancer development, whereas the role of circRNAs in HBV-positive liver cancer requires further investigation. In the present study, abnormally expressed circRNAs were identified in HBV-positive liver cancer cells through microarray analysis. A total of 1,493 differentially expressed circRNAs [absolute fold-change (FC) ≥2] in HBV-positive liver cancer cells were detected, of which 171 were upregulated and 1,322 were downregulated. Subsequently, Gene Ontology enrichment analysis indicated that the genes of dysregulated circRNAs were mainly involved in regulating Sertoli cell differentiation and development, as well as telomeric DNA binding. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that most of these genes were enriched in cancer-related signaling pathways, including the MAPK and Hippo signaling pathways. Next, the expression levels of the top-10 dysregulated circRNAs were verified in HBV-positive liver cancer cells through reverse transcription-quantitative PCR. Among them, hsa_circ_0066966 had the highest absolute Log2FC value and was abnormally increased in HBV-positive liver cancer cells. Functional experiments further verified that knockdown of hsa_circ_0066966 had a significant inhibitory effect on the proliferation and migration of HBV-positive liver cancer cells. By contrast, overexpression of hsa_circ_0066966 in HBV-negative liver cancer cells resulted in the opposite effect. In conclusion, in the present study, comprehensive circRNA profiling in HBV-positive liver cancer cells indicated that hsa_circ_0066966 may regulate the progression of HBV-positive liver cancer.
Collapse
Affiliation(s)
- Yinghua Yuan
- Department of Infectious Diseases, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Xiaojin Yang
- Department of Infectious Diseases, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Desheng Xie
- Department of Infectious Diseases, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
44
|
Tang S, Chen P, Zhang H, Weng H, Fang Z, Chen C, Peng G, Gao H, Hu K, Chen J, Chen L, Chen X. Comparison of Curative Effect of Human Umbilical Cord-Derived Mesenchymal Stem Cells and Their Small Extracellular Vesicles in Treating Osteoarthritis. Int J Nanomedicine 2021; 16:8185-8202. [PMID: 34938076 PMCID: PMC8687685 DOI: 10.2147/ijn.s336062] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/04/2021] [Indexed: 01/15/2023] Open
Abstract
Introduction Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and their small extracellular vesicles (hUC-MSC-sEVs) have shown attractive prospects applying in regenerative medicine. This study aimed to compare the therapeutic effects of two agents on osteoarthritis (OA) and investigate underlying mechanism using proteomics. Methods In vitro, the proliferation and migration abilities of chondrocytes treated with hUC-MSCs or hUC-MSC-sEVs were detected by Cell Counting Kit-8 assay and scratch wound assay. In vivo, hUC-MSCs (a single dose of 5 × 105) or hUC-MSC-sEVs (30 μg/time) were injected into the knee joints of anterior cruciate ligament transection-induced OA model. Hematoxylin and eosin, Safranin O/Fast Green staining were used to observe cartilage degeneration. The levels of cartilage matrix metabolic molecules (Collagen II, MMP13 and ADAMTS5) and macrophage polarization markers (CD14, IL-1β, IL-10 and CD206) were assessed by immunohistochemistry. Finally, proteomics analysis was performed to characterize the proteinaceous contents of two agents. Results In vitro data showed that hUC-MSC-sEVs were taken up by chondrocytes. A total of 15 μg/mL of sEVs show the greatest proliferative and migratory capacities among all groups. In the animal study, hUC-MSCs and hUC-MSC-sEVs alleviated cartilage damage. This effect was mediated via maintaining cartilage homeostasis, as was confirmed by upregulation of the COL II and downregulation of the MMP13 and ADAMTS5. Moreover, the M1 macrophage markers (CD14) were significantly reduced, while the M2 macrophage markers (CD206 and IL-10) were increased in the hUC-MSCs and hUC-MSC-sEVs relative to the untreated group. Mechanistically, we found that many proteins connected to cartilage repair were more abundant in sEVs. Notably, compared to hUC-MSCs, the upregulated proteins in sEVs were mostly involved in the regulation of immune effector process, extracellular matrix organization, PI3K-AKT signaling pathways, and Rap1 signaling pathway. Conclusion Our study indicated that hUC-MSC-sEVs protect cartilage from damage and many cartilage repair-related proteins are probably involved in the restoration process. These data suggest the promising potential of hUC-MSC-sEVs as a therapeutic agent for OA.
Collapse
Affiliation(s)
- Shijie Tang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, 350001, People's Republic of China.,Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, Fuzhou, 350001, People's Republic of China.,Oncology Institution, Fujian Medical University, Fuzhou, 350004, People's Republic of China
| | - Penghong Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, 350001, People's Republic of China.,Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, Fuzhou, 350001, People's Republic of China.,Oncology Institution, Fujian Medical University, Fuzhou, 350004, People's Republic of China
| | - Haoruo Zhang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, 350001, People's Republic of China.,Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, Fuzhou, 350001, People's Republic of China.,Oncology Institution, Fujian Medical University, Fuzhou, 350004, People's Republic of China
| | - Haiyan Weng
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, 350001, People's Republic of China.,Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, Fuzhou, 350001, People's Republic of China.,Oncology Institution, Fujian Medical University, Fuzhou, 350004, People's Republic of China
| | - Zhuoqun Fang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, 350001, People's Republic of China.,Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, Fuzhou, 350001, People's Republic of China.,Oncology Institution, Fujian Medical University, Fuzhou, 350004, People's Republic of China
| | - Caixiang Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, 350001, People's Republic of China.,Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, Fuzhou, 350001, People's Republic of China.,Oncology Institution, Fujian Medical University, Fuzhou, 350004, People's Republic of China
| | - Guohao Peng
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, 350001, People's Republic of China.,Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, Fuzhou, 350001, People's Republic of China.,Oncology Institution, Fujian Medical University, Fuzhou, 350004, People's Republic of China
| | - Hangqi Gao
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, 350001, People's Republic of China.,Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, Fuzhou, 350001, People's Republic of China.,Oncology Institution, Fujian Medical University, Fuzhou, 350004, People's Republic of China
| | - Kailun Hu
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, 350001, People's Republic of China.,Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, Fuzhou, 350001, People's Republic of China.,Oncology Institution, Fujian Medical University, Fuzhou, 350004, People's Republic of China
| | - Jinghua Chen
- Department of Pharmaceutical Analysis, the School of Pharmacy, Fujian Medical University, Fuzhou, 350100, People's Republic of China
| | - Liangwan Chen
- Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, Fuzhou, 350001, People's Republic of China.,Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China
| | - Xiaosong Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, 350001, People's Republic of China.,Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, Fuzhou, 350001, People's Republic of China
| |
Collapse
|
45
|
Deng J, Zong Z, Su Z, Chen H, Huang J, Niu Y, Zhong H, Wei B. Recent Advances in Pharmacological Intervention of Osteoarthritis: A Biological Aspect. Front Pharmacol 2021; 12:772678. [PMID: 34887766 PMCID: PMC8649959 DOI: 10.3389/fphar.2021.772678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease in the musculoskeletal system with a relatively high incidence and disability rate in the elderly. It is characterized by the degradation of articular cartilage, inflammation of the synovial membrane, and abnormal structure in the periarticular and subchondral bones. Although progress has been made in uncovering the molecular mechanism, the etiology of OA is still complicated and unclear. Nevertheless, there is no treatment method that can effectively prevent or reverse the deterioration of cartilage and bone structure. In recent years, in the field of pharmacology, research focus has shifted to disease prevention and early treatment rather than disease modification in OA. Biologic agents become more and more attractive as their direct or indirect intervention effects on the initiation or development of OA. In this review, we will discuss a wide spectrum of biologic agents ranging from DNA, noncoding RNA, exosome, platelet-rich plasma (PRP), to protein. We searched for key words such as OA, DNA, gene, RNA, exosome, PRP, protein, and so on. From the pharmacological aspect, stem cell therapy is a very special technique, which is not included in this review. The literatures ranging from January 2016 to August 2021 were included and summarized. In this review, we aim to help readers have a complete and precise understanding of the current pharmacological research progress in the intervention of OA from the biological aspect and provide an indication for the future translational studies.
Collapse
Affiliation(s)
- Jinxia Deng
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Zhixian Zong
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Zhanpeng Su
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Haicong Chen
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Jianping Huang
- College of Dentistry, Yonsei University, Seoul, South Korea.,Department of Stomatology, Guangdong Medical University, Zhanjiang, China
| | - Yanru Niu
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Huan Zhong
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Bo Wei
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
46
|
Liu J, Zhao X, Duan X, Zhang W, Li C. CircRNA75 and CircRNA72 Function as the Sponge of MicroRNA-200 to Suppress Coelomocyte Apoptosis Via Targeting Tollip in Apostichopus japonicus. Front Immunol 2021; 12:770055. [PMID: 34868028 PMCID: PMC8635487 DOI: 10.3389/fimmu.2021.770055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023] Open
Abstract
Circular RNAs (circRNAs) act as essential regulators in many biological processes, especially in mammalian immune response. Nonetheless, the functions and mechanisms of circRNAs in the invertebrate immune system are largely unclarified. In our previous work, 261 differentially expressed circRNAs potentially related to the development of Apostichopus japonicus skin ulceration syndrome (SUS), which is a major problem restricting the sea cucumber breeding industry, were identified by genome-wide screening. In this study, via miRanda analysis, both circRNA75 and circrRNA72 were shown to share the miR-200 binding site, a key microRNA in the SUS. The two circRNAs were verified to be increased significantly in LPS-exposed primary coelomocytes, similar to the results of circRNA-seq in sea cucumber under Vibrio splendidus-challenged conditions. A dual-luciferase assay indicated that both circRNA75 and circRNA72 could bind miR-200 in vivo, in which circRNA75 had four binding sites of miR-200 and only one for circRNA72. Furthermore, we found that miR-200 could bind the 3’-UTR of Toll interacting protein (Tollip) to negatively mediate the expression of Tollip. Silencing Tollip increased primary coelomocyte apoptosis. Consistently, inference of circRNA75 and circRNA72 could also downregulate Tollip expression, thereby increasing the apoptosis of primary coelomocytes, which could be blocked by miR-200 inhibitor treatment. Moreover, the rate of si-circRNA75-downregulated Tollip expression was higher than that of si-circRNA72 under an equivalent amount. CircRNA75 and circRNA72 suppressed coelomocyte apoptosis by sponging miR-200 to promote Tollip expression. The ability of circRNA to adsorb miRNA might be positively related to the number of binding sites for miRNA.
Collapse
Affiliation(s)
- Jiqing Liu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Xuelin Zhao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Xuemei Duan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Weiwei Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
47
|
Ghafouri-Fard S, Poulet C, Malaise M, Abak A, Mahmud Hussen B, Taheriazam A, Taheri M, Hallajnejad M. The Emerging Role of Non-Coding RNAs in Osteoarthritis. Front Immunol 2021; 12:773171. [PMID: 34912342 PMCID: PMC8666442 DOI: 10.3389/fimmu.2021.773171] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OS) is the most frequent degenerative condition in the joints, disabling many adults. Several abnormalities in the articular cartilage, subchondral bone, synovial tissue, and meniscus have been detected in the course of OA. Destruction of articular cartilage, the formation of osteophytes, subchondral sclerosis, and hyperplasia of synovial tissue are hallmarks of OA. More recently, several investigations have underscored the regulatory roles of non-coding RNAs (ncRNAs) in OA development. Different classes of non-coding RNAs, including long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), have been reported to affect the development of OA. The expression level of these transcripts has also been used as diagnostic tools in OA. In the present article, we aimed at reporting the role of these transcripts in this process. We need to give a specific angle on the pathology to provide meaningful thoughts on it.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Christophe Poulet
- Department of Rheumatology, University Hospital of Liège (CHULiege), Liège, Belgium
- Fibropôle Research Group, University Hospital of Liège (CHULiege), Liège, Belgium
- GIGA-I3 Research Group, GIGA Institute, University of Liège (ULiege) and University Hospital of Liège (CHULiege), Liège, Belgium
| | - Michel Malaise
- Department of Rheumatology, University Hospital of Liège (CHULiege), Liège, Belgium
- Fibropôle Research Group, University Hospital of Liège (CHULiege), Liège, Belgium
- GIGA-I3 Research Group, GIGA Institute, University of Liège (ULiege) and University Hospital of Liège (CHULiege), Liège, Belgium
| | - Atefe Abak
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Afshin Taheriazam
- Department of Orthopedics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri, ; Mohammad Hallajnejad,
| | - Mohammad Hallajnejad
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Mohammad Hallajnejad,
| |
Collapse
|
48
|
Liu F, Yang H, Li D, Wu X, Han Q. Punicalagin attenuates osteoarthritis progression via regulating Foxo1/Prg4/HIF3α axis. Bone 2021; 152:116070. [PMID: 34171516 DOI: 10.1016/j.bone.2021.116070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/18/2021] [Accepted: 06/20/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Punicalagin (PUN) is a common anti-inflammatory polyphenol. However, the function and mechanism of PUN in osteoarthritis remains unknown. METHODS Chondrocytes were isolated from rats, and confirmed by toluidine blue staining and immunofluorescence. Chondrocytes were challenged by lipopolysaccharide (LPS), and rat osteoarthritis model was established by Hulth method. The secretion of inflammatory factors, cell viability and apoptosis were tested via enzyme linked immunosorbent assay (ELISA), MTT and flow cytometry. The levels of forkhead box O1 (Foxo1), proteoglycan 4 (Prg4), hypoxia-inducible factor-3α (HIF3α), autophagy-related genes or extracellular matrix (ECM)-related proteins were examined via quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blot or immunohistochemistry. The cartilage tissue damage was assessed via hematoxylin-eosin (HE) staining, toluidine blue staining and terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick and labeling (TUNEL) staining. RESULTS LPS triggered inflammatory injury in chondrocytes. PUN promoted autophagy to mitigate LPS-induced inflammatory injury. Foxo1 silence attenuated the effect of PUN on LPS-mediated autophagy inhibition and inflammatory injury. Promotion of Prg4/HIF3α axis abolished the influence of Foxo1 knockdown on LPS-mediated chondrocytes injury. PUN mitigated the inflammatory injury in rat osteoarthritis model by promoting autophagy and inhibiting inflammation and ECM degradation via Foxo1/Prg4/HIF3α axis. CONCLUSION PUN attenuates LPS-induced chondrocyte injury and osteoarthritis progression by regulating Foxo1/Prg4/HIF3α axis.
Collapse
Affiliation(s)
- FeiFei Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hao Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - DongZhe Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - XueJian Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - QiCai Han
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China..
| |
Collapse
|
49
|
Ali SA, Peffers MJ, Ormseth MJ, Jurisica I, Kapoor M. The non-coding RNA interactome in joint health and disease. Nat Rev Rheumatol 2021; 17:692-705. [PMID: 34588660 DOI: 10.1038/s41584-021-00687-y] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Non-coding RNAs have distinct regulatory roles in the pathogenesis of joint diseases including osteoarthritis (OA) and rheumatoid arthritis (RA). As the amount of high-throughput profiling studies and mechanistic investigations of microRNAs, long non-coding RNAs and circular RNAs in joint tissues and biofluids has increased, data have emerged that suggest complex interactions among non-coding RNAs that are often overlooked as critical regulators of gene expression. Identifying these non-coding RNAs and their interactions is useful for understanding both joint health and disease. Non-coding RNAs regulate signalling pathways and biological processes that are important for normal joint development but, when dysregulated, can contribute to disease. The specific expression profiles of non-coding RNAs in various disease states support their roles as promising candidate biomarkers, mediators of pathogenic mechanisms and potential therapeutic targets. This Review synthesizes literature published in the past 2 years on the role of non-coding RNAs in OA and RA with a focus on inflammation, cell death, cell proliferation and extracellular matrix dysregulation. Research to date makes it apparent that 'non-coding' does not mean 'non-essential' and that non-coding RNAs are important parts of a complex interactome that underlies OA and RA.
Collapse
Affiliation(s)
- Shabana A Ali
- Bone and Joint Center, Department of Orthopaedic Surgery, Henry Ford Health System, Detroit, MI, USA. .,Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, USA.
| | - Mandy J Peffers
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Michelle J Ormseth
- Department of Research and Development, Veterans Affairs Medical Center, Nashville, TN, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
50
|
Zheng YL, Song G, Guo JB, Su X, Chen YM, Yang Z, Chen PJ, Wang XQ. Interactions Among lncRNA/circRNA, miRNA, and mRNA in Musculoskeletal Degenerative Diseases. Front Cell Dev Biol 2021; 9:753931. [PMID: 34708047 PMCID: PMC8542847 DOI: 10.3389/fcell.2021.753931] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022] Open
Abstract
Musculoskeletal degenerative diseases (MSDDs) are pathological conditions that affect muscle, bone, cartilage, joint and connective tissue, leading to physical and functional impairments in patients, mainly consist of osteoarthritis (OA), intervertebral disc degeneration (IDD), rheumatoid arthritis (RA) and ankylosing spondylitis (AS). Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are novel regulators of gene expression that play an important role in biological regulation, involving in chondrocyte proliferation and apoptosis, extracellular matrix degradation and peripheral blood mononuclear cell inflammation. Research on MSDD pathogenesis, especially on RA and AS, is still in its infancy and major knowledge gaps remain to be filled. The effects of lncRNA/circRNA-miRNA-mRNA axis on MSDD progression help us to fully understand their contribution to the dynamic cellular processes, provide the potential OA, IDD, RA and AS therapeutic strategies. Further studies are needed to explore the mutual regulatory mechanisms between lncRNA/circRNA regulation and effective therapeutic interventions in the pathology of MSDD.
Collapse
Affiliation(s)
- Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Ge Song
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Jia-Bao Guo
- The Second School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Xuan Su
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yu-Meng Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Zheng Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Pei-Jie Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|