1
|
Trainito A, Gugliandolo A, Chiricosta L, Salamone S, Pollastro F, Mazzon E, Lui M. Cannabinol Regulates the Expression of Cell Cycle-Associated Genes in Motor Neuron-like NSC-34: A Transcriptomic Analysis. Biomedicines 2024; 12:1340. [PMID: 38927547 PMCID: PMC11201772 DOI: 10.3390/biomedicines12061340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/18/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Cannabinoids are reported to have neuroprotective properties and play a role in neurogenesis and neuroplasticity in in vitro and in vivo models. Cannabinol (CBN) is a minor cannabinoid produced by the degradation of Δ9-tetrahydrocannabinol in Cannabis sativa L. and exhibits anti-oxidant, analgesic, anti-bacterial, and anti-inflammatory effects. In this study, we explored the biological effects of 20 µM CBN (6.20 µg/mL) on differentiated NSC-34 cells by MTT assay and next-generation sequencing analysis on the transcriptome. KEGG and Gene Ontology enrichment analyses have been performed to evaluate potential CBN-associated processes. Our results highlighted the absence of any cytotoxic effect of CBN. The comparative transcriptomic analysis pointed out the downregulation of Cdkn2a, Cdkn2c and Cdkn2d genes, which are known to suppress the cell cycle. Ccne2, Cdk2, Cdk7, Anapc11, Anapc10, Cdc23, Cdc16, Anapc4, Cdc27, Stag1, Smc3, Smc1a, Nipbl, Pds5a, Pds5b, and Wapl genes, renowned for their role as cell cycle progression activators, were instead upregulated. Our work suggests that CBN regulates the expression of many genes related to the cell cycle, which are required for axonal maturation, migration, and synaptic plasticity, while not affecting the expression of genes involved in cell death or tumorigenesis.
Collapse
Affiliation(s)
- Alessandra Trainito
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.T.); (A.G.); (M.L.)
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.T.); (A.G.); (M.L.)
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.T.); (A.G.); (M.L.)
| | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy; (S.S.); (F.P.)
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy; (S.S.); (F.P.)
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.T.); (A.G.); (M.L.)
| | - Maria Lui
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.T.); (A.G.); (M.L.)
| |
Collapse
|
2
|
Willemsen M, Barber JS, Nieuwenhove EV, Staels F, Gerbaux M, Neumann J, Prezzemolo T, Pasciuto E, Lagou V, Boeckx N, Filtjens J, De Visscher A, Matthys P, Schrijvers R, Tousseyn T, O'Driscoll M, Bucciol G, Schlenner S, Meyts I, Humblet-Baron S, Liston A. Homozygous DBF4 mutation as a cause of severe congenital neutropenia. J Allergy Clin Immunol 2023; 152:266-277. [PMID: 36841265 DOI: 10.1016/j.jaci.2023.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2022] [Revised: 01/23/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND Severe congenital neutropenia presents with recurrent infections early in life as a result of arrested granulopoiesis. Multiple genetic defects are known to block granulocyte differentiation; however, a genetic cause remains unknown in approximately 40% of cases. OBJECTIVE We aimed to characterize a patient with severe congenital neutropenia and syndromic features without a genetic diagnosis. METHODS Whole exome sequencing results were validated using flow cytometry, Western blotting, coimmunoprecipitation, quantitative PCR, cell cycle and proliferation analysis of lymphocytes and fibroblasts and granulocytic differentiation of primary CD34+ and HL-60 cells. RESULTS We identified a homozygous missense mutation in DBF4 in a patient with mild extra-uterine growth retardation, facial dysmorphism and severe congenital neutropenia. DBF4 is the regulatory subunit of the CDC7 kinase, together known as DBF4-dependent kinase (DDK), the complex essential for DNA replication initiation. The DBF4 variant demonstrated impaired ability to bind CDC7, resulting in decreased DDK-mediated phosphorylation, defective S-phase entry and progression and impaired differentiation of granulocytes associated with activation of the p53-p21 pathway. The introduction of wild-type DBF4 into patient CD34+ cells rescued the promyelocyte differentiation arrest. CONCLUSION Hypomorphic DBF4 mutation causes autosomal-recessive severe congenital neutropenia with syndromic features.
Collapse
Affiliation(s)
- Mathijs Willemsen
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - John S Barber
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Erika Van Nieuwenhove
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Frederik Staels
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; Department of Microbiology, Immunology, and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Margaux Gerbaux
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; Pediatric Department, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Julika Neumann
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Teresa Prezzemolo
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Emanuela Pasciuto
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Vasiliki Lagou
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Nancy Boeckx
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Jessica Filtjens
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuve, Belgium
| | - Amber De Visscher
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuve, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuve, Belgium
| | - Rik Schrijvers
- Department of Microbiology, Immunology, and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Thomas Tousseyn
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Mark O'Driscoll
- Human DNA Damage Response Disorders Group, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Giorgia Bucciol
- Department of Microbiology, Immunology, and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium; Department of Pediatrics, Division of Primary Immunodeficiencies, University Hospitals Leuven, Leuven
| | - Susan Schlenner
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Department of Microbiology, Immunology, and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium; Department of Pediatrics, Division of Primary Immunodeficiencies, University Hospitals Leuven, Leuven.
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium.
| | - Adrian Liston
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom.
| |
Collapse
|
3
|
Meng X, Dang HQ, Kapler GM. Developmentally Programmed Switches in DNA Replication: Gene Amplification and Genome-Wide Endoreplication in Tetrahymena. Microorganisms 2023; 11:microorganisms11020491. [PMID: 36838456 PMCID: PMC9967165 DOI: 10.3390/microorganisms11020491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2022] [Revised: 12/29/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Locus-specific gene amplification and genome-wide endoreplication generate the elevated copy number of ribosomal DNA (rDNA, 9000 C) and non-rDNA (90 C) chromosomes in the developing macronucleus of Tetrahymena thermophila. Subsequently, all macronuclear chromosomes replicate once per cell cycle during vegetative growth. Here, we describe an unanticipated, programmed switch in the regulation of replication initiation in the rDNA minichromosome. Early in development, the 21 kb rDNA minichromosome is preferentially amplified from 2 C to ~800 C from well-defined origins, concurrent with genome-wide endoreplication (2 C to 8-16 C) in starved mating Tetrahymena (endoreplication (ER) Phase 1). Upon refeeding, rDNA and non-rDNA chromosomes achieve their final copy number through resumption of just the endoreplication program (ER Phase 2). Unconventional rDNA replication intermediates are generated primarily during ER phase 2, consistent with delocalized replication initiation and possible formation of persistent RNA-DNA hybrids. Origin usage and replication fork elongation are affected in non-rDNA chromosomes as well. Despite the developmentally programmed 10-fold reduction in the ubiquitous eukaryotic initiator, the Origin Recognition Complex (ORC), active initiation sites are more closely spaced in ER phases 1 and 2 compared to vegetative growing cells. We propose that initiation site selection is relaxed in endoreplicating macronuclear chromosomes and may be less dependent on ORC.
Collapse
Affiliation(s)
- Xiangzhou Meng
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hung Quang Dang
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Alstem Bioscience, Richmond, CA 94806, USA
| | - Geoffrey M. Kapler
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Correspondence: ; Tel.: +1-979-574-3901
| |
Collapse
|
5
|
Joseph CR, Dusi S, Giannattasio M, Branzei D. Rad51-mediated replication of damaged templates relies on monoSUMOylated DDK kinase. Nat Commun 2022; 13:2480. [PMID: 35513396 PMCID: PMC9072374 DOI: 10.1038/s41467-022-30215-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/24/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
DNA damage tolerance (DDT), activated by replication stress during genome replication, is mediated by translesion synthesis and homologous recombination (HR). Here we uncover that DDK kinase, essential for replication initiation, is critical for replication-associated recombination-mediated DDT. DDK relies on its multi-monoSUMOylation to facilitate HR-mediated DDT and optimal retention of Rad51 recombinase at replication damage sites. Impairment of DDK kinase activity, reduced monoSUMOylation and mutations in the putative SUMO Interacting Motifs (SIMs) of Rad51 impair replication-associated recombination and cause fork uncoupling with accumulation of large single-stranded DNA regions at fork branching points. Notably, genetic activation of salvage recombination rescues the uncoupled fork phenotype but not the recombination-dependent gap-filling defect of DDK mutants, revealing that the salvage recombination pathway operates preferentially proximal to fork junctions at stalled replication forks. Overall, we uncover that monoSUMOylated DDK acts with Rad51 in an axis that prevents replication fork uncoupling and mediates recombination-dependent gap-filling.
Collapse
Affiliation(s)
- Chinnu Rose Joseph
- IFOM, Istituto Fondazione di Oncologia Molecolare, Via Adamello 16, 20139, Milan, Italy
| | - Sabrina Dusi
- IFOM, Istituto Fondazione di Oncologia Molecolare, Via Adamello 16, 20139, Milan, Italy
| | - Michele Giannattasio
- IFOM, Istituto Fondazione di Oncologia Molecolare, Via Adamello 16, 20139, Milan, Italy
- Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-Oncologia, Via S. Sofia 9/1, 20122, Milano, Italy
| | - Dana Branzei
- IFOM, Istituto Fondazione di Oncologia Molecolare, Via Adamello 16, 20139, Milan, Italy.
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 27100, Pavia, Italy.
| |
Collapse
|