1
|
Wang N, Yang J, Liu X, Liu G, He Z, Gu S. Changes of m 6A Regulatory Proteins and Nrf2 Signaling Molecules in Liver Tissue of Type 2 Diabetes Mellitus Rats. Cell Biochem Biophys 2024; 82:2217-2226. [PMID: 38822202 DOI: 10.1007/s12013-024-01331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
Both dysregulation of N6-methyladenosine (m6A) regulatory proteins and Nrf2 signaling molecules are involved in the process of injury to multiple tissues. However, changes of m6A regulatory proteins and Nrf2 signaling molecules in liver tissue of T2DM remain unclear. In present study, changes of m6A regulatory proteins (Mettl3, Mettl16, Fto, Alkbh5 and Ythdc2) and Nrf2 signaling molecules (Nrf2, Sod1, Ho-1, Gclc) were detected in the liver tissues of T2DM rats, which constructed by high fat-diet feeding and intraperitoneal injection of streptozotocin. Our results indicated that the morphology of liver tissues from T2DM rats showed obvious abnormalities, as well as levels of liver function indicators and expressions of Nrf2 signaling molecules Nrf2, Sod1, Ho-1 were significantly increased in T2DM rats when compared with those in corresponding control rats. More importantly, m6A regulatory proteins such as Mettl3, Mettl16, Fto, Alkbh5 and Ythdc2 were dramatically higher than those in control rat. In a word, m6A regulatory proteins and Nrf2 signaling molecules may significantly change in liver tissue of T2DM rats. And This provides clues and ideas for the study of liver injury in T2DM from the perspective of RNA epigenetics in the future.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan, 671000, China
| | - Jie Yang
- College of Engineering, Dali University, Dali, Yunnan, 671003, China
| | - Xiaoyu Liu
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan, 671000, China
| | - Guofen Liu
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan, 671000, China
| | - Zuoshun He
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan, 671000, China.
| | - Shiyan Gu
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan, 671000, China.
| |
Collapse
|
2
|
Chen Y, Luo X, Xu B, Bao X, Jia H, Yu B. Oxidative Stress-Mediated Programmed Cell Death: a Potential Therapy Target for Atherosclerosis. Cardiovasc Drugs Ther 2024; 38:819-832. [PMID: 36522550 DOI: 10.1007/s10557-022-07414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
Nowadays, as a type of orderly and active death determined by genes, programmed cell death (PCD), including apoptosis, pyroptosis, ferroptosis, and necroptosis, has attracted much attention owing to its participation in numerous chronic cardiovascular diseases, especially atherosclerosis (AS), a canonical chronic inflammatory disease featured by lipid metabolism disturbance. Abundant researches have reported that PCD under distinct internal conditions fulfills different roles of atherosclerotic pathological processes, including lipid core expansion, leukocyte adhesion, and infiltration. Noteworthy, emerging evidence recently has also suggested that oxidative stress (OS), an imbalance of antioxidants and oxygen free radicals, has the potential to mediate PCD occurrence via multiple ways, including oxidization and deubiquitination. Interestingly, more recently, several studies have proposed that the mediating mechanisms could effect on the atherosclerotic initiation and progression significantly from variable aspects, so it is of great clinical importance to clarify how OS-mediated PCD and AS interact. Herein, with the aim of summarizing potential and sufficient atherosclerotic therapy targets, we seek to provide extensive analysis of the specific regulatory mechanisms of PCD mediated by OS and their multifaceted effects on the entire pathological atherosclerotic progression.
Collapse
Affiliation(s)
- Yuwu Chen
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Xing Luo
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Biyi Xu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Xiaoyi Bao
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Haibo Jia
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Bo Yu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| |
Collapse
|
3
|
Satyam SM, Bairy LK, Rehman A, Attia M, Ahmed L, Emad K, Jaafer Y, Bahaaeldin A. Unlocking Synergistic Hepatoprotection: Dapagliflozin and Silymarin Combination Therapy Modulates Nuclear Erythroid 2-Related Factor 2/Heme Oxygenase-1 Pathway in Carbon Tetrachloride-Induced Hepatotoxicity in Wistar Rats. BIOLOGY 2024; 13:473. [PMID: 39056668 PMCID: PMC11273720 DOI: 10.3390/biology13070473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
This study was aimed to investigate the hepatoprotective potential of dapagliflozin and silymarin alone and in combination to combat carbon tetrachloride (CCl4)-induced hepatotoxicity and the anticipated mechanisms. Thirty female Wistar rats were randomly allocated into five different groups. All the experimental animals except the normal control (Group I) were administered CCl4. Additionally, Groups II, III, IV, and V were treated with gum acacia, silymarin, dapagliflozin, and a combination of dapagliflozin and silymarin, respectively, for 14 days. Dapagliflozin, silymarin alone, and in combination, significantly reduced (p < 0.05) serum levels of ALT, AST, AST:ALT ratio, and total bilirubin compared to CCl4-intoxicated control rats. There was a notable reduction (p < 0.05) observed in the levels of IL-1beta, IL-6, TNF-alpha, nitrites, and 4-hydroxynonenal, accompanied by an elevation in catalase, superoxide dismutase, glutathione peroxidase, nuclear erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) in liver homogenates of the groups treated with dapagliflozin, silymarin alone, and in combination, as compared to the CCl4-intoxicated control group. Dapagliflozin in combination with silymarin showed a synergistic hepatoprotective effect. Our study reveals the profound hepatoprotective potential of dapagliflozin alone and in combination with silymarin in CCl4-intoxicated Wistar rats by modulating the Nrf2 and HO-1 signaling pathways.
Collapse
Affiliation(s)
- Shakta Mani Satyam
- Faculty of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Laxminarayana Kurady Bairy
- Faculty of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Abdul Rehman
- Faculty of Pathology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Mohamed Attia
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Layth Ahmed
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Karam Emad
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Yusuf Jaafer
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Abdelrehman Bahaaeldin
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| |
Collapse
|
4
|
Deja S, Fletcher JA, Kim CW, Kucejova B, Fu X, Mizerska M, Villegas M, Pudelko-Malik N, Browder N, Inigo-Vollmer M, Menezes CJ, Mishra P, Berglund ED, Browning JD, Thyfault JP, Young JD, Horton JD, Burgess SC. Hepatic malonyl-CoA synthesis restrains gluconeogenesis by suppressing fat oxidation, pyruvate carboxylation, and amino acid availability. Cell Metab 2024; 36:1088-1104.e12. [PMID: 38447582 PMCID: PMC11081827 DOI: 10.1016/j.cmet.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 12/10/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024]
Abstract
Acetyl-CoA carboxylase (ACC) promotes prandial liver metabolism by producing malonyl-CoA, a substrate for de novo lipogenesis and an inhibitor of CPT-1-mediated fat oxidation. We report that inhibition of ACC also produces unexpected secondary effects on metabolism. Liver-specific double ACC1/2 knockout (LDKO) or pharmacologic inhibition of ACC increased anaplerosis, tricarboxylic acid (TCA) cycle intermediates, and gluconeogenesis by activating hepatic CPT-1 and pyruvate carboxylase flux in the fed state. Fasting should have marginalized the role of ACC, but LDKO mice maintained elevated TCA cycle intermediates and preserved glycemia during fasting. These effects were accompanied by a compensatory induction of proteolysis and increased amino acid supply for gluconeogenesis, which was offset by increased protein synthesis during feeding. Such adaptations may be related to Nrf2 activity, which was induced by ACC inhibition and correlated with fasting amino acids. The findings reveal unexpected roles for malonyl-CoA synthesis in liver and provide insight into the broader effects of pharmacologic ACC inhibition.
Collapse
Affiliation(s)
- Stanislaw Deja
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Justin A Fletcher
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Chai-Wan Kim
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Blanka Kucejova
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Xiaorong Fu
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Monika Mizerska
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Morgan Villegas
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Natalia Pudelko-Malik
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Nicholas Browder
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Melissa Inigo-Vollmer
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Cameron J Menezes
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Prashant Mishra
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Eric D Berglund
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Jeffrey D Browning
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - John P Thyfault
- Departments of Cell Biology and Physiology, Internal Medicine and KU Diabetes Institute, Kansas Medical Center, Kansas City, KS, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235, USA
| | - Jay D Horton
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA.
| | - Shawn C Burgess
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA.
| |
Collapse
|
5
|
Zhang ZW, Tang MQ, Liu W, Song Y, Gao MJ, Ni P, Zhang DD, Mo QG, Zhao BQ. Dapagliflozin prevents kidney podocytes pyroptosis via miR-155-5p/HO-1/NLRP3 axis modulation. Int Immunopharmacol 2024; 131:111785. [PMID: 38479158 DOI: 10.1016/j.intimp.2024.111785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
Diabetic nephropathy (DN) is a significant clinical microvascular complication associated with diabetes mellitus (DM), and end-stage diabetes giving rise to kidney failure is developing into the major etiological factor of chronic kidney failure. Dapagliflozin is reported to limit podocyte damage in DM, which has proven to protect against renal failure. Mounting evidence has demonstrated that pyroptosis is associated with DM progression. Nevertheless, whether pyroptosis causes DN and the underlying molecular pathways remain obscure. In this study, we aimed to explore the antipyroptotic attributes of dapagliflozin and elucidate the underlying mechanisms of kidney damage in diabetes. In vivo, experiments were conducted in streptozotocin (STZ)-induced type 2 diabetic mice, which were administered dapagliflozin via gavage for 6 weeks. Subsequently, the specific organizational characteristics and expression of pyroptosis-related genes were evaluated. Intragastric dapagliflozin administration markedly reduced renal tissue injury. Meanwhile, dapagliflozin also attenuated the expression level of pyroptosis associated genes, including ASC, cleaved Caspase-1, GSDMD N-termini, NLRP3, IL-18, and IL-1β in renal tissue of dapagliflozin-treated animals. Similar antipyroptotic effects were observed in palmitic acid (PA)-treated mouse podocytes. We also found that heme oxygenase 1 (HO-1) enhanced the protection of mouse podocyte clone 5 cells (MPC5). Moreover, miR-155-5p inhibition increased pyroptosis in PA-treated MPC5 cells, suggesting that miR-155-5p acts as an endogenous stimulator that increases HO-1 expression and reduces pyroptosis. Hence, our findings imply that dapagliflozin inhibits podocyte pyroptosis via the miR-155-5p/HO-1/NLRP3 axis in DM. Furthermore, dapagliflozin substitution may be regarded as an effective strategy for preventing pyroptosis in the kidney, including a therapeutic option for treating pyroptosis-related DN.
Collapse
Affiliation(s)
- Zhen-Wang Zhang
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437000, PR China
| | - Ming-Qiu Tang
- Schools of Pharmacy, Hubei University of Science and Technology, Xianning 437000, PR China
| | - Wu Liu
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437000, PR China
| | - Yi Song
- Schools of Pharmacy, Hubei University of Science and Technology, Xianning 437000, PR China
| | - Man-Jun Gao
- Schools of Pharmacy, Hubei University of Science and Technology, Xianning 437000, PR China
| | - Ping Ni
- Clinical Medicine, Hubei University of Science and Technology, Xianning 437000, PR China
| | - Dan-Dan Zhang
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437000, PR China.
| | - Qi-Gui Mo
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437000, PR China.
| | - Bao-Qing Zhao
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437000, PR China.
| |
Collapse
|
6
|
Ding FF, Li M, Wang T, Zhou NN, Qiao F, Du ZY, Zhang ML. Influence of dietary sodium taurocholate on the growth performance and liver health of Nile tilapia (Oreochromis niloticus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:319-330. [PMID: 36044098 DOI: 10.1007/s10695-022-01116-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Bile acids (BAs) are a class of cholesterol-derived amphipathic molecules approved as new animal feed additives. However, the functional researches mainly focused on BAs mixture, and the influence of the individual BA on fishes was still limited. In the present study, Nile tilapia were fed basal diet with three levels of sodium taurocholate at 0 mg/kg (CON), 300 mg/kg (TCAL), and 600 mg/kg (TCAH) for 8 weeks. The results indicated that addition of sodium taurocholate did not significantly influence the growth performance. Instead, TCAH group had higher cholesterol accumulation with liver fibrosis. In TCAH group, the level of nuclear factor E2-related factor 2 (nrf2) signaling-associated oxidative stress factors significantly increased in the liver. Additionally, fish in TCAH group had the highest expression level of genes encoding endoplasmic reticulum (ER) stress and inflammatory cytokines in the liver. In conclusion, 300 mg/kg of sodium taurocholate did not significantly influence the growth performance of fish, while 600 mg/kg of sodium taurocholate markedly induced cholesterol accumulation and liver injury, suggesting that the application of taurocholic acid in aquafeed should be re-evaluated.
Collapse
Affiliation(s)
- Fei-Fei Ding
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Miao Li
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Tong Wang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Nan-Nan Zhou
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Fang Qiao
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
7
|
Liu Z, Huang J, Wang X, Deng S, Zhou J, Gong Z, Li X, Wang Y, Yang J, Hu Y. Dapagliflozin suppress endoplasmic reticulum stress mediated apoptosis of chondrocytes by activating Sirt1. Chem Biol Interact 2023; 384:110724. [PMID: 37741535 DOI: 10.1016/j.cbi.2023.110724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a common joint disease characterized by inflammation and cartilage degeneration. Accumulating evidences support that endoplasmic reticulum (ER) stress induced OA chondrocytes apoptosis. The hypoglycemic and anti-inflammatory properties render Dapagliflozin (DAPA) effective in reducing ER stress on cells. However, its impact and potential mechanisms on the OA pathology are still obscure. The present study aimed to investigate whether DAPA attenuates ER stress in chondrocytes by activating sirt1 and delays the progression of OA. METHODS In vitro, we first investigated the effect of DAPA on chondrocytes viability with IL-1β or not for 24 or 48 h. Then, chondrocytes were treated with 10 ng/ml IL-1β and 10 μM dapagliflozin with10 μM thapsigargin, 5 μM SRT1460 or not. Chondrocytes apoptosis in each group were detected by Tunel staining and flow cytometric. Immunofluorescence staining was applied to quantify the expression levels of cleaved caspase-3, Sirt1 and CHOP in chondrocytes. Inhibition of ER stress in chondrocytes associated with sirt1 activation were verified by PCR and western blotting. In addition, the effects of DAPA on cartilage were validated by a series of experiments in OA rat model, such as micro-CT, histological and immunohistochemical assay. RESULTS The data demonstrated that DAPA alleviates IL-1β induced ER stress related chondrocytes apoptosis, and PCR and western blotting data confirmed that DAPA inhibits the PERK-eIF2α-CHOP pathway by activating Sirt1. Besides, immunohistochemical results showed that DAPA enhanced the expression of Sirt1 and Collagen II in OA rats, and inhibited the expression of CHOP and cleaved caspase-3. Meanwhile, histological staining and micro-CT photography also confirmed that DAPA alleviated inflammation and cartilage degeneration in OA rat. CONCLUSIONS The study demonstrated the relationship of ER stress and inflammation in the progression of OA, and verified that DAPA could inhibit PERK-eIF2α-CHOP axis of the ER stress response by activating Sirt1 in IL-1β treated rat chondrocytes and potentially prevent the OA development.
Collapse
Affiliation(s)
- Zilin Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Jun Huang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Xuezhong Wang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Shuang Deng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Jianlin Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Ziheng Gong
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Xuyang Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Yanjie Wang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Jian Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China.
| | - Yong Hu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China.
| |
Collapse
|
8
|
Jia W, Wang J, Wei C, Bian M, Bao S, Yu L. Synthesis and hypoglycemic activity of quinoxaline derivatives. Front Chem 2023; 11:1197124. [PMID: 37483267 PMCID: PMC10358274 DOI: 10.3389/fchem.2023.1197124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
In this study, a new series of quinoxalinone derivatives (5a-5p, 6a-6n) was designed and its hypoglycemic activity was evaluated. The results showed that compounds 5i and 6b exhibited stronger hypoglycemic effects than the lead compounds and were comparable to the positive control Pioglitazone. 5i and 6b may exert hypoglycemic effects by alleviating cellular OS and modulating the interactions among GLUT4, SGLT2, and GLUT1 proteins. The alleviating cellular OS of compound 6b was better than that of 5i, and 6b was found to bind better than 5i for most of the screening targets. In summary, compound 6b is a potential lead compound with hypoglycaemic activity.3.
Collapse
Affiliation(s)
| | | | | | - Ming Bian
- *Correspondence: Ming Bian, ; Shuyin Bao, ; Lijun Yu,
| | - Shuyin Bao
- *Correspondence: Ming Bian, ; Shuyin Bao, ; Lijun Yu,
| | - Lijun Yu
- *Correspondence: Ming Bian, ; Shuyin Bao, ; Lijun Yu,
| |
Collapse
|
9
|
Hsieh PL, Chu PM, Cheng HC, Huang YT, Chou WC, Tsai KL, Chan SH. Dapagliflozin Mitigates Doxorubicin-Caused Myocardium Damage by Regulating AKT-Mediated Oxidative Stress, Cardiac Remodeling, and Inflammation. Int J Mol Sci 2022; 23:ijms231710146. [PMID: 36077544 PMCID: PMC9456438 DOI: 10.3390/ijms231710146] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Doxorubicin (Dox) is a commonly used anthracycline chemotherapy with a side effect of cardiotoxicity, which may increase the risk of heart failure for cancer patients. Although various studies have demonstrated the cardioprotective property of dapagliflozin (DAPA), a sodium-glucose cotransporter 2 inhibitor, the detailed mechanism underlying its effect on Dox-induced cardiomyopathy is still limited. In this study, we showed that DAPA induced the activation of AKT/PI3K signaling in cardiac myoblast H9c2 cells following Dox treatment, leading to the upregulation of antioxidant HO-1, NQO1, and SOD, as well as an improved mitochondrial dysfunction via Nrf2. In addition, the reduced oxidative stress resulted in the downregulation of hypertrophy (ANP and BNP) and fibrosis (phospho-Smad3, collagen I, fibronectin, and α-SMA) markers. Furthermore, the inflammatory IL-8 concentration was inhibited after DAPA, possibly through PI3K/AKT/Nrf2/p38/NF-κB signaling. Moreover, our results were validated in vivo, and echocardiography results suggested an improved cardiac function in DAPA-receiving rats. In summary, we demonstrated that the administration of DAPA could mitigate the Dox-elicited cardiotoxicity by reducing oxidative stress, mitochondrial dysfunction, fibrosis, hypertrophy, and inflammation via PI3K/AKT/Nrf2 signaling.
Collapse
Affiliation(s)
- Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Hui-Ching Cheng
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Ting Huang
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Wan-Ching Chou
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: (K.-L.T.); (S.-H.C.)
| | - Shih-Hung Chan
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan
- Correspondence: (K.-L.T.); (S.-H.C.)
| |
Collapse
|