1
|
Côté J, Bouchard M. Toxicokinetic model of the pyrethroid pesticide lambda-cyhalothrin, main exposure route and dose reconstruction predictions in agricultural workers. PLoS One 2024; 19:e0309803. [PMID: 39441847 PMCID: PMC11498739 DOI: 10.1371/journal.pone.0309803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/20/2024] [Indexed: 10/25/2024] Open
Abstract
A toxicokinetic model of the pyrethroid insecticide lambda-cyhalothrin (LCT) was developed to relate absorbed doses to urinary cis-3-(2-chloro-3,3,3-trifluoroprop-1-en-1-yl)-2,2-dimethylcyclopropanecarboxylic acid (CFMP) metabolite levels used as a biomarker of exposure. The model then served to reconstruct absorbed doses in agricultural workers and their probability of exceeding the EFSA Acceptable occupational Exposure Level (AOEL). The toxicokinetic model was able to reproduce the temporal profiles of CFMP in the urine of operators spraying pesticides using the optimized model parameters (adjusted to human volunteer data). Modeling also showed that simulation of an inadvertent oral exposure mainly was the exposure scenario giving the best fit to CFMP urinary time-course data in applicators. With the dermal model parameters optimized from data in volunteers, simulation of a dermal exposure in applicators did not allow to reproduce the observed peak excretions and urinary metabolite levels; extremely high applied dermal doses would be required but still simulated dermal penetration rate would remain too slow. Simulation of an inhalation exposure allowed to reproduce the observed time-courses, but with unrealistic air concentrations. For applicators with the highest urinary concentrations, there was a probability of exceeding the AOEL at some points during the biomonitoring period [>50% probability of exceeding for 27% of 24-h samples]; for non-applicator workers the probability of exceeding the AOEL value was very low [corresponding value of 5%]. Furthermore, the median [95% CI] estimates of 10 000 Monte Carlo simulations led to a biological reference value corresponding to the AOEL of 116 [113-119] ng/kg bw/d and 7.5 [7.3-7.7] μg/L. Overall, 7% of applicators and 1% of workers performing weeding and strawberry picking had a probability of exceeding this biological reference value. As a next step, it would be interesting to apply these methods to multiple exposure to various contaminants.
Collapse
Affiliation(s)
- Jonathan Côté
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Montreal, Quebec, Canada
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Thépaut E, Tebby C, Bisson M, Brochot C, Ratier A, Zaros C, Personne S, Chardon K, Zeman F. Prenatal exposure to chlorpyrifos of French children from the Elfe cohort. Int J Hyg Environ Health 2024; 263:114480. [PMID: 39423757 DOI: 10.1016/j.ijheh.2024.114480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/19/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND The organophosphate pesticide chlorpyrifos was widely used in the European Union before its ban in 2020 and was associated with neurodevelopmental disorders. However, within the concept of Developmental Origins of Health and Disease, in utero exposure to chlorpyrifos can lead to neurodevelopmental effects in developing children. OBJECTIVE The aim of this study was to estimate fetal exposure to chlorpyrifos using biomonitoring data measured in Elfe pregnant women and a physiologically based pharmacokinetic (PBPK) approach and compare exposure to toxicological reference values. METHODS A pregnancy-PBPK model was developed based on an existing adult chlorpyrifos model and a new toxicological reference value was proposed for neurodevelopmental effects. The pregnant women exposure was estimated based on dialkylphosphate (DAP) levels in urine assuming constant exposure to chlorpyrifos and compared to both the existing toxicological reference value and the new proposed draft toxicological reference value. Fetal internal concentrations in target tissues were then predicted using the developed pregnancy-PBPK model. Urinary concentrations of the chlorpyrifos-specific metabolite (TCPy) were also predicted for comparison with other biomonitoring data. RESULTS The median daily exposure to chlorpyrifos for the French pregnant women from the Elfe cohort was estimated at 6.3x10-4 μg/kg body weight/day. The predicted urinary excretion of TCPy, the chlorpyrifos-specific metabolite, is in the same range as observed in other European cohorts (mean: 2.13 μg/L). Predicted brain chlorpyrifos levels were similar in pregnant women and their fetus and were 10-fold higher than the predicted blood chlorpyrifos levels. It was estimated that 6% and 20% of the pregnant women population had been exposed to levels exceeding the general population and draft toxicological reference values, respectively. CONCLUSIONS Prenatal exposure to chlorpyrifos was estimated for the French population based on data from the Elfe cohort. Internal chlorpyrifos concentrations in target tissues (brain and blood) were predicted for fetuses at the end of the pregnancy. Under a conservative assumption, a small percentage of the population was identified as being exposed to levels exceeding the toxicological reference values.
Collapse
Affiliation(s)
- Elisa Thépaut
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Cleo Tebby
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France
| | - Michèle Bisson
- Unité expertise en toxicologie / écotoxicologie des substances chimiques, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France
| | - Céline Brochot
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Certara UK Ltd, Simcyp Division, Sheffield, UK
| | - Aude Ratier
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Cécile Zaros
- INED French Institute for Demographic Studies, ELFE Joint Unit Campus Condorcet 9, 93322 Aubervilliers CEDEX, France
| | - Stéphane Personne
- Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Karen Chardon
- Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Florence Zeman
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France.
| |
Collapse
|
3
|
Göl E, Çok İ, Battal D, Şüküroğlu AA. Assessment of Preschool Children's Exposure Levels to Organophosphate and Pyrethroid Pesticide: A Human Biomonitoring Study in Two Turkish Provinces. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:318-331. [PMID: 36877224 DOI: 10.1007/s00244-023-00986-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are products developed to prevent, destroy, repel or control certain forms of plant or animal life that are considered to be pests. However, now they are one of the critical risk factors threatening the environment, and they create a significant threat to the health of children. Organophosphate (OP) and pyrethroid (PYR) pesticides are widely used in Turkey as well as all over the world. The main focus of this presented study was to analyze the OP and PYR exposure levels in urine samples obtained from 3- to 6-year-old Turkish preschool children who live in the Ankara (n:132) and Mersin (n:54) provinces. In order to measure the concentrations of three nonspecific metabolites of PYR insecticides and four nonspecific and one specific metabolite of OPs, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses were performed. The nonspecific PYR metabolite 3-phenoxybenzoic acid (3-PBA) found in 87.1% of samples (n = 162) and the specific OP metabolite 3,5,6-trichloro-2-pyridinol (TCPY) found in 60.2% of samples (n = 112) were the most frequently detected metabolites in all urine samples. The mean concentrations of 3-PBA and TCPY were 0.38 ± 0.8 and 0.11 ± 0.43 ng/g creatinine, respectively. Although due to the large individual variation no statistically significant differences were found between 3-PBA (p = 0.9969) and TCPY (p = 0.6558) urine levels in the two provinces, significant exposure differences were determined both between provinces and within the province in terms of gender. Risk assessment strategies performed in light of our findings do not disclose any proof of a possible health problems related to analyzed pesticide exposure in Turkish children.
Collapse
Affiliation(s)
- Ersin Göl
- Ankara Toxicology Department of the Council of Forensic Medicine, 06300, Keçiören, Ankara, Turkey
| | - İsmet Çok
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Ankara, Turkey.
| | - Dilek Battal
- Faculty of Pharmacy, Department of Toxicology, Mersin University, Mersin, Turkey
| | - Ayça Aktaş Şüküroğlu
- Faculty of Pharmacy, Department of Toxicology, Mersin University, Mersin, Turkey
| |
Collapse
|
4
|
Andersen HR, Rambaud L, Riou M, Buekers J, Remy S, Berman T, Govarts E. Exposure Levels of Pyrethroids, Chlorpyrifos and Glyphosate in EU-An Overview of Human Biomonitoring Studies Published since 2000. TOXICS 2022; 10:789. [PMID: 36548622 PMCID: PMC9788618 DOI: 10.3390/toxics10120789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Currently used pesticides are rapidly metabolised and excreted, primarily in urine, and urinary concentrations of pesticides/metabolites are therefore useful biomarkers for the integrated exposure from all sources. Pyrethroid insecticides, the organophosphate insecticide chlorpyrifos, and the herbicide glyphosate, were among the prioritised substances in the HBM4EU project and comparable human biomonitoring (HBM)-data were obtained from the HBM4EU Aligned Studies. The aim of this review was to supplement these data by presenting additional HBM studies of the priority pesticides across the HBM4EU partner countries published since 2000. We identified relevant studies (44 for pyrethroids, 23 for chlorpyrifos, 24 for glyphosate) by literature search using PubMed and Web of Science. Most studies were from the Western and Southern part of the EU and data were lacking from more than half of the HBM4EU-partner countries. Many studies were regional with relatively small sample size and few studies address residential and occupational exposure. Variation in urine sampling, analytical methods, and reporting of the HBM-data hampered the comparability of the results across studies. Despite these shortcomings, a widespread exposure to these substances in the general EU population with marked geographical differences was indicated. The findings emphasise the need for harmonisation of methods and reporting in future studies as initiated during HBM4EU.
Collapse
Affiliation(s)
- Helle Raun Andersen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark (SDU), 5000 Odense, Denmark
| | - Loïc Rambaud
- Santé Publique France, Environmental and Occupational Health Division, 94410 Saint-Maurice, France
| | - Margaux Riou
- Santé Publique France, Environmental and Occupational Health Division, 94410 Saint-Maurice, France
| | - Jurgen Buekers
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Tamar Berman
- Israel Ministry of Health (MOH-IL), Jerusalem 9446724, Israel
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| |
Collapse
|
5
|
Tarazona JV, González-Caballero MDC, de Alba-Gonzalez M, Pedraza-Diaz S, Cañas A, Dominguez-Morueco N, Esteban-López M, Cattaneo I, Katsonouri A, Makris KC, Halldorsson TI, Olafsdottir K, Zock JP, Dias J, Decker AD, Morrens B, Berman T, Barnett-Itzhaki Z, Lindh C, Gilles L, Govarts E, Schoeters G, Weber T, Kolossa-Gehring M, Santonen T, Castaño A. Improving the Risk Assessment of Pesticides through the Integration of Human Biomonitoring and Food Monitoring Data: A Case Study for Chlorpyrifos. TOXICS 2022; 10:313. [PMID: 35736921 PMCID: PMC9228629 DOI: 10.3390/toxics10060313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023]
Abstract
The risk assessment of pesticide residues in food is a key priority in the area of food safety. Most jurisdictions have implemented pre-marketing authorization processes, which are supported by prospective risk assessments. These prospective assessments estimate the expected residue levels in food combining results from residue trials, resembling the pesticide use patterns, with food consumption patterns, according to internationally agreed procedures. In addition, jurisdictions such as the European Union (EU) have implemented large monitoring programs, measuring actual pesticide residue levels in food, and are supporting large-scale human biomonitoring programs for confirming the actual exposure levels and potential risk for consumers. The organophosphate insecticide chlorpyrifos offers an interesting case study, as in the last decade, its acceptable daily intake (ADI) has been reduced several times following risk assessments by the European Food Safety Authority (EFSA). This process has been linked to significant reductions in the use authorized in the EU, reducing consumers' exposure progressively, until the final ban in 2020, accompanied by setting all EU maximum residue levels (MRL) in food at the default value of 0.01 mg/kg. We present a comparison of estimates of the consumer's internal exposure to chlorpyrifos based on the urinary marker 3,5,6-trichloro-2-pyridinol (TCPy), using two sources of monitoring data: monitoring of the food chain from the EU program and biomonitoring of European citizens from the HB4EU project, supported by a literature search. Both methods confirmed a drastic reduction in exposure levels from 2016 onwards. The margin of exposure approach is then used for conducting retrospective risk assessments at different time points, considering the evolution of our understanding of chlorpyrifos toxicity, as well as of exposure levels in EU consumers following the regulatory decisions. Concerns are presented using a color code, and have been identified for almost all studies, particularly for the highest exposed group, but at different levels, reaching the maximum level, red code, for children in Cyprus and Israel. The assessment uncertainties are highlighted and integrated in the identification of levels of concern.
Collapse
Affiliation(s)
- Jose V. Tarazona
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain; (M.d.C.G.-C.); (M.d.A.-G.); (S.P.-D.); (A.C.); (N.D.-M.); (M.E.-L.)
- European Food Safety Authority (EFSA), I-43126 Parma, Italy;
| | - Maria del Carmen González-Caballero
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain; (M.d.C.G.-C.); (M.d.A.-G.); (S.P.-D.); (A.C.); (N.D.-M.); (M.E.-L.)
| | - Mercedes de Alba-Gonzalez
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain; (M.d.C.G.-C.); (M.d.A.-G.); (S.P.-D.); (A.C.); (N.D.-M.); (M.E.-L.)
| | - Susana Pedraza-Diaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain; (M.d.C.G.-C.); (M.d.A.-G.); (S.P.-D.); (A.C.); (N.D.-M.); (M.E.-L.)
| | - Ana Cañas
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain; (M.d.C.G.-C.); (M.d.A.-G.); (S.P.-D.); (A.C.); (N.D.-M.); (M.E.-L.)
| | - Noelia Dominguez-Morueco
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain; (M.d.C.G.-C.); (M.d.A.-G.); (S.P.-D.); (A.C.); (N.D.-M.); (M.E.-L.)
| | - Marta Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain; (M.d.C.G.-C.); (M.d.A.-G.); (S.P.-D.); (A.C.); (N.D.-M.); (M.E.-L.)
| | - Irene Cattaneo
- European Food Safety Authority (EFSA), I-43126 Parma, Italy;
| | | | - Konstantinos C. Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol 3036, Cyprus;
| | - Thorhallur I. Halldorsson
- Faculty of Food Science and Nutrition, School of Health Sciences, University of Iceland, 102 Reykjavik, Iceland;
- Department of Epidemiology Research, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Kristin Olafsdottir
- Department of Pharmacology and Toxicology, University of Iceland, 107 Reykjavik, Iceland;
| | - Jan-Paul Zock
- National Institute for Public Health and the Environment (RIVM), Bilthoven, 3720 BA De Bilt, The Netherlands;
| | - Jonatan Dias
- Wageningen Food Safety Research (WFSR), 6700 AE Wageningen, The Netherlands;
| | | | - Bert Morrens
- Department of Sociology, University of Antwerp, 2020 Antwerpen, Belgium;
| | - Tamar Berman
- Ministry of Health, Jerusalem 9446724, Israel; (T.B.); (Z.B.-I.)
| | - Zohar Barnett-Itzhaki
- Ministry of Health, Jerusalem 9446724, Israel; (T.B.); (Z.B.-I.)
- Ruppin Research Group in Environmental and Social Sustainability, Ruppin Academic Center, Emek Hefer 4025000, Israel
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Institute of Laboratory Medicine, Lund University, 22363 Lund, Sweden;
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (E.G.); (G.S.)
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (E.G.); (G.S.)
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (E.G.); (G.S.)
- Department of Biomedical Sciences, University of Antwerp, 2020 Antwerp, Belgium
| | - Till Weber
- German Environment Agency (UBA), 14195 Berlin, Germany; (T.W.); (M.K.-G.)
| | | | - Tiina Santonen
- Finnish Institute of Occupational Health, P.O. Box 40 Helsinki, Finland;
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain; (M.d.C.G.-C.); (M.d.A.-G.); (S.P.-D.); (A.C.); (N.D.-M.); (M.E.-L.)
| |
Collapse
|
6
|
Zhao S, Wesseling S, Rietjens IMCM, Strikwold M. Inter-individual variation in chlorpyrifos toxicokinetics characterized by physiologically based kinetic (PBK) and Monte Carlo simulation comparing human liver microsome and Supersome ™ cytochromes P450 (CYP)-specific kinetic data as model input. Arch Toxicol 2022; 96:1387-1409. [PMID: 35294598 PMCID: PMC9013686 DOI: 10.1007/s00204-022-03251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/14/2022] [Indexed: 11/25/2022]
Abstract
The present study compares two approaches to evaluate the effects of inter-individual differences in the biotransformation of chlorpyrifos (CPF) on the sensitivity towards in vivo red blood cell (RBC) acetylcholinesterase (AChE) inhibition and to calculate a chemical-specific adjustment factor (CSAF) to account for inter-individual differences in kinetics (HKAF). These approaches included use of a Supersome™ cytochromes P450 (CYP)-based and a human liver microsome (HLM)-based physiologically based kinetic (PBK) model, both combined with Monte Carlo simulations. The results revealed that bioactivation of CPF exhibits biphasic kinetics caused by distinct differences in the Km of CYPs involved, which was elucidated by Supersome™ CYP rather than by HLM. Use of Supersome™ CYP-derived kinetic data was influenced by the accuracy of the intersystem extrapolation factors (ISEFs) required to scale CYP isoform activity of Supersome™ to HLMs. The predicted dose–response curves for average, 99th percentile and 1st percentile sensitive individuals were found to be similar in the two approaches when biphasic kinetics was included in the HLM-based approach, resulting in similar benchmark dose lower confidence limits for 10% inhibition (BMDL10) and HKAF values. The variation in metabolism-related kinetic parameters resulted in HKAF values at the 99th percentile that were slightly higher than the default uncertainty factor of 3.16. While HKAF values up to 6.9 were obtained when including also the variability in other influential PBK model parameters. It is concluded that the Supersome™ CYP-based approach appeared most adequate for identifying inter-individual variation in biotransformation of CPF and its resulting RBC AChE inhibition.
Collapse
Affiliation(s)
- Shensheng Zhao
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Sebastiaan Wesseling
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Marije Strikwold
- Van Hall Larenstein University of Applied Sciences, 8901 BV, Leeuwarden, The Netherlands
| |
Collapse
|
7
|
Prediction of dose-dependent in vivo acetylcholinesterase inhibition by profenofos in rats and humans using physiologically based kinetic (PBK) modeling-facilitated reverse dosimetry. Arch Toxicol 2021; 95:1287-1301. [PMID: 33651127 PMCID: PMC8032624 DOI: 10.1007/s00204-021-03004-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/16/2021] [Indexed: 11/25/2022]
Abstract
Organophosphate pesticides (OPs) are known to inhibit acetylcholine esterase (AChE), a critical effect used to establish health-based guidance values. This study developed a combined in vitro–in silico approach to predict AChE inhibition by the OP profenofos in rats and humans. A physiologically based kinetic (PBK) model was developed for both species. Parameter values for profenofos conversion to 4-bromo-2-chlorophenol (BCP) were derived from in vitro incubations with liver microsomes, liver cytosol, and plasma from rats (catalytic efficiencies of 1.1, 2.8, and 0.19 ml/min/mg protein, respectively) and humans (catalytic efficiencies of 0.17, 0.79, and 0.063 ml/min/mg protein, respectively), whereas other chemical-related parameter values were derived using in silico calculations. The rat PBK model was evaluated against literature data on urinary excretion of conjugated BCP. Concentration-dependent inhibition of rat and human AChE was determined in vitro and these data were translated with the PBK models to predicted dose-dependent AChE inhibition in rats and humans in vivo. Comparing predicted dose-dependent AChE inhibition in rats to literature data on profenofos-induced AChE inhibition revealed an accurate prediction of in vivo effect levels. Comparison of rat predictions (BMDL10 of predicted dose–response data of 0.45 mg/kg bw) and human predictions (BMDL10 of predicted dose–response data of 0.01 mg/kg bw) suggests that humans are more sensitive than rats, being mainly due to differences in kinetics. Altogether, the results demonstrate that in vivo AChE inhibition upon acute exposure to profenofos was closely predicted in rats, indicating the potential of this novel approach method in chemical hazard assessment.
Collapse
|
8
|
F Fernández S, Pardo O, Corpas-Burgos F, Yusà V. Exposure and cumulative risk assessment to non-persistent pesticides in Spanish children using biomonitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:140983. [PMID: 32750575 DOI: 10.1016/j.scitotenv.2020.140983] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/15/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The main objective of the present research is to evaluate the exposure to pesticides in children (n = 568) from the Valencian Region (Spain). Six non-specific and 20 specific metabolites of organophosphate pesticides (OPs), herbicides (Herb), and pyrethroids (Pyr) were analyzed in urine samples. The biomarkers with the highest detection frequencies (>70%) were diethyl phosphate, p-nitrophenol, 3-phenoxybenzoic acid, and 3,5,6-trichloro-2-pyridinol, whose geometric mean concentrations (ng·ml-n1) were 1.53, 1.03, 1.51 and 1.19, respectively. Robust regression models showed that the province of residence and the recent consumption of vegetables, legumes and cereals were some of the most important predictors of pesticide exposure. Pesticide risk assessment is estimated using two different strategies: one based on the pesticides' mode of action (MoA); and the other based on cumulative assessment groups (CAGs), proposed by EFSA. The estimated daily intakes (EDIs) ranged from 0.08 (chlorpyrifos) to 1.62 μg·kg bw-1 (λ-cyhalothrin). The MoA approach resulted in hazard quotients ranging from 0.01 (chlorpyrifos) to 0.65 (λ-cyhalothrin), and a hazard index for OPs lower than 1. Similarly, the risk assessment based on CAGs led to total margins of exposure (MOETs) far from 100. In conclusion, both risk assessment strategies does not reveal any evidence of a potential health risk due to pesticide exposure in Spanish children.
Collapse
Affiliation(s)
- Sandra F Fernández
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain; Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100 Burjassot, Spain
| | - Olga Pardo
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain; Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, University of Valencia, Doctor Moliner 50, 46100 Burjassot, Spain.
| | - Francisca Corpas-Burgos
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain
| | - Vicent Yusà
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain; Public Health Laboratory of Valencia, Av. Cataluña, 21, 46020, Valencia, Spain.
| |
Collapse
|
9
|
Di Consiglio E, Pistollato F, Mendoza-De Gyves E, Bal-Price A, Testai E. Integrating biokinetics and in vitro studies to evaluate developmental neurotoxicity induced by chlorpyrifos in human iPSC-derived neural stem cells undergoing differentiation towards neuronal and glial cells. Reprod Toxicol 2020; 98:174-188. [PMID: 33011216 PMCID: PMC7772889 DOI: 10.1016/j.reprotox.2020.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022]
Abstract
Human iPSC-derived NSCs undergoing differentiation possess some metabolic competence. CPF entered the cells and was biotrasformed into its two main metabolites (CPFO and TCP). After repeated exposure, very limited bioaccumulation of CPF was observed. Treatment with CPF decreased neurite outgrowth, synapse number and electrical activity. Treatment with CPF increased BDNF levels and the percentage of astrocytes.
For some complex toxicological endpoints, chemical safety assessment has conventionally relied on animal testing. Apart from the ethical issues, also scientific considerations have been raised concerning the traditional approach, highlighting the importance for considering real life exposure scenario. Implementation of flexible testing strategies, integrating multiple sources of information, including in vitro reliable test methods and in vitro biokinetics, would enhance the relevance of the obtained results. Such an approach could be pivotal in the evaluation of developmental neurotoxicity (DNT), especially when applied to human cell-based models, mimicking key neurodevelopmental processes, relevant to human brain development. Here, we integrated the kinetic behaviour with the toxicodynamic alterations of chlorpyrifos (CPF), such as in vitro endpoints specific for DNT evaluation, after repeated exposure during differentiation of human neural stem cells into a mixed culture of neurons and astrocytes. The upregulation of some cytochrome P450 and glutathione S-transferase genes during neuronal differentiation and the formation of the two major CPF metabolites (due to bioactivation and detoxification) supported the metabolic competence of the used in vitro model. The alterations in the number of synapses, neurite outgrowth, brain derived neurotrophic factor, the proportion of neurons and astrocytes, as well as spontaneous electrical activity correlated well with the CPF ability to enter the cells and be bioactivated to CPF-oxon. Overall, our results confirm that combining in vitro biokinetics and assays to evaluate effects on neurodevelopmental endpoints in human cells should be regarded as a key strategy for a quantitative characterization of DNT effects.
Collapse
Affiliation(s)
- Emma Di Consiglio
- Istituto Superiore di Sanità, Environment and Health Department, Mechanisms, Biomarkers and Models Unit, Rome, Italy
| | | | | | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Emanuela Testai
- Istituto Superiore di Sanità, Environment and Health Department, Mechanisms, Biomarkers and Models Unit, Rome, Italy
| |
Collapse
|
10
|
Fernández SF, Pardo O, Adam-Cervera I, Montesinos L, Corpas-Burgos F, Roca M, Pastor A, Vento M, Cernada M, Yusà V. Biomonitoring of non-persistent pesticides in urine from lactating mothers: Exposure and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134385. [PMID: 31678881 DOI: 10.1016/j.scitotenv.2019.134385] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/14/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
The aim of the present study was to assess the exposure to pesticides in urine from Spanish lactating mothers (n = 116). Six nonspecific (dialkyl phosphates) and 20 specific metabolites of organophosphate pesticides (OPs), herbicides and pyrethroids were analyzed. The most frequently detected biomarkers were diethyl phosphate, p-nitrophenol, 3,5,6-trichloro-2-pyridinol and 3-phenoxybenzoic acid, whose geometric means were 1.9 ng·mL-1, 0.8 ng·mL-1, 1.5 ng·mL-1 and 1.4 ng·mL-1, respectively. Herbicide metabolites were the least frequently detected biomarkers with detection frequencies between 0% (2,4,5-Trichlorophenoxyacetic acid) and 22% (2,4-Dichlorophenoxyacetic acid). Multiple regression analyses showed that the closeness to a farming activity, the place of residence and the presence of garden/plants at home were some of the most important contributors to urinary levels of pesticide metabolites. Estimated daily intake (EDI), hazard quotient (HQ) and hazard index (HI) were obtained in order to interpret urinary levels of the most frequently detected pesticide metabolites in a risk assessment context. The highest EDIs were obtained for chlorpyrifos (0.40-1.14 μg·kg bw-1·day-1) and deltamethrin (0.34-4.73 μg·kg bw-1·day-1). The calculated HQ for chlorpyrifos, dimethoate, parathion and deltamethrin ranged from 0.01 to 0.47, and HI for OPs ranged from 0.09 to 0.33 showing that apparently there were low health risks due to the exposure to these pesticides in this group of Spanish breastfeeding women.
Collapse
Affiliation(s)
- Sandra F Fernández
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain; Public Health Laboratory of Valencia, Av. Cataluña, 21, 46020 Valencia, Spain
| | - Olga Pardo
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain; Public Health Laboratory of Valencia, Av. Cataluña, 21, 46020 Valencia, Spain.
| | - Inés Adam-Cervera
- Institute of Materials Science of the University of Valencia (ICMUV), University of Valencia, Catedrático José Beltrán, 2, 46980 Paterna, Spain
| | - Lidia Montesinos
- Public Health Laboratory of Valencia, Av. Cataluña, 21, 46020 Valencia, Spain
| | - Francisca Corpas-Burgos
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain
| | - Marta Roca
- Analytical Unit, Health Research Institute La Fe, Av. Abril Martorell, 106, 46026 Valencia, Spain
| | - Agustín Pastor
- Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain
| | - Máximo Vento
- Neonatal Research Group, Health Research Institute La Fe, Av. Abril Martorell, 106, 46026 Valencia, Spain
| | - María Cernada
- Neonatal Research Group, Health Research Institute La Fe, Av. Abril Martorell, 106, 46026 Valencia, Spain
| | - Vicent Yusà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain; Public Health Laboratory of Valencia, Av. Cataluña, 21, 46020 Valencia, Spain; Analytical Unit, Health Research Institute La Fe, Av. Abril Martorell, 106, 46026 Valencia, Spain
| |
Collapse
|
11
|
Zhao S, Kamelia L, Boonpawa R, Wesseling S, Spenkelink B, Rietjens IMCM. Physiologically based kinetic modelling-facilitated reverse dosimetry to predict in vivo red blood cell acetylcholinesterase inhibition following exposure to chlorpyrifos in the Caucasian and Chinese population. Toxicol Sci 2019; 171:69-83. [PMID: 31214721 PMCID: PMC6736452 DOI: 10.1093/toxsci/kfz134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/26/2019] [Accepted: 05/23/2019] [Indexed: 11/25/2022] Open
Abstract
Organophosphates have a long history of use as insecticides over the world. The aim of the present study was to investigate the interethnic differences in kinetics, biomarker formation, and in vivo red blood cell acetylcholinesterase inhibition of chlorpyrifos (CPF) in the Chinese and the Caucasian population. To this purpose, physiologically based kinetic models for CPF in both the Chinese and Caucasian population were developed, and used to study time- and dose-dependent interethnic variation in urinary biomarkers and to convert concentration-response curves for red blood cell acetylcholinesterase inhibition to in vivo dose-response curves in these 2 populations by reverse dosimetry. The results obtained revealed a marked interethnic difference in toxicokinetics of CPF, with lower urinary biomarker levels at similar dose levels and slower CPF bioactivation and faster chlorpyrifos-oxon detoxification in the Chinese compared with the Caucasian population, resulting in 5- to 6-fold higher CPF sensitivity of the Caucasian than the Chinese population. These differences might be related to variation in the frequency of single-nucleotide polymorphisms for the major biotransformation enzymes involved. To conclude, the interethnic variation in kinetics of CPF may affect both its biomarker-based exposure assessment and its toxicity and risk assessment and physiologically based kinetic modeling facilitates the characterization and quantification of these interethnic variations.
Collapse
Affiliation(s)
- Shensheng Zhao
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Lenny Kamelia
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Rungnapa Boonpawa
- Faculty of Natural Resources and Agro-Industry, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Thailand
| | - Sebastiaan Wesseling
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Bert Spenkelink
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
12
|
Kinetic time courses of lambda-cyhalothrin metabolites after dermal application of Matador EC 120 in volunteers. Toxicol Lett 2018; 296:132-138. [PMID: 30120931 DOI: 10.1016/j.toxlet.2018.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 11/24/2022]
Abstract
A controlled kinetic study was conducted in volunteers dermally exposed to the widely used lambda-cyhalothrin pyrethroid pesticide to document the time courses of relevant biomarkers of exposure, in order to better assess biomonitoring data in workers. Matador® EC120 formulation (120 g/l) was applied on 40 cm2 of the forearm at a 0.25 mg/kg dose of lambda-cyhalothrin and left without occlusion or washing for 6 h. The application site was then washed thoroughly with soap and water. The kinetic time courses of cis-3-(2-chloro-3,3,3-trifluoroprop-1-en-1-yl)-2,2-dimethylcyclopropane carboxylic acid (CFMP) and 3-phenoxybenzoic acid (3-PBA) metabolites were determined in plasma and urine up to 84 h post-application. Results show that the fraction of lambda-cyhalothrin absorbed in the body was rapidly cleared following dermal contact. According to CFMP and 3-PBA plasma profiles, calculated mean apparent absorption half-lives (t1/2) were 3 and 7.3 h, respectively, and corresponding mean apparent elimination t1/2 were 11.2 and 7.6 h. These differences suggest some metabolism at the site-of-entry and storage of metabolites by the dermal route. Toxicokinetic parameters calculated from urinary profiles confirm the values of absorption and elimination rates. Metabolites were almost completely excreted over the 84-h period post-application and, on average, 0.12 and 0.08% of the applied lambda-cyhalothrin dose was recovered in the urine as CFMP and 3-PBA, respectively, indicating a low dermal absorption fraction of this pyrethroid. This study showed the potential use of CFMP and 3-PBA biomarkers for the assessment of dermal exposure to lambda-cyhalothrin pyrethroid.
Collapse
|
13
|
Li R, He L, Zhou T, Ji X, Qian M, Zhou Y, Wang Q. Simultaneous determination of chlorpyrifos and 3,5,6-trichloro-2-pyridinol in duck muscle by modified QuEChERS coupled to gas chromatography tandem mass spectrometry (GC-MS/MS). Anal Bioanal Chem 2014; 406:2899-907. [DOI: 10.1007/s00216-014-7717-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
|
14
|
Côté J, Bonvalot Y, Carrier G, Lapointe C, Fuhr U, Tomalik-Scharte D, Wachall B, Bouchard M. A novel toxicokinetic modeling of cypermethrin and permethrin and their metabolites in humans for dose reconstruction from biomarker data. PLoS One 2014; 9:e88517. [PMID: 24586336 PMCID: PMC3935837 DOI: 10.1371/journal.pone.0088517] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/06/2014] [Indexed: 11/18/2022] Open
Abstract
To assess exposure to pyrethroids in the general population, one of most widely used method nowadays consists of measuring urinary metabolites. Unfortunately, interpretation of data is limited by the unspecified relation between dose and levels in biological tissues and excreta. The objective of this study was to develop a common multi-compartment toxicokinetic model to predict the time courses of two mainly used pyrethroid pesticides, permethrin and cypermethrin, and their metabolites (cis-DCCA, trans-DCCA and 3-PBA) in the human body and in accessible biological matrices following different exposure scenarios. Toxicokinetics was described mathematically by systems of differential equations to yield the time courses of these pyrethroids and their metabolites in the different compartments. Unknown transfer rate values between compartments were determined from best fits to available human data on the urinary excretion time courses of metabolites following an oral and dermal exposure to cypermethrin in volunteers. Since values for these coefficients have not yet been determined, a mathematical routine was programmed in MathCad to establish the possible range of values on the basis of physiological and mathematical considerations. The best combination of parameter values was then selected using a statistic measure (reliability factor) along with a statistically acceptable range of values for each parameter. With this approach, simulations provided a close approximation to published time course data. This model allows to predict urinary time courses of trans-DCCA, cis-DCCA and 3-PBA, whatever the exposure route. It can also serve to reconstruct absorbed doses of permethrin or cypermethrin in the population using measured biomarker data.
Collapse
Affiliation(s)
- Jonathan Côté
- Département de santé environnementale et santé au travail, Chaire d'analyse et de gestion des risques toxicologiques and Institut de recherche en santé publique de l'Université de Montréal (IRSPUM), Université de Montréal, Montreal, Quebec, Canada
| | - Yvette Bonvalot
- Environmental Health Program, Health Canada, Longueuil, Quebec, Canada
| | - Gaétan Carrier
- Département de santé environnementale et santé au travail, Chaire d'analyse et de gestion des risques toxicologiques and Institut de recherche en santé publique de l'Université de Montréal (IRSPUM), Université de Montréal, Montreal, Quebec, Canada
| | - Caroline Lapointe
- Environmental Health Program, Health Canada, Longueuil, Quebec, Canada
| | - Uwe Fuhr
- Department of Pharmacology, University of Cologne, Clinical Pharmacology Unit, Köln, Germany
| | - Dorota Tomalik-Scharte
- Department of Pharmacology, University of Cologne, Clinical Pharmacology Unit, Köln, Germany
| | - Bertil Wachall
- Infectopharm Arzneimittel und Consilium GmbH, Heppenheim, Germany
| | - Michèle Bouchard
- Département de santé environnementale et santé au travail, Chaire d'analyse et de gestion des risques toxicologiques and Institut de recherche en santé publique de l'Université de Montréal (IRSPUM), Université de Montréal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
15
|
Chuang JC, Wilson NK. Multiresidue analysis of organophosphate and pyrethroid pesticides in duplicate-diet solid food by pressurized liquid extraction. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2011; 46:41-50. [PMID: 20972922 DOI: 10.1080/03601234.2010.515505] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
An analytical method was developed for determining organophosphate pesticides (OPP) and pyrethroid pesticides (PYR) in duplicate-diet solid food. The method consisted of pressurized liquid extraction (PLE) with dichloromethane followed by cleanup with gel permeation and solid phase extraction columns and gas chromatography/mass spectrometry (GC/MS) analysis. Quantitative recoveries (73-117 %) of the target pesticides were obtained for spiked duplicate-diet food samples. The percent standard deviation (% RSD) of replicate food samples was within ± 20 %. Another method was developed for determining a common OPP metabolite, 3, 5, 6-trichloro-2-pyridinol (TCP) in duplicate-diet food. The method consisted of a PLE with methanol followed by liquid-liquid partitioning, derivatization, and GC/MS analysis. Recoveries of TCP ranged from 83 to 101 % for spiked duplicate-diet food samples. The % RSD of replicate food samples was within ± 15 %. The results confirmed that these methods are reliable and robust, and that they can be used in routine analysis. In addition, a storage stability study for a common OPP, chlorpyrifos (CPF), in solid food samples was performed. The fortified (15)N-(13)C-labeled CPF was stable over 16 mo storage at -20° C in the dark. The developed analytical methods were successfully applied to 278 duplicate-diet food samples from preschool children, demonstrating that these methods are robust and suitable for routine analysis in future exposure monitoring studies.
Collapse
|
16
|
Valcke M, Bouchard M. Determination of no-observed effect level (NOEL)-biomarker equivalents to interpret biomonitoring data for organophosphorus pesticides in children. Environ Health 2009; 8:5. [PMID: 19228383 PMCID: PMC2649912 DOI: 10.1186/1476-069x-8-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 02/19/2009] [Indexed: 05/11/2023]
Abstract
BACKGROUND Environmental exposure to organophosphorus pesticides has been characterized in various populations, but interpretation of these data from a health risk perspective remains an issue. The current paper proposes biological reference values to help interpret biomonitoring data related to an exposure to organophosphorus pesticides in children for which measurements of alkylphosphate metabolites are available. METHODS Published models describing the kinetics of malathion and chlorpyrifos in humans were used to determine no-observed effect level - biomarker equivalents for methylphosphates and ethylphosphates, respectively. These were expressed in the form of cumulative urinary amounts of alkylphosphates over specified time periods corresponding to an absorbed no-observed effect level dose (derived from a published human exposure dose) and assuming various plausible exposure scenarios. Cumulative amounts of methylphosphate and ethylphosphate metabolites measured in the urine of a group of Quebec children were then compared to the proposed biological reference values. RESULTS From a published no-observed effect level dose for malathion and chlorpyrifos, the model predicts corresponding oral biological reference values for methylphosphate and ethylphosphate derivatives of 106 and 52 nmol/kg of body weight, respectively, in 12-h nighttime urine collections, and dermal biological reference values of 40 and 32 nmol/kg of body weight. Out of the 442 available urine samples, only one presented a methylphosphate excretion exceeding the biological reference value established on the basis of a dermal exposure scenario and none of the methylphosphate and ethylphosphate excretion values were above the obtained oral biological reference values, which reflect the main exposure route in children. CONCLUSION This study is a first step towards the development of biological guidelines for organophophorus pesticides using a toxicokinetic modeling approach, which can be used to provide a health-based interpretation of biomonitoring data in the general population.
Collapse
Affiliation(s)
- Mathieu Valcke
- Direction des Risques Biologiques, Environnementaux et Occupationnels, Institut national de santé publique du Québec, Montréal, QC, Canada
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Chair of Toxicological Risk Analysis and Management and GRIS, Université de Montréal, P.O. Box 6128, Main Station, Montreal, Quebec, H3C 3J7, Canada
| |
Collapse
|
17
|
Clewell HJ, Tan YM, Campbell JL, Andersen ME. Quantitative Interpretation of Human Biomonitoring Data. Toxicol Appl Pharmacol 2008; 231:122-33. [DOI: 10.1016/j.taap.2008.04.021] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 04/19/2008] [Accepted: 04/28/2008] [Indexed: 10/22/2022]
|
18
|
Valcke M, Samuel O, Bouchard M, Dumas P, Belleville D, Tremblay C. Biological monitoring of exposure to organophosphate pesticides in children living in peri-urban areas of the Province of Quebec, Canada. Int Arch Occup Environ Health 2006; 79:568-77. [PMID: 16491402 DOI: 10.1007/s00420-006-0085-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Accepted: 01/05/2006] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This study was undertaken to assess the exposure to organophosphate (OP) pesticides in children from peri-urban areas of the Province of Quebec, Canada, through measurements of semi-specific alkylphosphate (AP) metabolites. METHODS Eighty-nine children aged between 3 and 7 years were recruited via pamphlets sent to day-care centers. A first morning urine void was collected early in the spring of 2003 prior to summertime, which is the usual period of outdoor pesticide use. During summertime, up to five more first morning voids were repeatedly collected, at 72-h intervals, over a 13-day period. The potential determinants of exposure were assessed by a questionnaire at the time of urine collection. RESULTS Methylphosphate metabolites were detectable in 98.2% of the 442 samples analyzed while ethylphosphates were detected in 86.7% of the samples. The geometric mean concentration (GM) of the total AP metabolites was 61.7 mug/g creatinine (range: 2.7-1967.3 mug/g creatinine). The difference in urinary AP concentrations between samples collected during spring and summer was non-significant (P=0.08). There was also no significant difference in the mean AP concentrations between summer samples of individuals living in municipalities where outdoor pesticide use is or is not restricted (P=0.25). However, the presence of a pet in the house was associated with an increase in AP concentrations during spraying season (P=0.02). Pesticides were seldom used, as reported by the questionnaire. A significant correlation was also observed (P<0.001) between the urinary AP concentrations in samples provided by siblings at the same time period. CONCLUSIONS Mean concentrations of AP were generally higher than those reported in other studies. The observed exposure apparently occurred mainly through the dietary ingestion of OP residues. These data raise questions on the levels of OP residues in Quebec food and the possibility that our participants consumed more fruits and vegetables than those in other studies.
Collapse
Affiliation(s)
- Mathieu Valcke
- Direction des Risques Biologiques, Environnementaux et Occupationnels, Institut National de Santé Publique du Québec, 4835, Christophe-Colomb, Bureau 200,, H2J 3G8, Montreal, QC, Canada.
| | | | | | | | | | | |
Collapse
|