1
|
Sarmiento H, Potgieter-Vermaak S, Borillo GC, Godoi AFL, Reis RA, Yamamoto CI, Pauliquevis T, Polezer G, Godoi RHM. BTEX profile and health risk at the largest bulk port in Latin America, Paranaguá Port. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63084-63095. [PMID: 36952154 DOI: 10.1007/s11356-023-26508-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/13/2023] [Indexed: 05/10/2023]
Abstract
Port-related activities have a detrimental impact on the air quality both at the point of source and for considerable distances beyond. These activities include, but are not limited to, heavy cargo traffic, onboard, and at-berth emissions. Due to differences in construction, operation, location, and policies at ports, the site-specific air pollution cocktail could result in different human health risks. Thus, monitoring and evaluating such emissions are essential to predict the risk to the community. Environmental agencies often monitor key pollutants (PM2.5, PM10, NO2, SO2), but the volatile organic carbons (VOCs) most often are not, due to its analytical challenging. This study intends to fill that gap and evaluate the VOC emissions caused by activities related to the port of Paranaguá - one of the largest bulk ports in Latin America - by characterizing BTEX concentrations at the port and its surroundings. At seven different sites, passive samplers were used to measure the dispersion of BTEX concentrations throughout the port and around the city at weekly intervals from November 2018 to January 2019. The average and uncertainty of BTEX concentrations (µg m-3) were 0.60 ± 0.43, 5.58 ± 3.80, 3.30 ± 2.41, 4.66 ± 3.67, and 2.82 ± 1.95 for benzene, toluene, ethylbenzene, m- and p-xylene, and o-xylene, respectively. Relationships between toluene and benzene and health risk analysis were used to establish the potential effects of BTEX emissions on the population of the city of Paranaguá. Ratio analysis (T/B, B/T, m,p X/Et, and m,p X/B) indicate that the BTEX levels are mainly from fresh emission sources and that photochemical ageing was at minimum. The cancer risk varied across the sampling trajectory, whereas ethylbenzene represented a moderate cancer risk development for the exposed population in some of the locations. This study provided the necessary baseline data to support policymakers on how to change the circumstances of those currently at risk, putting in place a sustainable operation.
Collapse
Affiliation(s)
- Hugo Sarmiento
- Water Resources and Environmental Engineering Department, Federal University of Parana, Curitiba, Brazil
| | - Sanja Potgieter-Vermaak
- Department of Natural Science, Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester, M1 5GD, UK
- Molecular Science Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Guilherme C Borillo
- Water Resources and Environmental Engineering Department, Federal University of Parana, Curitiba, Brazil
| | - Ana Flavia L Godoi
- Water Resources and Environmental Engineering Department, Federal University of Parana, Curitiba, Brazil
| | - Rodrigo A Reis
- Department of Cell Biology, Federal University of Parana, Curitiba, Parana, Brazil
| | - Carlos I Yamamoto
- Chemical Engineering Department, Federal University of Parana, Curitiba, Parana, Brazil
| | - Theotonio Pauliquevis
- Department of Environmental Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Gabriela Polezer
- Water Resources and Environmental Engineering Department, Federal University of Parana, Curitiba, Brazil
- Department of Technology, State University of Maringá, Umuarama, Parana, Brazil
| | - Ricardo H M Godoi
- Water Resources and Environmental Engineering Department, Federal University of Parana, Curitiba, Brazil.
| |
Collapse
|
2
|
Eriksen Hammer S, Daae HL, Kåsin K, Helmersmo K, Simensen V, Skaugset NP, Hassel E, Zardin E. Chemical characterization of combustion engine exhaust and assessment of helicopter deck operator occupational exposures on an offshore frigate class ship. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2023; 20:170-182. [PMID: 36787211 DOI: 10.1080/15459624.2023.2180150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Diesel engine exhaust (DE) consists of a complex mixture of gases and aerosols, originating from sources such as engines, turbines, and power generators. It is composed of a wide range of toxic compounds ranging from constituents that are irritating to those that are carcinogenic. The purposes of this work were to characterize DE originating from different engine types on a ship operating offshore and to quantify the potential exposure of workers on the ship's helicopter deck to select DE compounds. Sampling was conducted on a Norwegian Nansen-class frigate that included helicopter operations. Frigate engines and generators were fueled by marine diesel oil, while the helicopter engine was fueled by high flash point kerosene-type aviation fuel. Exhaust samples were collected directly from the stack of the diesel engine and one of the diesel generator exhaust stacks, inside a gas turbine exhaust stack, and at the exhaust outlet of the helicopter. To characterize the different exhaust sources, non-targeted screening of volatile and semi-volatile organic compounds was performed for multiple chemical classes. Some of the compounds detected at the sources are known irritants, such as phthalic anhydride, 2,5-dyphenyl-p-benzoquinone, styrene, cinnoline, and phenyl maleic anhydride. The exhaust from the diesel engine and diesel generator was found to contain the highest amounts of particulate matter and gaseous compounds, while the gas turbine had the lowest emissions. Personal exposure samples were collected outdoors in the breathing zone of a helicopter deck operator over nine working shifts, simultaneously with stationary measurements on the helicopter deck. Elemental carbon, nitrogen dioxide, and several volatile organic compounds are known to be present in DE, such as formaldehyde, acrolein, and phenol were specifically targeted. Measured DE exposures of the crew on the helicopter deck were variable, but less than the current European occupational exposure limits for all compounds, except elemental carbon, in which concentration varied between 0.5 and 37 µg/m3 over nine work shifts. These findings are among the first published for this type of working environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Erlend Hassel
- Norwegian Armed Forces Occupational Health Service, Trondheim, Norway
- Department of Occupational Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Erika Zardin
- National Institute of Occupational Health, Oslo, Norway
| |
Collapse
|
3
|
Indirect mediators of systemic health outcomes following nanoparticle inhalation exposure. Pharmacol Ther 2022; 235:108120. [PMID: 35085604 PMCID: PMC9189040 DOI: 10.1016/j.pharmthera.2022.108120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
The growing field of nanoscience has shed light on the wide diversity of natural and anthropogenic sources of nano-scale particulates, raising concern as to their impacts on human health. Inhalation is the most robust route of entry, with nanoparticles (NPs) evading mucociliary clearance and depositing deep into the alveolar region. Yet, impacts from inhaled NPs are evident far outside the lung, particularly on the cardiovascular system and highly vascularized organs like the brain. Peripheral effects are partly explained by the translocation of some NPs from the lung into the circulation; however, other NPs largely confined to the lung are still accompanied by systemic outcomes. Omic research has only just begun to inform on the complex myriad of molecules released from the lung to the blood as byproducts of pulmonary pathology. These indirect mediators are diverse in their molecular make-up and activity in the periphery. The present review examines systemic outcomes attributed to pulmonary NP exposure and what is known about indirect pathological mediators released from the lung into the circulation. Further focus was directed to outcomes in the brain, a highly vascularized region susceptible to acute and longer-term outcomes. Findings here support the need for big-data toxicological studies to understand what drives these health outcomes and better predict, circumvent, and treat the potential health impacts arising from NP exposure scenarios.
Collapse
|
4
|
Ziembicki S, Kirkham TL, Demers PA, Peters CE, Gorman Ng M, Davies HW, Tenkate T, Kalenge S, Blagrove-Hall N, Jardine KJ, Arrandale VH. Diesel Engine Exhaust Exposure in the Ontario Civil Infrastructure Construction Industry. Ann Work Expo Health 2021; 66:150-162. [PMID: 34585719 DOI: 10.1093/annweh/wxab068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Diesel engine exhaust (DEE) is a known lung carcinogen and a common occupational exposure in Canada. The use of diesel-powered equipment in the construction industry is particularly widespread, but little is known about DEE exposures in this work setting. The objective of this study was to determine exposure levels and identify and characterize key determinants of DEE exposure at construction sites in Ontario. METHODS Elemental carbon (EC, a surrogate of DEE exposure) measurements were collected at seven civil infrastructure construction worksites and one trades training facility in Ontario using NIOSH method 5040. Full-shift personal air samples were collected using a constant-flow pump and SKC aluminium cyclone with quartz fibre filters in a 37-mm cassette. Exposures were compared with published health-based limits, including the Dutch Expert Committee on Occupational Safety (DECOS) limit (1.03 µg m-3 respirable EC) and the Finnish Institute of Occupational Health (FIOH) recommendation (5 µg m-3 respirable EC). Mixed-effects linear regression was used to identify determinants of EC exposure. RESULTS In total, 149 EC samples were collected, ranging from <0.25 to 52.58 µg m-3 with a geometric mean (GM) of 3.71 µg m-3 [geometric standard deviation (GSD) = 3.32]. Overall, 41.6% of samples exceeded the FIOH limit, mostly within underground worksites (93.5%), and 90.6% exceeded the DECOS limit. Underground workers (GM = 13.20 µg m-3, GSD = 1.83) had exposures approximately four times higher than below grade workers (GM = 3.56 µg m-3, GSD = 1.94) and nine times higher than above ground workers (GM = 1.49 µg m-3, GSD = 1.75). Training facility exposures were similar to above ground workers (GM = 1.86 µg m-3, GSD = 4.12); however, exposures were highly variable. Work setting and enclosed cabins were identified as the key determinants of exposure in the final model (adjusted R2 = 0.72, P < 0.001). The highest DEE exposures were observed in underground workplaces and when using unenclosed cabins. CONCLUSIONS This study provides data on current DEE exposure in Canadian construction workers. Most exposures were above recommended health-based limits, albeit in other jurisdictions, signifying a need to further reduce DEE levels in construction. These results can inform a hazard reduction strategy including targeted intervention/control measures to reduce DEE exposure and the burden of occupational lung cancer.
Collapse
Affiliation(s)
- Stephanie Ziembicki
- Occupational Cancer Research Centre, Ontario Health, Toronto, ON, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Tracy L Kirkham
- Occupational Cancer Research Centre, Ontario Health, Toronto, ON, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Paul A Demers
- Occupational Cancer Research Centre, Ontario Health, Toronto, ON, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.,School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl E Peters
- Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Holy Cross Centre, AB, Canada.,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,CAREX Canada, Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada
| | - Melanie Gorman Ng
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada.,BC Construction Safety Alliance, New Westminster, BC, Canada
| | - Hugh W Davies
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Thomas Tenkate
- School of Occupational and Public Health, Ryerson University, Toronto, ON, Canada
| | - Sheila Kalenge
- Occupational Cancer Research Centre, Ontario Health, Toronto, ON, Canada
| | | | | | - Victoria H Arrandale
- Occupational Cancer Research Centre, Ontario Health, Toronto, ON, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Audignon-Durand S, Gramond C, Ducamp S, Manangama G, Garrigou A, Delva F, Brochard P, Lacourt A. Development of a Job-Exposure Matrix for Ultrafine Particle Exposure: The MatPUF JEM. Ann Work Expo Health 2021; 65:516-527. [PMID: 33637984 DOI: 10.1093/annweh/wxaa126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Ultrafine particles (UFPs) are generated from common work processes and have thus existed for a long time. Far more prevalent than engineered nanoparticles, they share common toxicological characteristics with them. However, there is no existing retrospective assessment tool specific to UFPs, for example, for epidemiological purposes. Thus, we aimed to develop a job-exposure matrix dedicated to UFPs. METHOD Fifty-seven work processes were identified as well as the chemical composition of UFPs emitted, following a literature review and the input of an expert panel. These work processes were associated with occupational codes as defined by the ISCO 1968 classification. The probability and frequency of UFP exposure were assessed for each combination of occupational code and process. Summarized probabilities and frequencies were then calculated for all ISCO occupational codes associated with several processes. Variations in exposure over time or across industrial sectors were accounted for in the assessment of each occupational code. RESULTS In the ISCO classification, 52.8% of the occupational codes (n = 835) assessed were associated with exposure to UFPs, consisting mainly of carbonaceous, metallic, and mineral families (39.5%, 22 and, 15.8%, respectively). Among them, 42.6% involved very probable exposure, and at a high frequency (regularly or continuously). CONCLUSION These results suggest that occupational exposure to UFPs may be extensive at the workplace and could concern a wide variety of workers. Pending the integration of a third parameter assessing the intensity of UFP exposure, the MatPUF JEM already constitutes a promising and easy-to-use tool to study the possible adverse health effects of UFPs at work. It may also guide prevention policies in the occupational environments concerned, including those involving engineered nanoparticles.
Collapse
Affiliation(s)
- Sabyne Audignon-Durand
- University of Bordeaux, Inserm UMR 1219 EPICENE Team, Bordeaux Population Health Research Center, 146 rue Léo Saignat, Bordeaux, France.,Bordeaux University Hospital, Service of Occupational Medicine and Occupational Pathology, 12 rue Dubernat, Talence, France
| | - Céline Gramond
- University of Bordeaux, Inserm UMR 1219 EPICENE Team, Bordeaux Population Health Research Center, 146 rue Léo Saignat, Bordeaux, France
| | - Stéphane Ducamp
- Santé Publique France, Division of Environmental and Occupational health, 12 rue du Val d'Osne, Saint Maurice, France
| | - Guyguy Manangama
- University of Bordeaux, Inserm UMR 1219 EPICENE Team, Bordeaux Population Health Research Center, 146 rue Léo Saignat, Bordeaux, France.,Bordeaux University Hospital, Service of Occupational Medicine and Occupational Pathology, 12 rue Dubernat, Talence, France
| | - Alain Garrigou
- University of Bordeaux, Inserm UMR 1219 EPICENE Team, Bordeaux Population Health Research Center, 146 rue Léo Saignat, Bordeaux, France
| | - Fleur Delva
- University of Bordeaux, Inserm UMR 1219 EPICENE Team, Bordeaux Population Health Research Center, 146 rue Léo Saignat, Bordeaux, France.,Bordeaux University Hospital, Service of Occupational Medicine and Occupational Pathology, 12 rue Dubernat, Talence, France
| | - Patrick Brochard
- University of Bordeaux, Inserm UMR 1219 EPICENE Team, Bordeaux Population Health Research Center, 146 rue Léo Saignat, Bordeaux, France.,Bordeaux University Hospital, Service of Occupational Medicine and Occupational Pathology, 12 rue Dubernat, Talence, France
| | - Aude Lacourt
- University of Bordeaux, Inserm UMR 1219 EPICENE Team, Bordeaux Population Health Research Center, 146 rue Léo Saignat, Bordeaux, France
| |
Collapse
|
6
|
Manigrasso M, Protano C, Vitali M, Avino P. Where Do Ultrafine Particles and Nano-Sized Particles Come From? J Alzheimers Dis 2020; 68:1371-1390. [PMID: 31006689 DOI: 10.3233/jad-181266] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This paper presents an overview of the literature studies on the sources of ultrafine particles (UFPs), nanomaterials (NMs), and nanoparticles (NPs) occurring in indoor (occupational and residential) and outdoor environments. Information on the relevant emission factors, particle concentrations, size, and compositions is provided, and health relevance of UFPs and NPs is discussed. Particular attention is focused on the fraction of particles that upon inhalation deposit on the olfactory bulb, because these particles can possibly translocate to brain and their possible role in neurodegenerative diseases is an important issue emerging in the recent literature.
Collapse
Affiliation(s)
| | - Carmela Protano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Matteo Vitali
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Pasquale Avino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Campobasso, Italy
| |
Collapse
|
7
|
da Silveira Fleck A, Catto C, L'Espérance G, Masse JP, Roberge B, Debia M. Characterization and Quantification of Ultrafine Particles and Carbonaceous Components from Occupational Exposures to Diesel Particulate Matter in Selected Workplaces. Ann Work Expo Health 2020; 64:490-502. [PMID: 32266382 DOI: 10.1093/annweh/wxaa027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/20/2019] [Accepted: 02/25/2020] [Indexed: 11/13/2022] Open
Abstract
Questions still exist regarding which indicator better estimates worker's exposure to diesel particulate matter (DPM) and, especially for ultrafine particles (UFP), how exposure levels and the characteristics of the particles vary in workplaces with different exposure conditions. This study aimed to quantify and characterize DPM exposures in three workplaces with different exposure levels: an underground mine, a subway tunnel, and a truck repair workshop. The same sampling strategy was used and included measurements of the particle number concentration (PNC), mass concentration, size distribution, transmission electron microscopy (TEM), and the characterization of carbonaceous fractions. The highest geometric means (GMs) of PNC and elemental carbon (EC) were measured in the mine [134 000 (geometric standard deviation, GSD = 1.5) particles cm-3 and 125 (GSD = 2.1) µg m-3], followed by the tunnel [32 800 (GSD = 1.7) particles cm-3 and 24.7 (GSD = 2.4) µg m-3], and the truck workshop [22 700 (GSD = 1.3) particles cm-3 and 2.7 (GSD = 2.4) µg m-3]. This gradient of exposure was also observed for total carbon (TC) and particulate matter. The TC/EC ratio was 1.4 in the mine, 2.5 in the tunnel and 8.7 in the workshop, indicating important organic carbon interference in the non-mining workplaces. EC and PNC were strongly correlated in the tunnel (r = 0.85; P < 0.01) and the workshop (r = 0.91; P < 0.001), but a moderate correlation was observed in the mine (r = 0.57; P < 0.05). Results from TEM showed individual carbon spheres between 10 and 56.5 nm organized in agglomerates, while results from the size distribution profiles showed bimodal distributions with a larger accumulation mode in the mine (93 nm) compared with the tunnel (39 nm) and the truck workshop (34 nm). In conclusion, the composition of the carbonaceous fraction varies according to the workplace, and can interfere with DPM estimation when TC is used as indicator. Also, the dominance of particles <100 nm in all workplaces, the high levels of PNC measured and the good correlation with EC suggest that UFP exposures should receive more attention on occupational routine measurements and regulations.
Collapse
Affiliation(s)
- Alan da Silveira Fleck
- Department of Environmental and Occupational Health, University of Montreal, Montreal, QC, Canada.,Centre de recherche en santé publique, Montreal, QC, Canada
| | - Cyril Catto
- Department of Environmental and Occupational Health, University of Montreal, Montreal, QC, Canada
| | - Gilles L'Espérance
- Department of Mathematical and Industrial Engineering, École Polytechnique de Montréal, Montréal, QC, Canada
| | - Jean-Philippe Masse
- Department of Mathematical and Industrial Engineering, École Polytechnique de Montréal, Montréal, QC, Canada
| | - Brigitte Roberge
- Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST), Montréal, QC, Canada
| | - Maximilien Debia
- Department of Environmental and Occupational Health, University of Montreal, Montreal, QC, Canada.,Centre de recherche en santé publique, Montreal, QC, Canada
| |
Collapse
|
8
|
Shin J, Kim B, Kim HR. Characteristics of Occupational Exposure to Diesel Engine Exhaust for Shipyard Transporter Signal Workers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4398. [PMID: 32570973 PMCID: PMC7344567 DOI: 10.3390/ijerph17124398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 11/16/2022]
Abstract
Background: Workers performing signal work for a heavy-duty shipyard transporter are exposed to diesel engine exhaust (DEE), which is classified as a Group 1 carcinogen by the International Agency for Research on Cancer. Here, we evaluate DEE exposure levels for workers engaged in shipyard transporter signal work through measurement of respirable elemental carbon (EC), organic carbon (OC), and total carbon (TC), and identify the factors affecting exposure. Methods: Sixty signal workers were selected, and measured samples were analyzed by thermo-optical transmittance. Results: The mean EC exposure level of a transporter signal worker was 4.16 µg/m3, with a range of 0.69 to 47.81 µg/m3. EC, OC, and TC exposure levels did not show statistically significant differences for individual variables except the measurement date. This was influenced by meteorological factors such as wind speed, and it was confirmed that the work position, number carried, and load capacity in the multiple regression analysis after minimizing the meteorological effects were factors influencing the EC exposure level of the signalman. Conclusions: Meteorological conditions influenced DEE exposure of transporter signal workers who work outdoors. The mean EC exposure level was not high, but exposures to high concentrations of EC were recorded by meteorological factors.
Collapse
Affiliation(s)
- Jungah Shin
- Department of Research for Occupational Health, Institute of Occupation and Environment, Incheon 21417, Korea; (J.S.); (B.K.)
- Department of Occupational and Environmental Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Boowook Kim
- Department of Research for Occupational Health, Institute of Occupation and Environment, Incheon 21417, Korea; (J.S.); (B.K.)
| | - Hyoung-Ryoul Kim
- Department of Occupational and Environmental Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
9
|
Berlinger B, Ellingsen DG, Romanova N, Friisk G, Daae HL, Weinbruch S, Skaugset NP, Thomassen Y. Elemental Carbon and Nitrogen Dioxide as Markers of Exposure to Diesel Exhaust in Selected Norwegian Industries. Ann Work Expo Health 2019; 63:349-358. [PMID: 30715098 DOI: 10.1093/annweh/wxy112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 11/14/2022] Open
Abstract
Elemental carbon (EC) and nitrogen dioxide (NO2) in air as markers for diesel exhaust (DE) emission exposure were measured in selected work environments in Norway where diesel-powered engines are in use. Two hundred and ninety personal full-shift air samples were collected in primary aluminium production, underground and open-pit mining, road tunnel finishing, transport of ore, and among airport baggage handlers. EC was determined in the samples by a thermo-optical method, while NO2 was determined by ion chromatography. Highest EC air concentrations (geometric mean, GM) were found in aluminium smelters (GM = 45.5 μg m-3) followed by road tunnel finishing (GM = 37.8 μg m-3) and underground mining activities (GM = 18.9 μg m-3). Low EC air concentrations were measured for baggage handling at an international airport (GM = 2.7 μg m-3) and in an open-pit mine (GM = 1.2 μg m-3). Air concentrations of NO2 were similar in road tunnel finishing (GM = 128 μg m-3) and underground mining (GM = 108 μg m-3). Lower NO2 values were observed in open-pit mining (GM = 50 μg m-3), at the airport (GM = 37 μg m-3), and in the aluminium smelters (GM = 27 μg m-3). Highly significant (P < 0.001) positive correlations between NO2 and EC air concentrations in underground mining (r = 0.54) and road tunnel finishing (r = 0.71) indicate a common source of these pollutants. NO2 and EC were also correlated (P < 0.01) positively at the airport. However, due to the complex air chemistry and a potential contribution of various sources, the correlation between EC and NO2 cannot be regarded as unambiguous hint for a common source. The association between EC and NO2 was not of statistical significance in open-pit mining. In the aluminium smelters, EC and NO2 were negatively correlated, although not reaching statistical significance. The substantial differences in NO2/EC ratios across the investigated industries, ranging from around 0.2 in the primary aluminium production to around 25 during spring at the airport, clearly show that exposure to DE cannot be estimated based on NO2 concentrations, at least for outdoor environments. Results in the primary aluminium production suggest that the measured EC concentrations are related to DE emissions, although the NO2 concentrations were low. Further studies are required to assess the magnitude of exposure in primary aluminium production.
Collapse
Affiliation(s)
- Balázs Berlinger
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Dag G Ellingsen
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Natalya Romanova
- North-West Public Health Research Centre, St. Petersburg, Russia
| | - Grete Friisk
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Hanne Line Daae
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Stephan Weinbruch
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway.,Institute of Applied Geosciences, Technical University Darmstadt, Schnittspahnstr. 9, D-64287 Darmstadt, Germany
| | - Nils Petter Skaugset
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Yngvar Thomassen
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| |
Collapse
|
10
|
da Silveira Fleck A, Couture C, Sauvé JF, Njanga PE, Neesham-Grenon E, Lachapelle G, Coulombe H, Hallé S, Aubin S, Lavoué J, Debia M. Diesel engine exhaust exposure in underground mines: Comparison between different surrogates of particulate exposure. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2018; 15:549-558. [PMID: 29608441 DOI: 10.1080/15459624.2018.1459044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Exposure to diesel particulate matter (DPM) is frequently assessed by measuring indicators of carbon speciation, but these measurements may be affected by organic carbon (OC) interference. Furthermore, there are still questions regarding the reliability of direct-reading instruments (DRI) for measuring DPM, since these instruments are not specific and may be interfered by other aerosol sources. This study aimed to assess DPM exposure in 2 underground mines by filter-based methods and DRI and to assess the relationship between the measures of elemental carbon (EC) and the DRI to verify the association of these instruments to DPM. Filter-based methods of respirable combustible dust (RCD), EC, and total carbon (TC) were used to measure levels of personal and ambient DPM. For ambient measurements, DRI were used to monitor particle number concentration (PNC; PTrak), particle mass concentration (DustTrak DRX and DustTrak 8520), and the submicron fraction of EC (EC1;Airtec). The association between ambient EC and the DRI was assessed by Spearman correlation. Geometric mean concentrations of RCD, respirable TC (TCR) and respirable elemental EC (ECR) were 170 µg/m3, 148 µg/m3, and 83 µg/m3 for personal samples, and 197 µg/m3, 151 µg/m3, and 100 µg/m3 for ambient samples. Personal measurements had higher TCR:ECR ratios compared to ambient samples (1.8 vs. 1.50) and weaker association between ECR and TCR. Among the DRI, the measures of EC1 by the Airtec (ρ = 0.86; P < 0.001) and the respirable particles by the DustTrak 8520 (ρ = 0.74; P < 0.001) showed the strongest association with EC, while PNC showed a weak and non-significant association with EC. In conclusion, this study provided important information about the concentrations of DPM in underground mines by measuring several indicators using filter-based methods and DRI. Among the DRI, the Airtec proved to be a good tool for estimating EC concentrations and, although the DustTrak showed good association with EC, interferences from other aerosol sources should be considered when using this instrument to assess DPM.
Collapse
Affiliation(s)
- Alan da Silveira Fleck
- a Department of Environmental and Occupational Health , School of Public Health, Université de Montréal , Montreal , Canada
| | - Caroline Couture
- a Department of Environmental and Occupational Health , School of Public Health, Université de Montréal , Montreal , Canada
| | - Jean-François Sauvé
- a Department of Environmental and Occupational Health , School of Public Health, Université de Montréal , Montreal , Canada
| | - Pierre-Eric Njanga
- b Department of Mechanical Engineering , École de Technologie Supérieure , Montreal , Canada
| | - Eve Neesham-Grenon
- a Department of Environmental and Occupational Health , School of Public Health, Université de Montréal , Montreal , Canada
| | | | - Hugo Coulombe
- d Health and Safety, Westwood Mine (IAMGOLD), Chemin Arthur Doyon , Preissac , Canada
| | - Stéphane Hallé
- b Department of Mechanical Engineering , École de Technologie Supérieure , Montreal , Canada
| | - Simon Aubin
- e Institut de recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST) , Montreal , Canada
| | - Jérôme Lavoué
- a Department of Environmental and Occupational Health , School of Public Health, Université de Montréal , Montreal , Canada
| | - Maximilien Debia
- a Department of Environmental and Occupational Health , School of Public Health, Université de Montréal , Montreal , Canada
| |
Collapse
|
11
|
Sparer EH, Prendergast DP, Apell JN, Bartzak MR, Wagner GR, Adamkiewicz G, Hart JE, Sorensen G. Assessment of Ambient Exposures Firefighters Encounter While at the Fire Station: An Exploratory Study. J Occup Environ Med 2017; 59:1017-1023. [PMID: 28991807 PMCID: PMC5641976 DOI: 10.1097/jom.0000000000001114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Firefighters are at an increased risk for many types of cancer. Although most studies on this topic focus on exposures encountered while fighting fires, exposures at the fire station are also cause for concern. This pilot study aimed to describe air quality within a few fire stations in and around Boston, Massachusetts, and to investigate physical and organizational factors that may influence levels of contaminants in stations. METHODS Air sampling of particulate matter less than 2.5 μm in diameter (PM2.5) and particle-bound polycyclic aromatic hydrocarbons (PAHs) was completed at four fire stations in Spring, 2016. Sampling occurred in the kitchen, truck bay, and just outside the station. Data were analyzed to assess differences between and within stations. Interviews (n =7) were conducted with officers at each station to explore health and safety-related organizational policies and practices. Interviews were transcribed and analyzed for thematic content. RESULTS At each station, levels of contaminants were higher in the truck bays than either the outdoors or kitchen, and varied the most throughout the day. The station with the highest exposures in the truck bay had the lowest levels in the kitchen, which was possibly explained by new building materials and effective separation between building zones. The age and layout of the stations appeared to determine the extent to which policies favoring exhaust capture were implemented. CONCLUSION Levels of PM2.5 and PAH inside fire stations may contribute to firefighter cancer risk. Through understanding contaminant variability, we can begin to design and test interventions that improve cancer prevention.
Collapse
Affiliation(s)
- Emily H Sparer
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts (Drs Sparer, Sorensen); Center for Community-Based Research, Dana-Farber Cancer Institute, Boston, Massachusetts (Drs Sparer, Sorensen); Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (Mr Prendergast, Mr Apell); MetroWest Medical Center, Framingham, Massacusetts (Bartzak); Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts (Bartzak, Drs Wagner, Adamkiewicz, Hart); Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts (Dr Hart)
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Debia M, Trachy-Bourget MC, Beaudry C, Neesham-Grenon E, Perron S, Lapointe C. Characterization of indoor diesel exhaust emissions from the parking garage of a school. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:4655-4665. [PMID: 27975197 DOI: 10.1007/s11356-016-8129-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
Diesel exhaust (DE) emissions from a parking garage located in the basement of a school were characterized during spring and winter using direct reading devices and integrated sampling methods. Concentrations of CO and NO2 were evaluated using electrochemical sensors and passive colorimetric tubes, respectively. Elemental and total carbon concentrations were measured using the NIOSH 5040 method. Particle number concentrations (PNCs), respirable particulate matter (PMresp) mass concentrations, and size distributions were evaluated using direct reading devices. Indoor concentrations of elemental carbon, PNC, CO, and NO2 showed significant seasonal variation; concentrations were much higher during winter (p < 0.01). Concentrations of the PMresp and total carbon did not show significant seasonal variation. Pearson correlation coefficients were 0.9 (p < 0.01) and 0.94 (p < 0.01) between the parking garage and ground floor average daily PNCs, and between the parking garage and first floor average daily PNCs, respectively. Since DE is the main identified source of fine and ultrafine particles in the school, these results suggest that DE emissions migrate from the parking garage into the school. Our results highlight the relevance of direct reading instruments in identifying migration of contaminants and suggest that monitoring PNC is a more specific way of assessing exposure to DE than monitoring the common PMresp fraction.
Collapse
Affiliation(s)
- Maximilien Debia
- Department of Environmental and Occupational Health, School of Public Health of the Université de Montréal, 2375 chemin de la Côte Ste-Catherine, Montreal, QC, H3T 1A8, Canada.
| | - Marie-Claude Trachy-Bourget
- Department of Environmental and Occupational Health, School of Public Health of the Université de Montréal, 2375 chemin de la Côte Ste-Catherine, Montreal, QC, H3T 1A8, Canada
| | - Charles Beaudry
- Department of Environmental and Occupational Health, School of Public Health of the Université de Montréal, 2375 chemin de la Côte Ste-Catherine, Montreal, QC, H3T 1A8, Canada
| | - Eve Neesham-Grenon
- Department of Environmental and Occupational Health, School of Public Health of the Université de Montréal, 2375 chemin de la Côte Ste-Catherine, Montreal, QC, H3T 1A8, Canada
| | | | | |
Collapse
|