1
|
Meyfarth SRS, Ramirez I, Silva-Sousa AC, Proff P, Gabardo MCL, Sousa-Neto MD, Baratto-Filho F, Küchler EC, Antunes LS, Kirschneck C. Investigation of genetic polymorphisms in genes encoding growth factors and dental pulp calcification in orthodontic patients. J Oral Biol Craniofac Res 2024; 14:712-719. [PMID: 39416879 PMCID: PMC11480232 DOI: 10.1016/j.jobcr.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Background and objectives Pulp calcification is associated with many factors and triggers, including individual genetic predisposition and orthodontic forces. This study aimed to investigate whether genetic polymorphisms in epidermal growth factor (EGF), epidermal growth factor receptor (EGFR1), transforming growth factor-beta 1 (TGFβ1), and transforming growth factor-beta receptor 2 (TGFβR2) are associated with a risk of dental pulp calcifications in orthodontic patients. Materials and methods Digital orthopantomography (OPG) and genomic DNA from 132 patients were analyzed in this cross-sectional study. Pulp calcification was observed in the maxillary and mandibular first molars. Genomic DNA extracted from saliva cells was used to genotype eight genetic polymorphisms using real-time polymerase chain reaction: EGF (rs2237051 and rs4444903), EGFR (rs2227983 and rs763317), TGFβ1 (rs1800469 and rs4803455), and TGFβR2 (rs3087465 and rs764522). The association between pulp calcification and genetic polymorphisms was analyzed using allelic and genotypic distributions, and haplotype frequencies (P < 0.05). Results The prevalence of pulp calcification was 42.4 % in 490 molars. Genotypic analysis and allelic distribution showed no statistically significant association between the evaluated growth factors and molar calcification (P > 0.05). No haplotype combinations showed a statistically significant difference (P > 0.05). Conclusion The genetic polymorphisms investigated were not associated with dental pulp calcification in orthodontic patients. Further studies should investigate other polymorphisms in genes encoding growth factors.
Collapse
Affiliation(s)
| | - Iago Ramirez
- School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Peter Proff
- Department of Orthodontics, University of Regensburg, Regensburg, Germany
| | | | | | - Flares Baratto-Filho
- School of Dentistry, Tuiuti University from Paraná, Curitiba, PR, Brazil
- Department of Dentistry, University of Joinville Region (Univille), Joinville, SC, Brazil
| | - Erika Calvano Küchler
- Department of Orthodontics, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Leonardo Santos Antunes
- Postgraduation Program, School of Dentistry, Fluminense Federal University, Niterói, RJ, Brazil
- Department of Specific Formation, Fluminense Federal University, Niterói, RJ, Brazil
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital Bonn, Medical Faculty, Bonn, Germany
| |
Collapse
|
2
|
Masiero C, Aresi C, Forlino A, Tonelli F. Zebrafish Models for Skeletal and Extraskeletal Osteogenesis Imperfecta Features: Unveiling Pathophysiology and Paving the Way for Drug Discovery. Calcif Tissue Int 2024:10.1007/s00223-024-01282-5. [PMID: 39320469 DOI: 10.1007/s00223-024-01282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
In the last decades, the easy genetic manipulation, the external fertilization, the high percentage of homology with human genes and the reduced husbandry costs compared to rodents, made zebrafish a valid model for studying human diseases and for developing new therapeutical strategies. Since zebrafish shares with mammals the same bone cells and ossification types, it became widely used to dissect mechanisms and possible new therapeutic approaches in the field of common and rare bone diseases, such as osteoporosis and osteogenesis imperfecta (OI), respectively. OI is a heritable skeletal disorder caused by defects in gene encoding collagen I or proteins/enzymes necessary for collagen I synthesis and secretion. Nevertheless, OI patients can be also characterized by extraskeletal manifestations such as dentinogenesis imperfecta, muscle weakness, cardiac valve and pulmonary abnormalities and skin laxity. In this review, we provide an overview of the available zebrafish models for both dominant and recessive forms of OI. An updated description of all the main similarities and differences between zebrafish and mammal skeleton, muscle, heart and skin, will be also discussed. Finally, a list of high- and low-throughput techniques available to exploit both larvae and adult OI zebrafish models as unique tools for the discovery of new therapeutic approaches will be presented.
Collapse
Affiliation(s)
- Cecilia Masiero
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Carla Aresi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy.
| | - Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| |
Collapse
|
3
|
Wang S, Tu Y, Yu H, Li Z, Feng J, Liu S. Animal models and related techniques for dentin study. Odontology 2024:10.1007/s10266-024-00987-1. [PMID: 39225758 DOI: 10.1007/s10266-024-00987-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
The intricate and protracted process of dentin formation has been extensively explored, thanks to the significant advancements facilitated by the use of animal models and related techniques. Despite variations in their effectiveness, taking into account factors such as sensitivity, visibility, and reliability, these models or techniques are indispensable tools for investigating the complexities of dentin formation. This article focuses on the latest advances in animal models and related technologies, shedding light on the key molecular mechanisms that are essential in dentin formation. A deeper understanding of this phenomenon enables the careful selection of appropriate animal models, considering their suitability in unraveling the underlying molecular intricacies. These insights are crucial for the advancement of clinical drugs targeting dentin-related ailments and the development of comprehensive treatment strategies throughout the duration of the disease.
Collapse
Affiliation(s)
- Shuai Wang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China
- Department of Pediatrics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, People's Republic of China
| | - Yan Tu
- Department of Endodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Hao Yu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China
- Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, People's Republic of China
| | - Zhen Li
- Shanghai Fengxian District Dental Disease Prevention Institute, Shanghai, 201499, People's Republic of China
| | - Jinqiu Feng
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China.
- Department of Pediatrics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, People's Republic of China.
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China.
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
4
|
Kobrock A, Matos B, Patrício D, Grenho L, Howl J, Fardilha M, Gomes PS. Enhancing Dental Pulp Stem Cell Proliferation and Odontogenic Differentiation with Protein Phosphatase 1-Disrupting Peptide: An In Vitro Study. Cells 2024; 13:1143. [PMID: 38994993 PMCID: PMC11240487 DOI: 10.3390/cells13131143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
The reparative and regenerative capabilities of dental pulp stem cells (DPSCs) are crucial for responding to pulp injuries, with protein phosphatase 1 (PP1) playing a significant role in regulating cellular functions pertinent to tissue healing. Accordingly, this study aimed to explore the effects of a novel cell-penetrating peptide Modified Sperm Stop 1-MSS1, that disrupts PP1, on the proliferation and odontogenic differentiation of DPSCs. Employing MSS1 as a bioportide, DPSCs were cultured and characterized for metabolic activity, cell proliferation, and cell morphology alongside the odontogenic differentiation through gene expression and alkaline phosphatase (ALP) activity analysis. MSS1 exposure induced early DPSC proliferation, upregulated genes related to odontogenic differentiation, and increased ALP activity. Markers associated with early differentiation events were induced at early culture time points and those associated with matrix mineralization were upregulated at mid-culture stages. This investigation is the first to document the potential of a PP1-disrupting bioportide in modulating DPSC functionality, suggesting a promising avenue for enhancing dental tissue regeneration and repair.
Collapse
Affiliation(s)
- Anna Kobrock
- Signal Transduction Laboratory, Institute of Biomedicine–iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (A.K.); (B.M.); (D.P.); (M.F.)
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal;
- LAQV/REQUIMTE, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal
| | - Bárbara Matos
- Signal Transduction Laboratory, Institute of Biomedicine–iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (A.K.); (B.M.); (D.P.); (M.F.)
| | - Daniela Patrício
- Signal Transduction Laboratory, Institute of Biomedicine–iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (A.K.); (B.M.); (D.P.); (M.F.)
| | - Liliana Grenho
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal;
- LAQV/REQUIMTE, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal
| | - John Howl
- Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1LY, UK;
| | - Margarida Fardilha
- Signal Transduction Laboratory, Institute of Biomedicine–iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (A.K.); (B.M.); (D.P.); (M.F.)
| | - Pedro S. Gomes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal;
- LAQV/REQUIMTE, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal
| |
Collapse
|
5
|
Liu P, Li Z, Zhang H, Wang Y, Liao Y, Guo Y, Wang C, Zou Y, Zou R, Niu L. Mild heat stress promotes the differentiation of odontoblast-like MDPC-23 cells via yes-associated protein. Int J Hyperthermia 2024; 41:2369749. [PMID: 38925872 DOI: 10.1080/02656736.2024.2369749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
PURPOSE Dentin hypersensitivity (DH) is a prevalent condition, but long-term effective treatments are scarce. Differentiation of odontoblast-like cells is promising for inducing tertiary dentinogenesis and ensuring sustained therapeutic efficacy against DH. This study examined the effects and mechanism of action of mild heat stress (MHS) on the differentiation of odontoblast-like MDPC-23 cells. METHODS We used a heating device to accurately control the temperature and duration, mimicking the thermal microenvironment of odontoblast-like cells. Using this device, the effects of MHS on cell viability and differentiation were examined. Cell viability was assessed using the MTT assay. The expression and nucleoplasmic ratio of the yes-associated protein (YAP) were examined by western blotting and immunofluorescence. The gene expression levels of heat shock proteins (HSPs) and dentin matrix protein-1 (DMP1) were measured using qPCR. Dentin sialophosphoprotein (DSPP) expression was evaluated using immunofluorescence and immunoblotting. Verteporfin was used to inhibit YAP activity. RESULTS Mild heat stress (MHS) enhanced the odontoblast differentiation of MDPC-23 cells while maintaining cell viability. MHS also increased YAP activity, as well as the levels of HSP25 mRNA, HSP70 mRNA, HSP90α mRNA, DMP1 mRNA, and DSPP protein. However, after YAP inhibition, both cell viability and the levels of HSP90α mRNA, DMP1 mRNA, and DSPP protein were reduced. CONCLUSION YAP plays a crucial role in maintaining cell viability and promoting odontoblast differentiation of MDPC-23 cells under MHS. Consequently, MHS is a potential therapeutic strategy for DH, and boosting YAP activity could be beneficial for maintaining cell viability and promoting odontoblast differentiation.
Collapse
Affiliation(s)
- Peiqi Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Zhen Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Hui Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Yijie Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yuxin Liao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yi Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Chenxu Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yuanwu Zou
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Rady D, Albar N, Khayat W, Khalil M, Raafat S, Ramadan M, Saber S, Shamel M. Evaluation of dental pulp stem cells response to flowable nano-hybrid dental composites: A comparative analysis. PLoS One 2024; 19:e0303154. [PMID: 38739591 PMCID: PMC11090312 DOI: 10.1371/journal.pone.0303154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/20/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Flowable resin composites (FRC) are tooth-colored restorative materials that contain a lower filler particle content, and lower viscosity than their bulk counterparts, making them useful for specific clinical applications. Yet, their chemical makeup may impact the cellular population of the tooth pulp. This in-vitro study assessed the cytocompatibility and odontogenic differentiation capacity of dental pulp stem cells (DPSCs) in response to two recent FRC material extracts. METHODS Extracts of the FRC Aura easyflow (AEF) and Polofil NHT Flow (PNF) were applied to DPSCs isolated from extracted human teeth. Cell viability of DPSCs was assessed using MTT assay on days 1, 3 and 7. Cell migration was assessed using the wound healing assay. DPSCs' capacity for osteo/odontogenic differentiation was assessed by measuring the degree of mineralization by Alizarin Red S staining, alkaline phosphatase enzyme (ALP) activity, and monitoring the expression of osteoprotegerin (OPG), RUNX Family Transcription Factor 2 (RUNX2), and the odontogenic marker dentin sialophosphoprotein (DSPP) by RT-PCR. Monomer release from the FRC was also assessed by High-performance liquid chromatography analysis (HPLC). RESULTS DPSCs exposed to PNF extracts showed significantly higher cell viability, faster wound closure, and superior odontogenic differentiation. This was apparent through Alizarin Red staining of calcified nodules, elevated alkaline phosphatase activity, and increased expression of osteo/odontogenic markers. Moreover, HPLC analysis revealed a higher release of TEDGMA, UDMA, and BISGMA from AEF. CONCLUSIONS PNF showed better cytocompatibility and enhancement of odontogenic differentiation than AEF.
Collapse
Affiliation(s)
- Dina Rady
- Faculty of Dentistry, Oral Biology Department, Cairo University, Cairo, Egypt
- Faculty of Dentistry, Stem Cells and Tissue Engineering Research Group, Cairo University, Cairo, Egypt
| | - Nassreen Albar
- Restorative Department/ Operative, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Waad Khayat
- Department of Restorative Dentistry, College of Dentistry, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Mennatullah Khalil
- Hamdan Bin Mohamed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
- Faculty of Dentistry, Dental Biomaterials Department, Fayoum University, Fayoum, Egypt
| | - Shereen Raafat
- Faculty of Dentistry, Pharmacology Department, The British University in Egypt (BUE), El Sherouk City, Egypt
- Dental Science Research Group, Health Research Centre of Excellence, The British University in Egypt (BUE), El Sherouk City, Egypt
| | - Mohamed Ramadan
- Specialized Dental Hospital, Armed Forces Medical Complex, Cairo, Egypt
| | - Shehabeldin Saber
- Dental Science Research Group, Health Research Centre of Excellence, The British University in Egypt (BUE), El Sherouk City, Egypt
- Faculty of Dentistry, Department of Endodontics, The British University in Egypt (BUE), El Sherouk City, Egypt
- Faculty of Dentistry, Department of Endodontics, Ain Shams University, Cairo, Egypt
| | - Mohamed Shamel
- Faculty of Dentistry, Oral Biology Department, The British University in Egypt, El Sherouk City, Egypt
| |
Collapse
|
7
|
Hassib NF, Mehrez M, Mostafa MI, Abdel-Hamid MS. Isolated dentinogenesis imperfecta: Novel DSPP variants and insights on genetic counselling. Clin Oral Investig 2024; 28:254. [PMID: 38630328 PMCID: PMC11024031 DOI: 10.1007/s00784-024-05636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/23/2024] [Indexed: 04/19/2024]
Abstract
OBJECTIVE Dentinogenesis imperfecta (DI) is an inherited dentin defect and may be isolated or associated with disorders such as osteogenesis imperfecta, odontochondrodysplasia Ehler-Danlos and others. Isolated DI is caused mainly by pathogenic variants in DSPP gene and around 50 different variants have been described in this gene. Herein, we report on 19 patients from two unrelated Egyptian families with isolated DI. Additionally, we focused on genetic counselling of the two families. MATERIALS AND METHODS The patients were examined clinically and dentally. Panoramic X-rays were done to some patients. Whole exome sequencing (WES) and Sanger sequencing were used. RESULTS WES revealed two new nonsense variants in DSPP gene, c.288T > A (p.Tyr96Ter) and c.255G > A (p.Trp85Ter). Segregation analysis by Sanger sequencing confirmed the presence of the first variant in all affected members of Family 1 while the second variant was confirmed to be de novo in the patient of Family 2. CONCLUSIONS AND CLINICAL RELEVANCE Our study extends the number of DSPP pathogenic variants and strengthens the fact that DSPP is the most common DI causative gene irrespective of patients' ethnicity. In addition, we provide insights on genetic counseling issues in patients with inherited DSPP variants taking into consideration the variable religion, culture and laws in our society.
Collapse
Affiliation(s)
- Nehal F Hassib
- Orodental Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, 33 ElBohous street, Dokki, P.O.12622, Cairo, 3337 09 31, Egypt.
- School of dentistry, New Giza University, Giza, Egypt.
| | - Mennat Mehrez
- Orodental Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, 33 ElBohous street, Dokki, P.O.12622, Cairo, 3337 09 31, Egypt
| | - Mostafa I Mostafa
- Orodental Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, 33 ElBohous street, Dokki, P.O.12622, Cairo, 3337 09 31, Egypt
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
8
|
Alshawkani HA, Mansy M, Ankily MA, Shamel M. Regenerative Potential of Dental Pulp Stem Cells in Response to a Bioceramic Dental Sealer and Photobiomodulation: An In Vitro Study. J Contemp Dent Pract 2024; 25:313-319. [PMID: 38956844 DOI: 10.5005/jp-journals-10024-3676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
AIMS This study aims to assess the synergistic effect of utilizing a bioceramic sealer, NeoPutty, with photobiomodulation (PBM) on dental pulp stem cells (DPSCs) for odontogenesis. MATERIALS AND METHODS Dental pulp stem cells were collected from 10 premolars extracted from healthy individuals. Dental pulp stem cells were characterized using an inverted-phase microscope to detect cell shape and flow cytometry to detect stem cell-specific surface antigens. Three experimental groups were examined: the NP group, the PBM group, and the combined NP and PBM group. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) experiment was conducted to assess the viability of DPSCs. The odontogenic differentiation potential was analyzed using Alizarin red staining, RT-qPCR analysis of odontogenic genes DMP-1, DSPP, and alkaline phosphatase (ALP), and western blot analysis for detecting BMP-2 and RUNX-2 protein expression. An analysis of variance (ANOVA) followed by a post hoc t-test was employed to examine and compare the mean values of the results. RESULTS The study showed a notable rise in cell viability when NP and PBM were used together. Odontogenic gene expression and the protein expression of BMP-2 and RUNX-2 were notably increased in the combined group. The combined effect of NeoPutty and PBM was significant in enhancing the odontogenic differentiation capability of DPSCs. CONCLUSION The synergistic effect of NeoPutty and PBM produced the most positive effect on the cytocompatibility and odontogenic differentiation potential of DPSCs. CLINICAL SIGNIFICANCE Creating innovative regenerative treatments to efficiently and durably repair injured dental tissues. How to cite this article: Alshawkani HA, Mansy M, Al Ankily M, et al. Regenerative Potential of Dental Pulp Stem Cells in Response to a Bioceramic Dental Sealer and Photobiomodulation: An In Vitro Study. J Contemp Dent Pract 2024;25(4):313-319.
Collapse
Affiliation(s)
- Hamed A Alshawkani
- Department of Restorative Dental Science, College of Dentistry, Jazan University, Saudi Arabia
| | - Mohamed Mansy
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Saudi Arabia
| | - Mahmoud Al Ankily
- Department of Oral Biology, Faculty of Dentistry, The British University in Egypt, El Shorouk, Egypt
| | - Mohamed Shamel
- Department of Oral Biology, Faculty of Dentistry, The British University in Egypt, El Shorouk, Egypt, Phone: +201229332616, e-mail:
| |
Collapse
|
9
|
Su T, Zhu Y, Wang X, Zhu Q, Duan X. Hereditary dentin defects with systemic diseases. Oral Dis 2023; 29:2376-2393. [PMID: 37094075 DOI: 10.1111/odi.14589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023]
Abstract
OBJECTIVE This review aimed to summarize recent progress on syndromic dentin defects, promoting a better understanding of systemic diseases with dentin malformations, the molecules involved, and related mechanisms. SUBJECTS AND METHODS References on genetic diseases with dentin malformations were obtained from various sources, including PubMed, OMIM, NCBI, and other websites. The clinical phenotypes and genetic backgrounds of these diseases were then summarized, analyzed, and compared. RESULTS Over 10 systemic diseases, including osteogenesis imperfecta, hypophosphatemic rickets, vitamin D-dependent rickets, familial tumoral calcinosis, Ehlers-Danlos syndrome, Schimke immuno-osseous dysplasia, hypophosphatasia, Elsahy-Waters syndrome, Singleton-Merten syndrome, odontochondrodysplasia, and microcephalic osteodysplastic primordial dwarfism type II were examined. Most of these are bone disorders, and their pathogenic genes may regulate both dentin and bone development, involving extracellular matrix, cell differentiation, and metabolism of calcium, phosphorus, and vitamin D. The phenotypes of these syndromic dentin defects various with the involved genes, part of them are similar to dentinogenesis imperfecta or dentin dysplasia, while others only present one or two types of dentin abnormalities such as discoloration, irregular enlarged or obliterated pulp and canal, or root malformation. CONCLUSION Some specific dentin defects associated with systemic diseases may serve as important phenotypes for dentists to diagnose. Furthermore, mechanistic studies on syndromic dentin defects may provide valuable insights into isolated dentin defects and general dentin development or mineralization.
Collapse
Affiliation(s)
- Tongyu Su
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yulong Zhu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xiangpu Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Qinglin Zhu
- Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University & State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Xi'an, China
| | - Xiaohong Duan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
10
|
Tabassum N, Khalid S, Ghafoor S, Woo KM, Lee EH, Samie M, Konain K, Ponnusamy S, Arany P, Rahman SU. Tideglusib-incorporated nanofibrous scaffolds potently induce odontogenic differentiation. J Biomater Appl 2023:8853282231190470. [PMID: 37485690 DOI: 10.1177/08853282231190470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Pulp-Dentin regeneration is a key aspect of maintain tooth vitality and enabling good oral-systemic health. This study aimed to investigate a nanofibrous scaffold loaded with a small molecule i.e. Tideglusib to promote odontogenic differentiation. Tideglusib (GSK-3β inhibitor) interaction with GSK-3β was determined using molecular docking and stabilization of β-catenin was examined by confocal microscopy. 3D nanofibrous scaffolds were fabricated through electrospinning and their physicochemical characterizations were performed. Scaffolds were seeded with mesenchymal stem cells or pre-odontoblast cells to determine the cells proliferation and odontogenic differentiation. Our results showed that Tideglusib (TG) binds with GSK-3β at Cys199 residue. Stabilization and nuclear translocation of β-catenin was increased in the odontoblast cells treated with TG. SEM analysis revealed that nanofibers exhibited controlled architectural features that effectively mimicked the natural ECM. UV-Vis spectroscopy demonstrated that TG was incorporated successfully and released in a controlled manner. Both kinds of biomimetic nanofibrous matrices (PCLF-TG100, PCLF-TG1000) significantly stimulated cells proliferation. Furthermore, these scaffolds significantly induced dentinogenic markers (ALP, and DSPP) expression and biomineralization. In contrast to current pulp capping material driving dentin repair, the sophisticated, polymeric scaffold systems with soluble and insoluble spatiotemporal cues described here can direct stem cell differentiation and dentin regeneration. Hence, bioactive small molecule-incorporated nanofibrous scaffold suggests an innovative clinical tool for dentin tissue engineering.
Collapse
Affiliation(s)
- Nadia Tabassum
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
- PGMI, De Montmorency College of Dentistry, Lahore, Pakistan
| | - Saira Khalid
- PGMI, De Montmorency College of Dentistry, Lahore, Pakistan
| | - Sarah Ghafoor
- Oral Biology, University of Health Sciences, Lahore, Pakistan
| | - Kyung Mi Woo
- Department of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Eun Hye Lee
- Department of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Muhammad Samie
- Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Kiran Konain
- Molecular Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Sasikumar Ponnusamy
- Oral Biology, Surgery and Biomedial Engineering, University at Buffalo, NY, USA
| | - Praveen Arany
- Oral Biology, Surgery and Biomedial Engineering, University at Buffalo, NY, USA
| | - Saeed Ur Rahman
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
- Oral Biology, Surgery and Biomedial Engineering, University at Buffalo, NY, USA
- Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
11
|
Calsa B, Bortolança TJ, Masiero BC, Esquisatto MAM, de Oliveira CA, Catisti R, Santamaria-Jr M. Maxillary and dental development in the offspring of protein-restricted female rats. Eur J Oral Sci 2022; 130:e12895. [PMID: 36199171 DOI: 10.1111/eos.12895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/31/2022] [Indexed: 12/13/2022]
Abstract
Nutritional restriction during developmental periods impairs organ physiology. Female rats were subjected to protein restriction during pregnancy and lactation to analyze dental and maxillary development. Four exposure groups were considered: normal-protein diet during pregnancy and lactation (NP, 17% casein), low-protein diet during lactation (LP-L, 6% casein), low-protein diet during pregnancy and lactation (LP), and low-protein diet during pregnancy (LP-G). Maxillae from 15-day-old male pups were collected. All protein-restricted groups presented increased dentin thickness and reduced alveolar bone area. When protein restriction was applied during both gestation and lactation (LP), harmful effects were observed in the form of loss of protective OPG (osteoprotegerin) in tooth epithelium-mesenchyme, due to higher RANKL expression, delay in odontoblast maturation, less dental pulp vascularity, reduction in amount of alveolar bone, and less matrix mineralization. In the LP-L group, effects of protein restriction seemed less harmful, and despite less alveolar bone, the enhancement in BMP-7, VEGF, and RANKL seems a compensatory signal to maintain maxillary osteogenesis. In LP-G animals, Dspp expression was higher, suggesting a delay in odontoblast maturation or expression recuperation. In conclusion, maternal protein restriction affects dental and maxillary development. A low-protein diet only in gestation allows for normal development. A low-protein diet during gestation-lactation results in impaired odontogenesis that may increase susceptibility of dental anomalies.
Collapse
Affiliation(s)
- Bruno Calsa
- Graduate Program of Biomedical Sciences, Herminio Ometto University Center, Araras, São Paulo, Brazil
| | | | - Beatriz Calloni Masiero
- Graduate Program of Biomedical Sciences, Herminio Ometto University Center, Araras, São Paulo, Brazil
| | | | - Camila Andrea de Oliveira
- Graduate Program of Biomedical Sciences, Herminio Ometto University Center, Araras, São Paulo, Brazil
| | - Rosana Catisti
- Graduate Program of Biomedical Sciences, Herminio Ometto University Center, Araras, São Paulo, Brazil
| | - Milton Santamaria-Jr
- Graduate Program of Biomedical Sciences, Herminio Ometto University Center, Araras, São Paulo, Brazil.,Graduate Program of Orthodontics, Herminio Ometto University Center, Araras, São Paulo, Brazil
| |
Collapse
|
12
|
Ren H, Wen Q, Zhao Q, Wang N, Zhao Y. Atlas of human dental pulp cells at multiple spatial and temporal levels based on single-cell sequencing analysis. Front Physiol 2022; 13:993478. [PMID: 36267574 PMCID: PMC9578252 DOI: 10.3389/fphys.2022.993478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
The dental pulp plays a crucial role in the long-term maintenance of tooth function. The progress of endodontic treatment and pulp tissue regeneration engineering has made pulp-regeneration therapy promising in clinical practice. However, the mechanisms of pulp regeneration and the role of dental stem cells in development and regeneration have not been fully elucidated. Bridging the gaps between clinical operation and basic research is urgently needed. With the application of single-cell sequencing technology in dental research, the landscapes of human dental pulp cells have begun being outlined. However, the specific cellular heterogeneity of dental pulp cells, especially that of dental stem cells, at different spatial and temporal levels, is still unclear. In this study, we used single-cell RNA sequencing analysis of pulp samples at four different developmental stages and combined the findings with immunohistochemical staining to explore the development of dental pulp and stem cells. The results revealed temporal changes in the proportion of pulp cells during development. For example, mononuclear phagocytes accounted for a higher proportion in early samples. Odontoblasts identified by DMP1 had a higher expression of ion channel-related and neurodevelopment-related genes. Subpopulations were identified in fibroblasts, odontoblasts, and mesenchymal stem cells. We identified a subclass of odontoblasts that expresses DGKI and RRBP1 present in early developmental samples. A population of earlier mesenchymal stem cells expressed the SEPTIN gene, which may have greater proliferative and differentiation potential. Furthermore, dental pulp stem cells can differentiate into two directions: mineralization and myogenesis. In summary, the specific cellular heterogeneity of dental pulp cells was revealed at different spatial and temporal levels. These findings may shed light on the mechanism of tooth development. The gene expression profile of developing pulp cells may help to select cells for regenerative engineering and improve the success of dental pulp regeneration.
Collapse
Affiliation(s)
- Huihui Ren
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPK Key Laboratory for Dental Materials, Beijing, China
| | - Quan Wen
- First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Qingxuan Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPK Key Laboratory for Dental Materials, Beijing, China
| | - Nan Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPK Key Laboratory for Dental Materials, Beijing, China
| | - Yuming Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPK Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
13
|
Dentin Sialoprotein/Phosphophoryn (DSP/PP) as Bio-Inductive Materials for Direct Pulp Capping. Polymers (Basel) 2022; 14:polym14173656. [PMID: 36080731 PMCID: PMC9460548 DOI: 10.3390/polym14173656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/23/2022] Open
Abstract
Conventional direct pulp capping, such as calcium hydroxide (Ca(OH)2) or silicate products, usually induces an inflammatory reaction to provoke pulp regeneration. Phosphophoryn (PP) and dentin sialoprotein (DSP), the two most abundant non-collagenous proteins in the dentin matrix, are responsible for dentin mineralization, pulp cell migration, and differentiation. Here we examined the PP and combined DSP/PP as bio-inductive pulp capping materials by in vitro and in vivo tests. Firstly, the effects of the PP dose on pulp cell migration and matrix protein expression were examined by an agarose bead test. Secondly, the role of recombinant DSP (recDSP) and recDSP/PP on stimulating DSP-PP transcript expression was examined by RT-PCR. DSPP mRNA was also knocked down by RNA interference (RNAi) to examine their functions on dentin matrix mineralization. Finally, we used ferret animal models to test PP and recDSP/PP acting as capping agents on in vivo pulp responses and reparative dentin formation. The result showed that intermediate-dose PP was the most effective to enhance cell migration and differentiation. RecDSP/PP strongly enhanced the DSP-PP transcript expression, while inhibition of DSPP mRNA expression by siRNAs partially or completely affected dental pulp cell mineralization. The in vivo results showed that intermediate-dose PP and recDSP/PP proteins induced less pulp inflammation and promoted reparative dentin formation. Contrarily, conventional calcium hydroxide induced severe pulp inflammation. With these findings, DSP and PP could serve as capping agents for pulp capping therapy.
Collapse
|
14
|
Desoutter A, Cases O, Collart Dutilleul PY, Simancas Escorcia V, Cannaya V, Cuisinier F, Kozyraki R. Enamel and dentin in Enamel renal syndrome: A confocal Raman microscopy view. Front Physiol 2022; 13:957110. [PMID: 36091358 PMCID: PMC9453029 DOI: 10.3389/fphys.2022.957110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Enamel Renal Syndrome (ERS) is a rare genetic disorder caused by biallelic mutations in Family with sequence similarity 20A (FAM20A) gene encoding the secretory pathway pseudokinase FAM20A. ERS is characterized by hypoplastic amelogenesis imperfecta (AI), impaired tooth eruption, intra-pulpal calcifications, gingival fibromatosis and nephrocalcinosis of various severity. Previous studies showed that the hypoplastic enamel was also hypomineralized but its chemical composition has not been extensively studied. Furthermore it is currently unclear whether dentinal defects are associated with AI in ERS patients. The objective of the study was to provide a structural and chemical analysis of enamel, dentin and dentin enamel junction (DEJ) in ERS patients carrying four, previously reported, distinct mutations in FAM20A. Chemical cartography obtained with Raman microscopy showed that compared to control samples, ERS enamel composition was severely altered and a cementum-like structure was observed in some cases. Chemical composition of peripulpal dentin was also affected and usual gradient of phosphate intensity, shown in DEJ profile, was absent in ERS samples. DEJ and dentinal anomalies were further confirmed by scanning electron microscopy analysis. In conclusion, our study shows that enamel formation is severely compromised in ERS patients and provides evidence that dentinal defects are an additional feature of the ERS dental phenotype.
Collapse
Affiliation(s)
- Alban Desoutter
- Laboratoire Bioingénierie et Nanosciences LBN, Université de Montpellier, Montpellier, France
- *Correspondence: Alban Desoutter,
| | - Olivier Cases
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Laboratory of Oral Molecular Pathophysiology, Paris, France
| | | | - Victor Simancas Escorcia
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Laboratory of Oral Molecular Pathophysiology, Paris, France
- Facultad de Odontología, Universidad de Cartagena, Grupo Interdisciplinario de Investigaciones y Tratamientos Odontológicos Universidad de Cartagena (GITOUC), Cartagena, Colombia
| | - Vidjea Cannaya
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Laboratory of Oral Molecular Pathophysiology, Paris, France
| | - Frédéric Cuisinier
- Laboratoire Bioingénierie et Nanosciences LBN, Université de Montpellier, Montpellier, France
| | - Renata Kozyraki
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Laboratory of Oral Molecular Pathophysiology, Paris, France
- CRMR O-RARES, Hôpital Rothshild, UFR d’Odontologie-Garancière, Université de Paris Cité, Paris, France
| |
Collapse
|