1
|
Khormizi FZ, Saadi HF, Khatami M, Heidari MM, Tabrizi F, Hashemi A, Khanjarpanah Z. Identification of rare and pathogenic TAL2 gene mutations in B-lineage acute lymphoblastic leukemia (B-ALL) using mutational screening and comprehensive bioinformatics analysis. Mol Biol Rep 2025; 52:125. [PMID: 39821746 DOI: 10.1007/s11033-025-10229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
BACKGROUND Recent genomic research has identified several genetic factors contributing to B-cell acute lymphoblastic leukemia (B-ALL). However, the exact cause of the disease is still not fully understood. It is known that mutations in the TAL2 gene play important roles in the development of acute lymphoblastic leukemia. This study aimed to analyze the molecular and computational profile of the TAL2 mutations in a group of Iranian B-ALL patients for the first time. METHODS AND RESULTS In this study, 188 patients were enrolled, and the TAL2 gene was sequenced to identify gene variations. The study included structural/functional analysis, homology modeling, molecular docking, and molecular dynamics (MD) simulations to assess the potential impact of the missense mutations on the protein's structure. Three nucleotide variations in the exon, three variations in the 3'UTR, and one deletion variant in the 3'UTR were detected in patients. Through in-silico analysis, it was found that the p. Asp35Glu missense mutation is located in the bHLH domain of the TAL2 protein. Also, the structural and functional analyses predicted that this mutation is a pathogenic or likely pathogenic variant in B-ALL patients. Moreover, a multiple nucleotide deletion (g.659_668del) was found in the 3'UTR in most patients. This deletion occurs at the site of poly-A tail attachment and appears to have significant implications. CONCLUSIONS These findings offer new insights into the impact of genetic variants in the TAL2 gene on the development of B-ALL and their potential role as tumor biomarkers for the B-ALL. Further research is needed to explore the relationship between specific TAL2 mutations and the clinical presentation of B-ALL.
Collapse
Affiliation(s)
| | | | | | | | | | - Azam Hashemi
- Hematology and Oncology Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zohre Khanjarpanah
- Hematology and Oncology Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
2
|
Wang X, Bian Y, Chen W. Cross-disease transcriptomic analysis reveals DOK3 and PAPOLA as therapeutic targets for neuroinflammatory and tumorigenic processes. Front Immunol 2024; 15:1504629. [PMID: 39726593 PMCID: PMC11669587 DOI: 10.3389/fimmu.2024.1504629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Objective Subarachnoid hemorrhage (SAH) and tumorigenesis share numerous biological complexities; nevertheless, the specific gene expression profiles and underlying mechanisms remain poorly understood. This study aims to identify differentially expressed genes (DEGs) that could serve as biomarkers for diagnosis and prognosis. Methods Gene expression datasets (GSE122063, GSE13353, GSE161870) were analyzed using machine learning algorithms and logistic regression to identify DEGs associated with both SAH and tumorigenesis. Lasso regression and receiver operating characteristic (ROC) curve analysis were employed to evaluate the classification accuracy of these genes. Validation of critical DEGs was performed through pan-cancer analysis and experimental studies, focusing on the role of DOK3 in modulating inflammation and oxidative stress in U251MG glioblastoma and BV2 microglia cells. Results Fifteen common DEGs were identified, with DOK3 and PAPOLA highlighted as crucial genes implicated in SAH and neurodegenerative processes. Experimental validation demonstrated that DOK3 overexpression significantly reduced pro-inflammatory cytokine levels and oxidative stress markers while enhancing antioxidant enzyme activity. Additionally, DOK3 influenced tumorigenic processes such as apoptosis, cell cycle regulation, and proliferation, effectively mitigating LPS-induced cytotoxicity and inflammation in BV2 microglial cells. Conclusions DOK3 and PAPOLA play critical roles in both SAH and related neurodegeneration, presenting themselves as potential prognostic biomarkers and therapeutic targets. Notably, DOK3 exhibits potential as an antitumor agent with anti-inflammatory and antioxidative properties, offering therapeutic benefits for both cancer and neuroinflammatory conditions.
Collapse
Affiliation(s)
| | | | - Weiguang Chen
- Emergency Department, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
3
|
Kainov Y, Hamid F, Makeyev EV. Recurrent disruption of tumour suppressor genes in cancer by somatic mutations in cleavage and polyadenylation signals. eLife 2024; 13:RP99040. [PMID: 39660592 PMCID: PMC11634062 DOI: 10.7554/elife.99040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
The expression of eukaryotic genes relies on the precise 3'-terminal cleavage and polyadenylation of newly synthesized pre-mRNA transcripts. Defects in these processes have been associated with various diseases, including cancer. While cancer-focused sequencing studies have identified numerous driver mutations in protein-coding sequences, noncoding drivers - particularly those affecting the cis-elements required for pre-mRNA cleavage and polyadenylation - have received less attention. Here, we systematically analysed somatic mutations affecting 3'UTR polyadenylation signals in human cancers using the Pan-Cancer Analysis of Whole Genomes (PCAWG) dataset. We found a striking enrichment of cancer-specific somatic mutations that disrupt strong and evolutionarily conserved cleavage and polyadenylation signals within tumour suppressor genes. Further bioinformatics and experimental analyses conducted as a part of our study suggest that these mutations have a profound capacity to downregulate the expression of tumour suppressor genes. Thus, this work uncovers a novel class of noncoding somatic mutations with significant potential to drive cancer progression.
Collapse
Affiliation(s)
- Yaroslav Kainov
- Centre for Developmental Neurobiology, King’s College LondonLondonUnited Kingdom
- Department of Medical and Molecular Genetics, King’s College LondonLondonUnited Kingdom
| | - Fursham Hamid
- Centre for Developmental Neurobiology, King’s College LondonLondonUnited Kingdom
| | - Eugene V Makeyev
- Centre for Developmental Neurobiology, King’s College LondonLondonUnited Kingdom
| |
Collapse
|
4
|
Zhang X, Liu F, Zhou Y. Coupling of alternative splicing and alternative polyadenylation. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39632657 DOI: 10.3724/abbs.2024211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
RNA splicing and 3'-cleavage and polyadenylation (CPA) are essential processes for the maturation of RNA. There have been extensive independent studies of these regulated processing events, including alternative splicing (AS) and alternative polyadenylation (APA). However, growing evidence suggests potential crosstalk between splicing and 3'-end processing in regulating AS or APA. Here, we first provide a brief overview of the molecular machines involved in splicing and 3'-end processing events, and then review recent studies on the functions and mechanisms of the crosstalk between the two processes. On one hand, 3'-end processing can affect splicing, as 3'-end processing factors and CPA-generated polyA tail promote the splicing of the last intron. Beyond that, 3'-end processing factors can also influence the splicing of internal and terminal exons. Those 3'-end processing factors can also interact with different RNA-binding proteins (RBPs) to exert their effects on AS. The length of 3' untranslated region (3' UTR) can affect the splicing of upstream exons. On the other hand, splicing and CPA may compete within introns in generating different products. Furthermore, splicing within the 3' UTR is a significant factor contributing to 3' UTR diversity. Splicing also influences 3'-end processing through the actions of certain splicing factors. Interestingly, some classical RBPs play dual roles in both splicing and 3'-end processing. Finally, we discuss how long-read sequencing technologies aid in understanding the coordination of AS-APA events and envision that these findings may potentially promote the development of new strategies for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Xueying Zhang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, RNA Institute, Wuhan University, Wuhan 430072, China
| | - Feiyan Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, RNA Institute, Wuhan University, Wuhan 430072, China
| | - Yu Zhou
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, RNA Institute, Wuhan University, Wuhan 430072, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Korhonen PK, Wang T, Young ND, Byrne JJ, Campos TL, Chang BC, Taki AC, Gasser RB. Analysis of Haemonchus embryos at single cell resolution identifies two eukaryotic elongation factors as intervention target candidates. Comput Struct Biotechnol J 2024; 23:1026-1035. [PMID: 38435301 PMCID: PMC10907403 DOI: 10.1016/j.csbj.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Advances in single cell technologies are allowing investigations of a wide range of biological processes and pathways in animals, such as the multicellular model organism Caenorhabditis elegans - a free-living nematode. However, there has been limited application of such technology to related parasitic nematodes which cause major diseases of humans and animals worldwide. With no vaccines against the vast majority of parasitic nematodes and treatment failures due to drug resistance or inefficacy, new intervention targets are urgently needed, preferably informed by a deep understanding of these nematodes' cellular and molecular biology - which is presently lacking for most worms. Here, we created the first single cell atlas for an early developmental stage of Haemonchus contortus - a highly pathogenic, C. elegans-related parasitic nematode. We obtained and curated RNA sequence (snRNA-seq) data from single nuclei from embryonating eggs of H. contortus (150,000 droplets), and selected high-quality transcriptomic data for > 14,000 single nuclei for analysis, and identified 19 distinct clusters of cells. Guided by comparative analyses with C. elegans, we were able to reproducibly assign seven cell clusters to body wall muscle, hypodermis, neuronal, intestinal or seam cells, and identified eight genes that were transcribed in all cell clusters/types, three of which were inferred to be essential in H. contortus. Two of these genes (i.e. Hc-eef-1A and Hc-eef1G), coding for eukaryotic elongation factors (called Hc-eEF1A and Hc-eEF1G), were also demonstrated to be transcribed and expressed in all key developmental stages of H. contortus. Together with these findings, sequence- and structure-based comparative analyses indicated the potential of Hc-eEF1A and/or Hc-eEF1G as intervention targets within the protein biosynthesis machinery of H. contortus. Future work will focus on single cell studies of all key developmental stages and tissues of H. contortus, and on evaluating the suitability of the two elongation factor proteins as drug targets in H. contortus and related nematodes, with a view to finding new nematocidal drug candidates.
Collapse
Affiliation(s)
- Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J. Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tulio L. Campos
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C.H. Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Aya C. Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
6
|
Kara MF, Guo W, Zhang R, Denby K. LsRTDv1, a reference transcript dataset for accurate transcript-specific expression analysis in lettuce. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:370-386. [PMID: 39145419 DOI: 10.1111/tpj.16978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Accurate quantification of gene and transcript-specific expression, with the underlying knowledge of precise transcript isoforms, is crucial to understanding many biological processes. Analysis of RNA sequencing data has benefited from the development of alignment-free algorithms which enhance the precision and speed of expression analysis. However, such algorithms require a reference transcriptome. Here we generate a reference transcript dataset (LsRTDv1) for lettuce (cv. Saladin), combining long- and short-read sequencing with publicly available transcriptome annotations, and filtering to keep only transcripts with high-confidence splice junctions and transcriptional start and end sites. LsRTDv1 identifies novel genes (mostly long non-coding RNAs) and increases the number of transcript isoforms per gene in the lettuce genome from 1.4 to 2.7. We show that LsRTDv1 significantly increases the mapping rate of RNA-seq data from a lettuce time-series experiment (mock- and Botrytis cinerea-inoculated) and enables detection of genes that are differentially alternatively spliced in response to infection as well as transcript-specific expression changes. LsRTDv1 is a valuable resource for investigation of transcriptional and alternative splicing regulation in lettuce.
Collapse
Affiliation(s)
- Mehmet Fatih Kara
- Biology Department, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| | - Wenbin Guo
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Runxuan Zhang
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Katherine Denby
- Biology Department, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| |
Collapse
|
7
|
Mostafa SM, Moore C. Cleavage and polyadenylation factors are potential regulators of adipogenesis. BMC Res Notes 2024; 17:242. [PMID: 39223634 PMCID: PMC11370009 DOI: 10.1186/s13104-024-06908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Alternative polyadenylation (APA) is a co-transcriptional process that leads to isoform diversity in the 3' ends of mRNAs. APA is known to occur during differentiation, and its dysregulation is observed in diseases like cancer and autoimmune disorders. It has been previously reported that differentiation of 3T3-L1 cells to adipocytes leads to an overall lengthening of mRNAs, but the proteins involved in this regulation have not been identified. The expression levels of subunits of the cleavage and polyadenylation (C/P) complex can regulate the choice of poly(A) site, which in turn can affect different cellular activities. In this paper, we studied the change in levels of C/P proteins during 3T3-L1 differentiation. RESULTS We observed that while the RNA expression of these proteins is unchanged during differentiation, the protein levels of some subunits do change, including a decrease in levels of CPSF73, the nuclease that cuts at the poly(A) site. However, overexpression of CPSF73 alone does not affect the efficiency and rate of differentiation.
Collapse
Affiliation(s)
- Salwa Mohd Mostafa
- Graduate School of Biomedical Sciences, Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Claire Moore
- Graduate School of Biomedical Sciences, Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
8
|
Aydin E, Schreiner S, Böhme J, Keil B, Weber J, Žunar B, Glatter T, Kilchert C. DEAD-box ATPase Dbp2 is the key enzyme in an mRNP assembly checkpoint at the 3'-end of genes and involved in the recycling of cleavage factors. Nat Commun 2024; 15:6829. [PMID: 39122693 PMCID: PMC11315920 DOI: 10.1038/s41467-024-51035-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
mRNA biogenesis in the eukaryotic nucleus is a highly complex process. The numerous RNA processing steps are tightly coordinated to ensure that only fully processed transcripts are released from chromatin for export from the nucleus. Here, we present the hypothesis that fission yeast Dbp2, a ribonucleoprotein complex (RNP) remodelling ATPase of the DEAD-box family, is the key enzyme in an RNP assembly checkpoint at the 3'-end of genes. We show that Dbp2 interacts with the cleavage and polyadenylation complex (CPAC) and localises to cleavage bodies, which are enriched for 3'-end processing factors and proteins involved in nuclear RNA surveillance. Upon loss of Dbp2, 3'-processed, polyadenylated RNAs accumulate on chromatin and in cleavage bodies, and CPAC components are depleted from the soluble pool. Under these conditions, cells display an increased likelihood to skip polyadenylation sites and a delayed transcription termination, suggesting that levels of free CPAC components are insufficient to maintain normal levels of 3'-end processing. Our data support a model in which Dbp2 is the active component of an mRNP remodelling checkpoint that licenses RNA export and is coupled to CPAC release.
Collapse
Affiliation(s)
- Ebru Aydin
- Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| | - Silke Schreiner
- Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| | - Jacqueline Böhme
- Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| | - Birte Keil
- Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| | - Jan Weber
- Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| | - Bojan Žunar
- Department of Chemistry and Biochemistry, University of Zagreb Faculty of Food Technology and Biotechnology, Zagreb, Croatia
| | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Cornelia Kilchert
- Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
9
|
Hafezqorani S, Nip KM, Birol I. ntEmbd: Deep learning embedding for nucleotide sequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591806. [PMID: 38746190 PMCID: PMC11092672 DOI: 10.1101/2024.04.30.591806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Enabled by the explosion of data and substantial increase in computational power, deep learning has transformed fields such as computer vision and natural language processing (NLP) and it has become a successful method to be applied to many transcriptomic analysis tasks. A core advantage of deep learning is its inherent capability to incorporate feature computation within the machine learning models. This results in a comprehensive and machine-readable representation of sequences, facilitating the downstream classification and clustering tasks. Compared to machine translation problems in NLP, feature embedding is particularly challenging for transcriptomic studies as the sequences are string of thousands of nucleotides in length, which make the long-term dependencies between features from different parts of the sequence even more difficult to capture. This highlights the need for nucleotide sequence embedding methods that are capable of learning input sequence features implicitly. Here we introduce ntEmbd, a deep learning embedding tool that captures dependencies between different features of the sequences and learns a latent representation for given nucleotide sequences. We further provide two sample use cases, describing how learned RNA features can be used in downstream analysis. The first use case demonstrates ntEmbd's utility in classifying coding and noncoding RNA benchmarked against existing tools, and the second one explores the utility of learned representations in identifying adapter sequences in nanopore RNA-seq reads. The tool as well as the trained models are freely available on GitHub at https://github.com/bcgsc/ntEmbd.
Collapse
Affiliation(s)
- Saber Hafezqorani
- 570 W 7 Ave, Michael Smith Genome Sciences Centre, BC Cancer, V5Z 4S6, Vancouver, BC, Canada
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC, Canada
| | - Ka Ming Nip
- 570 W 7 Ave, Michael Smith Genome Sciences Centre, BC Cancer, V5Z 4S6, Vancouver, BC, Canada
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC, Canada
| | - Inanc Birol
- 570 W 7 Ave, Michael Smith Genome Sciences Centre, BC Cancer, V5Z 4S6, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Mohanan NK, Shaji F, Sudheesh AP, Bangalore Prabhashankar A, Sundaresan NR, Laishram RS. Star-PAP controls oncogene expression through primary miRNA 3'-end formation to regulate cellular proliferation and tumour formation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167080. [PMID: 38364942 DOI: 10.1016/j.bbadis.2024.167080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Star-PAP is a non-canonical poly(A) polymerase that is down regulated in breast cancer. While Star-PAP down regulation impairs target mRNA polyadenylation, paradoxically, we see up regulation of a large number of oncogenes on Star-PAP knockdown. Using two breast cancer cells (MCF7 with high Star-PAP, and MDA-MB-231 with negligible Star-PAP level), we discover that Star-PAP negatively regulates oncogene expression and subsequently cellular proliferation. This regulation is compromised with Star-PAP mutant of 3'-end processing function (serine 6 to alanine, S6A phospho-mutation). Concomitantly, xenograft mice model using MDA-MB-231 cells reveals a reduction in the tumour formation on ectopic Star-PAP expression that is ameliorated by S6A mutation. We find that Star-PAP control of target oncogene expression is independent of Star-PAP-mediated alternative polyadenylation or target mRNA 3'-end formation. We demonstrate that Star-PAP regulates target oncogenes through cellular miRNAs (miR-421, miR-335, miR-424, miR-543, miR-205, miR-34a, and miR-26a) that are down regulated in breast cancer. Analysis of various steps in miRNA biogenesis pathway reveals that Star-PAP regulates 3'-end formation and synthesis of primary miRNA (host) transcripts that is dependent on S6 phosphorylation thus controlling mature miRNA generation. Using mimics and inhibitors of two target miRNAs (miR-421 and miR-424) after Star-PAP depletion in MCF7 or ectopic expression in MDA-MB-231 cells, we demonstrate that Star-PAP controls oncogene expression and cellular proliferation through targeting miRNAs that regulates tumour formation. Our study establishes a novel mechanism of oncogene expression independent of alternative polyadenylation through Star-PAP-mediated miRNA host transcript polyadenylation that regulates breast cancer progression.
Collapse
Affiliation(s)
- Neeraja K Mohanan
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India; Manipal Academy of Higher Education, Manipal 576104, India
| | - Feba Shaji
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India; Regional Centre for Biotechnology, Faridabad 121001, India
| | - A P Sudheesh
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India
| | | | - Nagalingam R Sundaresan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India.
| |
Collapse
|
11
|
Torres-Ulloa L, Calvo-Roitberg E, Pai AA. Genome-wide kinetic profiling of pre-mRNA 3' end cleavage. RNA (NEW YORK, N.Y.) 2024; 30:256-270. [PMID: 38164598 PMCID: PMC10870368 DOI: 10.1261/rna.079783.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Cleavage and polyadenylation is necessary for the formation of mature mRNA molecules. The rate at which this process occurs can determine the temporal availability of mRNA for subsequent function throughout the cell and is likely tightly regulated. Despite advances in high-throughput approaches for global kinetic profiling of RNA maturation, genome-wide 3' end cleavage rates have never been measured. Here, we describe a novel approach to estimate the rates of cleavage, using metabolic labeling of nascent RNA, high-throughput sequencing, and mathematical modeling. Using in silico simulations of nascent RNA-seq data, we show that our approach can accurately and precisely estimate cleavage half-lives for both constitutive and alternative sites. We find that 3' end cleavage is fast on average, with half-lives under a minute, but highly variable across individual sites. Rapid cleavage is promoted by the presence of canonical sequence elements and an increased density of polyadenylation signals near a cleavage site. Finally, we find that cleavage rates are associated with the localization of RNA polymerase II at the end of a gene, and faster cleavage leads to quicker degradation of downstream readthrough RNA. Our findings shed light on the features important for efficient 3' end cleavage and the regulation of transcription termination.
Collapse
Affiliation(s)
- Leslie Torres-Ulloa
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Ezequiel Calvo-Roitberg
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Athma A Pai
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
12
|
Yeganeh Markid T, Hosseinpour Feizi MA, Talebi M, Rezazadeh M, Khalaj-Kondori M. Gene expression investigation of four key regulators of polyadenylation and alternative adenylation in the periphery of late-onset Alzheimer's disease patients. Gene 2024; 895:148013. [PMID: 37981081 DOI: 10.1016/j.gene.2023.148013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/11/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a genetic and sporadic neurodegenerative disease considered by an archetypal cognitive impairment and a decrease in less common cognitive impairment. Notably, the discovery of goals in this paradigm is still a challenge, and understanding basic mechanisms is an important step toward improving disease management. Polyadenylation (PA) and alternative polyadenylation (APA) are two of the most critical RNA processing stages in 3'UTRs that influence various AD-related genes. METHODS In this study, we assessed Cleavage and polyadenylation specificity factors 1 and 6 (CPSF1 and CPSF6), cleavage stimulation factor 1 (CSTF1), and WD Repeat Domain 33 (WDR33) genes expression in the periphery of 50 AD patients and 50 healthy individuals with age and gender-matched by quantitative real-time PCR. RESULTS Comparing AD patients with healthy people using expression analysis revealed a substantial increase in CSTF1 (posterior beta = 0.773, adjusted P-value = 0.042). Significant positive correlations were found between CSTF1 and CPSF1 (r = 0.365, P < 0.001), WDR33 (r = 0.506, P < 0.001), and CPSF6 (r = 0.446, P < 0.001) expression levels. CONCLUSION Although further research is required to determine their potential contribution to AD, our findings offer a fresh perspective on molecular regulatory pathways associated with AD pathogenic mechanisms associated with PA and APA.
Collapse
Affiliation(s)
- Tarlan Yeganeh Markid
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Iran; Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
13
|
Archuleta SR, Goodrich JA, Kugel JF. Mechanisms and Functions of the RNA Polymerase II General Transcription Machinery during the Transcription Cycle. Biomolecules 2024; 14:176. [PMID: 38397413 PMCID: PMC10886972 DOI: 10.3390/biom14020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Central to the development and survival of all organisms is the regulation of gene expression, which begins with the process of transcription catalyzed by RNA polymerases. During transcription of protein-coding genes, the general transcription factors (GTFs) work alongside RNA polymerase II (Pol II) to assemble the preinitiation complex at the transcription start site, open the promoter DNA, initiate synthesis of the nascent messenger RNA, transition to productive elongation, and ultimately terminate transcription. Through these different stages of transcription, Pol II is dynamically phosphorylated at the C-terminal tail of its largest subunit, serving as a control mechanism for Pol II elongation and a signaling/binding platform for co-transcriptional factors. The large number of core protein factors participating in the fundamental steps of transcription add dense layers of regulation that contribute to the complexity of temporal and spatial control of gene expression within any given cell type. The Pol II transcription system is highly conserved across different levels of eukaryotes; however, most of the information here will focus on the human Pol II system. This review walks through various stages of transcription, from preinitiation complex assembly to termination, highlighting the functions and mechanisms of the core machinery that participates in each stage.
Collapse
Affiliation(s)
| | - James A. Goodrich
- Department of Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA;
| | - Jennifer F. Kugel
- Department of Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA;
| |
Collapse
|
14
|
Bryce-Smith S, Brown AL, Mehta PR, Mattedi F, Mikheenko A, Barattucci S, Zanovello M, Dattilo D, Yome M, Hill SE, Qi YA, Wilkins OG, Sun K, Ryadnov E, Wan Y, Vargas JNS, Birsa N, Raj T, Humphrey J, Keuss M, Ward M, Secrier M, Fratta P. TDP-43 loss induces extensive cryptic polyadenylation in ALS/FTD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576625. [PMID: 38313254 PMCID: PMC10836071 DOI: 10.1101/2024.01.22.576625] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Nuclear depletion and cytoplasmic aggregation of the RNA-binding protein TDP-43 is the hallmark of ALS, occurring in over 97% of cases. A key consequence of TDP-43 nuclear loss is the de-repression of cryptic exons. Whilst TDP-43 regulated cryptic splicing is increasingly well catalogued, cryptic alternative polyadenylation (APA) events, which define the 3' end of last exons, have been largely overlooked, especially when not associated with novel upstream splice junctions. We developed a novel bioinformatic approach to reliably identify distinct APA event types: alternative last exons (ALE), 3'UTR extensions (3'Ext) and intronic polyadenylation (IPA) events. We identified novel neuronal cryptic APA sites induced by TDP-43 loss of function by systematically applying our pipeline to a compendium of publicly available and in house datasets. We find that TDP-43 binding sites and target motifs are enriched at these cryptic events and that TDP-43 can have both repressive and enhancing action on APA. Importantly, all categories of cryptic APA can also be identified in ALS and FTD post mortem brain regions with TDP-43 proteinopathy underlining their potential disease relevance. RNA-seq and Ribo-seq analyses indicate that distinct cryptic APA categories have different downstream effects on transcript and translation. Intriguingly, cryptic 3'Exts occur in multiple transcription factors, such as ELK1, SIX3, and TLX1, and lead to an increase in wild-type protein levels and function. Finally, we show that an increase in RNA stability leading to a higher cytoplasmic localisation underlies these observations. In summary, we demonstrate that TDP-43 nuclear depletion induces a novel category of cryptic RNA processing events and we expand the palette of TDP-43 loss consequences by showing this can also lead to an increase in normal protein translation.
Collapse
Affiliation(s)
- Sam Bryce-Smith
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Anna-Leigh Brown
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Puja R. Mehta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Francesca Mattedi
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Alla Mikheenko
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Simone Barattucci
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Matteo Zanovello
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Dario Dattilo
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Matthew Yome
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Sarah E. Hill
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Yue A. Qi
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Oscar G. Wilkins
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
- The Francis Crick Institute, London, UK
| | - Kai Sun
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Eugeni Ryadnov
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Yixuan Wan
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | | | - Jose Norberto S. Vargas
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Nicol Birsa
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Towfique Raj
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Humphrey
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Keuss
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Michael Ward
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
15
|
Liu L, Seimiya T, Manley JL. WDR33 alternative polyadenylation is dependent on stochastic poly(a) site usage and splicing efficiencies. RNA Biol 2024; 21:25-35. [PMID: 39327832 PMCID: PMC11445923 DOI: 10.1080/15476286.2024.2408708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Transcripts from the human WDR33 gene, which encodes a central component of the mRNA polyadenylation (PA) machinery, are subject to alternative polyadenylation (APA) within promoter-proximal introns/exons. This APA, which itself involves usage of multiple PA sites, results in the production of two non-canonical protein isoforms, V2 and V3, that are functionally completely unrelated to the full-length protein, with roles in innate immunity. The mechanism and regulation of WDR33 APA are unclear. Here, we report that levels of the PA factor CFIm25 modulate V2 and V3 expression, and that PA site usage of both V2 and V3 varies in distinct immune responses. Using newly developed assays to measure splicing and PA site strength, we show that splicing of V2-associated intron 6 is inefficient, allowing V2 to be produced using weak PA sites. Usage of V3's strong PA sites, on the other hand, is relatively low, reflecting the high efficiency of intron 7 splicing coupled with dependency on usage of an alternative 3' splice site within the intron. Overall, our findings demonstrate that usage of WDR33 alternative PA sites is stochastic, dependent on a complex interplay between splicing and PA, and thus provide new insights into mechanisms underlying APA.
Collapse
Affiliation(s)
- Lizhi Liu
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Takahiro Seimiya
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - James L. Manley
- Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
16
|
Kosek DM, Banijamali E, Becker W, Petzold K, Andersson E. Efficient 3'-pairing renders microRNA targeting less sensitive to mRNA seed accessibility. Nucleic Acids Res 2023; 51:11162-11177. [PMID: 37819016 PMCID: PMC10639062 DOI: 10.1093/nar/gkad795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
MicroRNAs (miRNAs) are short RNAs that post-transcriptionally regulate gene expression by binding to specific sites in mRNAs. Site recognition is primarily mediated by the seed region (nucleotides g2-g8 in the miRNA), but pairing beyond the seed (3'-pairing) is important for some miRNA:target interactions. Here, we use SHAPE, luciferase reporter assays and transcriptomics analyses to study the combined effect of 3'-pairing and secondary structures in mRNAs on repression efficiency. Using the interaction between miR-34a and its SIRT1 binding site as a model, we provide structural and functional evidence that 3'-pairing can compensate for low seed-binding site accessibility, enabling repression of sites that would otherwise be ineffective. We show that miRNA 3'-pairing regions can productively base-pair with nucleotides far upstream of the seed-binding site and that both hairpins and unstructured bulges within the target site are tolerated. We use SHAPE to show that sequences that overcome inaccessible seed-binding sites by strong 3'-pairing adopt the predicted structures and corroborate the model using luciferase assays and high-throughput modelling of 8177 3'-UTR targets for six miRNAs. Finally, we demonstrate that PHB2, a target of miR-141, is an inaccessible target rescued by efficient 3'-pairing. We propose that these results could refine predictions of effective target sites.
Collapse
Affiliation(s)
- David M Kosek
- Department of Cell and Molecular Biology, Karolinska Institute, Biomedicum 9B, Solnavägen 9, 17177Stockholm, Sweden
| | - Elnaz Banijamali
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum 9B, Solnavägen 9, 17177Stockholm, Sweden
| | - Walter Becker
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum 9B, Solnavägen 9, 17177Stockholm, Sweden
| | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum 9B, Solnavägen 9, 17177Stockholm, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Centre D9:3, Husargatan 3, 752 37 Uppsala, Sweden
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, Biomedicum 9B, Solnavägen 9, 17177Stockholm, Sweden
| |
Collapse
|
17
|
Erdem M, Cicek M, Erson-Bensan AE. Versatile RNA: overlooked gems of the transcriptome. FEBS J 2023; 290:4843-4851. [PMID: 36719259 DOI: 10.1111/febs.16742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
The critical role of RNA, its use and targetability concerning different aspects of human health are gaining more attention because our understanding of the versatility of RNA has dramatically evolved over the last decades. We now appreciate that RNA is far more critical than a messenger molecule and possesses many complicated functions. As a multifunctional molecule with its sequence, flexible structures and enzymatic abilities, RNA is genuinely powerful. Mammalian transcriptomes consist of a dynamically regulated plethora of coding and noncoding RNA types. However, some aspects of RNA metabolism remain to be explored. In this Viewpoint, we focus on the transcriptome's unconventional and possibly overlooked aspects to emphasize the importance of RNA in mammalian systems.
Collapse
Affiliation(s)
- Murat Erdem
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Mustafa Cicek
- Department of Biology, Kamil Ozdag Faculty of Science, Karamanoglu Mehmetbey University, Karaman, Turkey
| | | |
Collapse
|
18
|
Angst P, Pombert JF, Ebert D, Fields PD. Near chromosome-level genome assembly of the microsporidium Hamiltosporidium tvaerminnensis. G3 (BETHESDA, MD.) 2023; 13:jkad185. [PMID: 37565496 PMCID: PMC10542269 DOI: 10.1093/g3journal/jkad185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Microsporidia are intracellular parasitic fungi whose genomes rank among the smallest of all known eukaryotes. A number of outstanding questions remain concerning the evolution of their large-scale variation in genome architecture, responsible for genome size variation of more than an order of magnitude. This genome report presents the first near-chromosomal assembly of a large-genome microsporidium, Hamiltosporidium tvaerminnensis. Combined Oxford Nanopore, Pacific Biosciences (PacBio), and Illumina sequencing led to a genome assembly of 17 contigs, 11 of which represent complete chromosomes. Our assembly is 21.64 Mb in length, has an N50 of 1.44 Mb, and consists of 39.56% interspersed repeats. We introduce a novel approach in microsporidia, PacBio Iso-Seq, as part of a larger annotation pipeline for obtaining high-quality annotations of 3,573 protein-coding genes. Based on direct evidence from the full-length Iso-Seq transcripts, we present evidence for alternative polyadenylation and variation in splicing efficiency, which are potential regulation mechanisms for gene expression in microsporidia. The generated high-quality genome assembly is a necessary resource for comparative genomics that will help elucidate the evolution of genome architecture in response to intracellular parasitism.
Collapse
Affiliation(s)
- Pascal Angst
- Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland
| | | | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland
| |
Collapse
|
19
|
Ner-Gaon H, Peleg R, Gazit R, Reiner-Benaim A, Shay T. Mapping the splicing landscape of the human immune system. Front Immunol 2023; 14:1116392. [PMID: 37711610 PMCID: PMC10499523 DOI: 10.3389/fimmu.2023.1116392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Most human genes code for more than one transcript. Different ratios of transcripts of the same gene can be found in different cell types or states, indicating differential use of transcription start sites or differential splicing. Such differential transcript use (DTUs) events provide an additional layer of regulation and protein diversity. With the exceptions of PTPRC and CIITA, there are very few reported cases of DTU events in the immune system. To rigorously map DTUs between different human immune cell types, we leveraged four publicly available RNA sequencing datasets. We identified 282 DTU events between five human healthy immune cell types that appear in at least two datasets. The patterns of the DTU events were mostly cell-type-specific or lineage-specific, in the context of the five cell types tested. DTUs correlated with the expression pattern of potential regulators, namely, splicing factors and transcription factors. Of the several immune related conditions studied, only sepsis affected the splicing of more than a few genes and only in innate immune cells. Taken together, we map the DTUs landscape in human peripheral blood immune cell types, and present hundreds of genes whose transcript use changes between cell types or upon activation.
Collapse
Affiliation(s)
- Hadas Ner-Gaon
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ronnie Peleg
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Roi Gazit
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anat Reiner-Benaim
- Department of Epidemiology, Biostatistics and Community Health Sciences, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tal Shay
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
20
|
Kiltschewskij DJ, Harrison PF, Fitzsimmons C, Beilharz T, Cairns M. Extension of mRNA poly(A) tails and 3'UTRs during neuronal differentiation exhibits variable association with post-transcriptional dynamics. Nucleic Acids Res 2023; 51:8181-8198. [PMID: 37293985 PMCID: PMC10450200 DOI: 10.1093/nar/gkad499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
Differentiation of neural progenitor cells into mature neuronal phenotypes relies on extensive temporospatial coordination of mRNA expression to support the development of functional brain circuitry. Cleavage and polyadenylation of mRNA has tremendous regulatory capacity through the alteration of mRNA stability and modulation of microRNA (miRNA) function, however the extent of utilization in neuronal development is currently unclear. Here, we employed poly(A) tail sequencing, mRNA sequencing, ribosome profiling and small RNA sequencing to explore the functional relationship between mRNA abundance, translation, poly(A) tail length, alternative polyadenylation (APA) and miRNA expression in an in vitro model of neuronal differentiation. Differential analysis revealed a strong bias towards poly(A) tail and 3'UTR lengthening during differentiation, both of which were positively correlated with changes in mRNA abundance, but not translation. Globally, changes in miRNA expression were predominantly associated with mRNA abundance and translation, however several miRNA-mRNA pairings with potential to regulate poly(A) tail length were identified. Furthermore, 3'UTR lengthening was observed to significantly increase the inclusion of non-conserved miRNA binding sites, potentially enhancing the regulatory capacity of these molecules in mature neuronal cells. Together, our findings suggest poly(A) tail length and APA function as part of a rich post-transcriptional regulatory matrix during neuronal differentiation.
Collapse
Affiliation(s)
- Dylan J Kiltschewskij
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Paul F Harrison
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Chantel Fitzsimmons
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Traude H Beilharz
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
21
|
Bergant V, Schnepf D, de Andrade Krätzig N, Hubel P, Urban C, Engleitner T, Dijkman R, Ryffel B, Steiger K, Knolle PA, Kochs G, Rad R, Staeheli P, Pichlmair A. mRNA 3'UTR lengthening by alternative polyadenylation attenuates inflammatory responses and correlates with virulence of Influenza A virus. Nat Commun 2023; 14:4906. [PMID: 37582777 PMCID: PMC10427651 DOI: 10.1038/s41467-023-40469-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023] Open
Abstract
Changes of mRNA 3'UTRs by alternative polyadenylation (APA) have been associated to numerous pathologies, but the mechanisms and consequences often remain enigmatic. By combining transcriptomics, proteomics and recombinant viruses we show that all tested strains of IAV, including A/PR/8/34(H1N1) (PR8) and A/Cal/07/2009 (H1N1) (Cal09), cause APA. We mapped the effect to the highly conserved glycine residue at position 184 (G184) of the viral non-structural protein 1 (NS1). Unbiased mass spectrometry-based analyses indicate that NS1 causes APA by perturbing the function of CPSF4 and that this function is unrelated to virus-induced transcriptional shutoff. Accordingly, IAV strain PR8, expressing an NS1 variant with weak CPSF binding, does not induce host shutoff but only APA. However, recombinant IAV (PR8) expressing NS1(G184R) lacks binding to CPSF4 and thereby also the ability to cause APA. Functionally, the impaired ability to induce APA leads to an increased inflammatory cytokine production and an attenuated phenotype in a mouse infection model. Investigating diverse viral infection models showed that APA induction is a frequent ability of many pathogens. Collectively, we propose that targeting of the CPSF complex, leading to widespread alternative polyadenylation of host transcripts, constitutes a general immunevasion mechanism employed by a variety of pathogenic viruses.
Collapse
Affiliation(s)
- Valter Bergant
- Institute of Virology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Max Planck Institute of Biochemistry, Munich, Germany
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | - Niklas de Andrade Krätzig
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Philipp Hubel
- Max Planck Institute of Biochemistry, Munich, Germany
| | - Christian Urban
- Institute of Virology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Max Planck Institute of Biochemistry, Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Ronald Dijkman
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Institute of Virology and Immunology, Bern & Mittelhäusern, Switzerland
- Department of Infectious diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Bernhard Ryffel
- CNRS, UMR7355, Orleans, France
- Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | - Katja Steiger
- Institut für allgemeine Pathologie und Pathologische Anatomie, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich, Munich, Germany
- Department of Medicine II, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Peter Staeheli
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Andreas Pichlmair
- Institute of Virology, TUM School of Medicine, Technical University of Munich, Munich, Germany.
- Max Planck Institute of Biochemistry, Munich, Germany.
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany.
| |
Collapse
|
22
|
Li D, Yu W, Lai M. Towards understandings of serine/arginine-rich splicing factors. Acta Pharm Sin B 2023; 13:3181-3207. [PMID: 37655328 PMCID: PMC10465970 DOI: 10.1016/j.apsb.2023.05.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/13/2023] [Accepted: 05/06/2023] [Indexed: 09/02/2023] Open
Abstract
Serine/arginine-rich splicing factors (SRSFs) refer to twelve RNA-binding proteins which regulate splice site recognition and spliceosome assembly during precursor messenger RNA splicing. SRSFs also participate in other RNA metabolic events, such as transcription, translation and nonsense-mediated decay, during their shuttling between nucleus and cytoplasm, making them indispensable for genome diversity and cellular activity. Of note, aberrant SRSF expression and/or mutations elicit fallacies in gene splicing, leading to the generation of pathogenic gene and protein isoforms, which highlights the therapeutic potential of targeting SRSF to treat diseases. In this review, we updated current understanding of SRSF structures and functions in RNA metabolism. Next, we analyzed SRSF-induced aberrant gene expression and their pathogenic outcomes in cancers and non-tumor diseases. The development of some well-characterized SRSF inhibitors was discussed in detail. We hope this review will contribute to future studies of SRSF functions and drug development targeting SRSFs.
Collapse
Affiliation(s)
- Dianyang Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenying Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Maode Lai
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Science (2019RU042), Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
23
|
Li X, Wang Y, Min Q, Zhang W, Teng H, Li C, Zhang K, Shi L, Wang B, Zhan Q. Comparative transcriptome characterization of esophageal squamous cell carcinoma and adenocarcinoma. Comput Struct Biotechnol J 2023; 21:3841-3853. [PMID: 37564101 PMCID: PMC10410469 DOI: 10.1016/j.csbj.2023.07.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/12/2023] Open
Abstract
Background Esophageal cancers are primarily categorized as esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). While various (epi) genomic alterations associated with tumor development in ESCC and EAC have been documented, a comprehensive comparison of the transcriptomes in these two cancer subtypes remains lacking. Methods We collected 551 gene expression profiles from publicly available sources, including normal, ESCC, and EAC tissues or cell lines. Subsequently, we conducted a systematic analysis to compare the transcriptomes of these samples at various levels, including gene expression, promoter activity, alternative splicing (AS), alternative polyadenylation (APA), and gene fusion. Results Seven distinct cluster gene expression patterns were identified among the differentially expressed genes in normal, ESCC, and EAC tissues. These patterns were enriched in the PI3K-Akt signaling pathway and the activation of extracellular matrix organization and exhibited repression of epidermal development. Notably, we observed additional genes or unique expression levels enriched in these shared pathways and biological processes related to tumor development and immune activation. In addition to the differentially expressed genes, there was an enrichment of lncRNA co-expression networks and downregulation of promoter activity associated with the repression of epidermal development in both ESCC and EAC. This indicates a common feature between these two cancer subtypes. Furthermore, differential AS and APA patterns in ESCC and EAC appear to partially affect the expression of host genes associated with bacterial or viral infections in these subtypes. No gene fusions were observed between ESCC and EAC, thus highlighting the distinct molecular mechanisms underlying these two cancer subtypes. Conclusions We conducted a comprehensive comparison of ESCC and EAC transcriptomes and uncovered shared and distinct transcriptomic signatures at multiple levels. These findings suggest that ESCC and EAC may exhibit common and unique mechanisms involved in tumorigenesis.
Collapse
Affiliation(s)
- Xianfeng Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing 400042, People's Republic of China
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, People's Republic of China
- Jinfeng Laboratory, Chongqing 401329, People's Republic of China
| | - Yan Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qingjie Min
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Weimin Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Huajing Teng
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Chao Li
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Kun Zhang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Leisheng Shi
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Wang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing 400042, People's Republic of China
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, People's Republic of China
- Jinfeng Laboratory, Chongqing 401329, People's Republic of China
| | - Qimin Zhan
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
24
|
Gitau JK, Macharia RW, Mwangi KW, Ongeso N, Murungi E. Gene co-expression network identifies critical genes, pathways and regulatory motifs mediating the progression of rift valley fever in Bostaurus. Heliyon 2023; 9:e18175. [PMID: 37519716 PMCID: PMC10375796 DOI: 10.1016/j.heliyon.2023.e18175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
Rift Valley Fever (RVF) is a mosquito-borne viral disease caused by the Rift Valley Fever Virus. The disease is a zoonosis that largely affects domestic animals, including sheep, goats, and cattle, resulting in severe morbidity and mortality marked by massive storm abortions. To halt human and livestock deaths due to RVF, the development of efficacious vaccines and therapeutics is a compelling and urgent priority. We sought to identify potential key modules (gene clusters), hub genes, and regulatory motifs involved in the pathogenesis of RVF in Bos taurus that are amenable to inhibition. We analyzed 39 Bos taurus RNA-Seq samples using the weighted gene co-expression network analysis (WGCNA) R package and uncovered significantly enriched modules containing genes with potential pivotal roles in RVF progression. Moreover, regulatory motif analysis conducted using the Multiple Expectation Maximization for Motif Elicitation (MEME) suite identified motifs that probably modulate vital biological processes. Gene ontology terms associated with identified motifs were inferred using the GoMo human database. The gene co-expression network constructed in WGCNA using 5000 genes contained seven (7) modules, out of which four were significantly enriched for terms associated with response to viruses, response to interferon-alpha, innate immune response, and viral defense. Additionally, several biological pathways implicated in developmental processes, anatomical structure development, and multicellular organism development were identified. Regulatory motifs analysis identified short, repeated motifs whose function(s) may be amenable to disruption by novel therapeutics. Predicted functions of identified motifs include tissue development, embryonic organ development, and organ morphogenesis. We have identified several hub genes in enriched co-expressed gene modules and regulatory motifs potentially involved in the pathogenesis of RVF in B. taurus that are likely viable targets for disruption by novel therapeutics.
Collapse
Affiliation(s)
- John K. Gitau
- University of Nairobi, Biochemistry Department, P.O Box 30197, 00100, Nairobi, Kenya
| | - Rosaline W. Macharia
- University of Nairobi, Biochemistry Department, P.O Box 30197, 00100, Nairobi, Kenya
| | - Kennedy W. Mwangi
- Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000, 00200, Nairobi, Kenya
| | - Nehemiah Ongeso
- University of Nairobi, Biochemistry Department, P.O Box 30197, 00100, Nairobi, Kenya
| | - Edwin Murungi
- Kisii University, Department of Medical Biochemistry, P.O Box 408, 40200, Kisii, Kenya
| |
Collapse
|
25
|
Fradera-Sola A, Nischwitz E, Bayer ME, Luck K, Butter F. RNA-dependent interactome allows network-based assignment of RNA-binding protein function. Nucleic Acids Res 2023; 51:5162-5176. [PMID: 37070168 PMCID: PMC10250244 DOI: 10.1093/nar/gkad245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 04/19/2023] Open
Abstract
RNA-binding proteins (RBPs) form highly diverse and dynamic ribonucleoprotein complexes, whose functions determine the molecular fate of the bound RNA. In the model organism Sacchromyces cerevisiae, the number of proteins identified as RBPs has greatly increased over the last decade. However, the cellular function of most of these novel RBPs remains largely unexplored. We used mass spectrometry-based quantitative proteomics to systematically identify protein-protein interactions (PPIs) and RNA-dependent interactions (RDIs) to create a novel dataset for 40 RBPs that are associated with the mRNA life cycle. Domain, functional and pathway enrichment analyses revealed an over-representation of RNA functionalities among the enriched interactors. Using our extensive PPI and RDI networks, we revealed putative new members of RNA-associated pathways, and highlighted potential new roles for several RBPs. Our RBP interactome resource is available through an online interactive platform as a community tool to guide further in-depth functional studies and RBP network analysis (https://www.butterlab.org/RINE).
Collapse
Affiliation(s)
- Albert Fradera-Sola
- Quantitative Proteomics, Institute of Molecular Biology, D-55128 Mainz, Germany
| | - Emily Nischwitz
- Quantitative Proteomics, Institute of Molecular Biology, D-55128 Mainz, Germany
| | | | - Katja Luck
- Integrative Systems Biology, Institute of Molecular Biology, D-55128 Mainz, Germany
| | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology, D-55128 Mainz, Germany
| |
Collapse
|
26
|
Volkening JD, Spatz SJ, Ponnuraj N, Akbar H, Arrington JV, Vega-Rodriguez W, Jarosinski KW. Viral proteogenomic and expression profiling during productive replication of a skin-tropic herpesvirus in the natural host. PLoS Pathog 2023; 19:e1011204. [PMID: 37289833 PMCID: PMC10284419 DOI: 10.1371/journal.ppat.1011204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/21/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023] Open
Abstract
Efficient transmission of herpesviruses is essential for dissemination in host populations; however, little is known about the viral genes that mediate transmission, mostly due to a lack of natural virus-host model systems. Marek's disease is a devastating herpesviral disease of chickens caused by Marek's disease virus (MDV) and an excellent natural model to study skin-tropic herpesviruses and transmission. Like varicella zoster virus that causes chicken pox in humans, the only site where infectious cell-free MD virions are efficiently produced is in epithelial skin cells, a requirement for host-to-host transmission. Here, we enriched for heavily infected feather follicle epithelial skin cells of live chickens to measure both viral transcription and protein expression using combined short- and long-read RNA sequencing and LC/MS-MS bottom-up proteomics. Enrichment produced a previously unseen breadth and depth of viral peptide sequencing. We confirmed protein translation for 84 viral genes at high confidence (1% FDR) and correlated relative protein abundance with RNA expression levels. Using a proteogenomic approach, we confirmed translation of most well-characterized spliced viral transcripts and identified a novel, abundant isoform of the 14 kDa transcript family via IsoSeq transcripts, short-read intron-spanning sequencing reads, and a high-quality junction-spanning peptide identification. We identified peptides representing alternative start codon usage in several genes and putative novel microORFs at the 5' ends of two core herpesviral genes, pUL47 and ICP4, along with strong evidence of independent transcription and translation of the capsid scaffold protein pUL26.5. Using a natural animal host model system to examine viral gene expression provides a robust, efficient, and meaningful way of validating results gathered from cell culture systems.
Collapse
Affiliation(s)
| | - Stephen J. Spatz
- US National Poultry Research Laboratory, ARS, USDA, Athens, Georgia, United States of America
| | - Nagendraprabhu Ponnuraj
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Haji Akbar
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Justine V. Arrington
- Protein Sciences Facility, Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Widaliz Vega-Rodriguez
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Keith W. Jarosinski
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
27
|
Wu Y, Yu Y, Sun Q, Yu Y, Chen J, Li T, Meng X, Pan G, Zhou Z. A Putative TRAPα Protein of Microsporidia Nosema bombycis Exhibits Non-Canonical Alternative Polyadenylation in Transcripts. J Fungi (Basel) 2023; 9:jof9040407. [PMID: 37108862 PMCID: PMC10142623 DOI: 10.3390/jof9040407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Microsporidia are obligate intracellular eukaryotic parasites that have significantly reduced genomes and that have lost most of their introns. In the current study, we characterized a gene in microsporidia Nosema bombycis, annotated as TRAPα (HNbTRAPα). The homologous of TRAPα are a functional component of ER translocon and facilitates the initiation of protein translocation in a substrate-specific manner, which is conserved in animals but absent from most fungi. The coding sequence of HNbTRAPα consists of 2226 nucleotides, longer than the majority of homologs in microsporidia. A 3′ RACE analysis indicated that there were two mRNA isoforms resulting from non-canonical alternative polyadenylation (APA), and the polyadenylate tail was synthesized after the C951 or C1167 nucleotide, respectively. Indirect immunofluorescence analysis showed two different localization characteristics of HNbTRAPα, which are mainly located around the nuclear throughout the proliferation stage and co-localized with the nuclear in mature spores. This study demonstrated that the post-transcriptional regulation mechanism exists in Microsporidia and expands the mRNA isoform repertoire.
Collapse
Affiliation(s)
- Yujiao Wu
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Ying Yu
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Quan Sun
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Yixiang Yu
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Jie Chen
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Tian Li
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Xianzhi Meng
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
- Correspondence: (G.P.); (Z.Z.)
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
- Key Laboratory of Conservation and Utilization of Pollinator Insect of the Upper Reaches of the Yangtze River (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing 400047, China
- Correspondence: (G.P.); (Z.Z.)
| |
Collapse
|
28
|
Šimon M, Mikec Š, Morton NM, Atanur SS, Konc J, Horvat S, Kunej T. Genome-wide screening for genetic variants in polyadenylation signal (PAS) sites in mouse selection lines for fatness and leanness. Mamm Genome 2023; 34:12-31. [PMID: 36414820 PMCID: PMC9684942 DOI: 10.1007/s00335-022-09967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
Alternative polyadenylation (APA) determines mRNA stability, localisation, translation and protein function. Several diseases, including obesity, have been linked to APA. Studies have shown that single nucleotide polymorphisms in polyadenylation signals (PAS-SNPs) can influence APA and affect phenotype and disease susceptibility. However, these studies focussed on associations between single PAS-SNP alleles with very large effects and phenotype. Therefore, we performed a genome-wide screening for PAS-SNPs in the polygenic mouse selection lines for fatness and leanness by whole-genome sequencing. The genetic variants identified in the two lines were overlapped with locations of PAS sites obtained from the PolyASite 2.0 database. Expression data for selected genes were extracted from the microarray expression experiment performed on multiple tissue samples. In total, 682 PAS-SNPs were identified within 583 genes involved in various biological processes, including transport, protein modifications and degradation, cell adhesion and immune response. Moreover, 63 of the 583 orthologous genes in human have been previously associated with human diseases, such as nervous system and physical disorders, and immune, endocrine, and metabolic diseases. In both lines, PAS-SNPs have also been identified in genes broadly involved in APA, such as Polr2c, Eif3e and Ints11. Five PAS-SNPs within 5 genes (Car, Col4a1, Itga7, Lat, Nmnat1) were prioritised as potential functional variants and could contribute to the phenotypic disparity between the two selection lines. The developed PAS-SNPs catalogue presents a key resource for planning functional studies to uncover the role of PAS-SNPs in APA, disease susceptibility and fat deposition.
Collapse
Affiliation(s)
- Martin Šimon
- grid.8954.00000 0001 0721 6013Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Domžale, Slovenia
| | - Špela Mikec
- grid.8954.00000 0001 0721 6013Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Domžale, Slovenia
| | - Nicholas M. Morton
- grid.511172.10000 0004 0613 128XUniversity of Edinburgh, The Queen’s Medical Research Institute, Centre for Cardiovascular Science, Edinburgh, UK
| | - Santosh S. Atanur
- grid.7445.20000 0001 2113 8111Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- grid.4305.20000 0004 1936 7988Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
| | - Janez Konc
- grid.454324.00000 0001 0661 0844Laboratory for Molecular Modeling, National Institute of Chemistry, Ljubljana, Slovenia
| | - Simon Horvat
- grid.8954.00000 0001 0721 6013Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Domžale, Slovenia
| | - Tanja Kunej
- grid.8954.00000 0001 0721 6013Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Domžale, Slovenia
| |
Collapse
|
29
|
Comparative genomics and interactomics of polyadenylation factors for the prediction of new parasite targets: Entamoeba histolytica as a working model. Biosci Rep 2023; 43:232462. [PMID: 36651565 PMCID: PMC9912109 DOI: 10.1042/bsr20221911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Protein-protein interactions (PPI) play a key role in predicting the function of a target protein and drug ability to affect an entire biological system. Prediction of PPI networks greatly contributes to determine a target protein and signal pathways related to its function. Polyadenylation of mRNA 3'-end is essential for gene expression regulation and several polyadenylation factors have been shown as valuable targets for controlling protozoan parasites that affect human health. Here, by using a computational strategy based on sequence-based prediction approaches, phylogenetic analyses, and computational prediction of PPI networks, we compared interactomes of polyadenylation factors in relevant protozoan parasites and the human host, to identify key proteins and define potential targets for pathogen control. Then, we used Entamoeba histolytica as a working model to validate our computational results. RT-qPCR assays confirmed the coordinated modulation of connected proteins in the PPI network and evidenced that silencing of the bottleneck protein EhCFIm25 affects the expression of interacting proteins. In addition, molecular dynamics simulations and docking approaches allowed to characterize the relationships between EhCFIm25 and Ehnopp34, two connected bottleneck proteins. Interestingly, the experimental identification of EhCFIm25 interactome confirmed the close relationships among proteins involved in gene expression regulation and evidenced new links with moonlight proteins in E. histolytica, suggesting a connection between RNA biology and metabolism as described in other organisms. Altogether, our results strengthened the relevance of comparative genomics and interactomics of polyadenylation factors for the prediction of new targets for the control of these human pathogens.
Collapse
|
30
|
Mukherjee S, Graber JH, Moore CL. Macrophage differentiation is marked by increased abundance of the mRNA 3' end processing machinery, altered poly(A) site usage, and sensitivity to the level of CstF64. Front Immunol 2023; 14:1091403. [PMID: 36761770 PMCID: PMC9905730 DOI: 10.3389/fimmu.2023.1091403] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Regulation of mRNA polyadenylation is important for response to external signals and differentiation in several cell types, and results in mRNA isoforms that vary in the amount of coding sequence or 3' UTR regulatory elements. However, its role in differentiation of monocytes to macrophages has not been investigated. Macrophages are key effectors of the innate immune system that help control infection and promote tissue-repair. However, overactivity of macrophages contributes to pathogenesis of many diseases. In this study, we show that macrophage differentiation is characterized by shortening and lengthening of mRNAs in relevant cellular pathways. The cleavage/polyadenylation (C/P) proteins increase during differentiation, suggesting a possible mechanism for the observed changes in poly(A) site usage. This was surprising since higher C/P protein levels correlate with higher proliferation rates in other systems, but monocytes stop dividing after induction of differentiation. Depletion of CstF64, a C/P protein and known regulator of polyadenylation efficiency, delayed macrophage marker expression, cell cycle exit, attachment, and acquisition of structural complexity, and impeded shortening of mRNAs with functions relevant to macrophage biology. Conversely, CstF64 overexpression increased use of promoter-proximal poly(A) sites and caused the appearance of differentiated phenotypes in the absence of induction. Our findings indicate that regulation of polyadenylation plays an important role in macrophage differentiation.
Collapse
Affiliation(s)
- Srimoyee Mukherjee
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - Joel H. Graber
- Computational Biology and Bioinformatics Core, Mount Desert Island Biological Laboratory, Bar Harbor, ME, United States
| | - Claire L. Moore
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
31
|
UBE3D Regulates mRNA 3'-End Processing and Maintains Adipogenic Potential in 3T3-L1 Cells. Mol Cell Biol 2022; 42:e0017422. [PMID: 36519931 PMCID: PMC9753722 DOI: 10.1128/mcb.00174-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We have previously described the role of an essential Saccharomyces cerevisiae gene, important for cleavage and polyadenylation 1 (IPA1), in the regulation of gene expression through its interaction with Ysh1, the endonuclease subunit of the mRNA 3'-end processing complex. Through a similar mechanism, the mammalian homolog ubiquitin protein ligase E3D (UBE3D) promotes the migratory and invasive potential of breast cancer cells, but its role in the regulation of gene expression during normal cellular differentiation has not previously been described. In this study, we show that CRISPR/Cas9-mediated knockout of Ube3d in 3T3-L1 cells blocks their ability to differentiate into mature adipocytes. Consistent with previous studies in other cell types, Ube3d knockout leads to decreased levels of CPSF73 and global changes in cellular mRNAs indicative of a loss of 3'-end processing capacity. Ube3d knockout cells also display decreased expression of known preadipogenic markers. Overexpression of either UBE3D or CPSF73 rescues the differentiation defect and partially restores protein levels of these markers. These results support a model in which UBE3D is necessary for the maintenance of the adipocyte-committed state via its regulation of the mRNA 3'-end processing machinery.
Collapse
|
32
|
Slight Variations in the Sequence Downstream of the Polyadenylation Signal Significantly Increase Transgene Expression in HEK293T and CHO Cells. Int J Mol Sci 2022; 23:ijms232415485. [PMID: 36555130 PMCID: PMC9779314 DOI: 10.3390/ijms232415485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Compared to transcription initiation, much less is known about transcription termination. In particular, large-scale mutagenesis studies have, so far, primarily concentrated on promoter and enhancer, but not terminator sequences. Here, we used a massively parallel reporter assay (MPRA) to systematically analyze the influence of short (8 bp) sequence variants (mutations) located downstream of the polyadenylation signal (PAS) on the steady-state mRNA level of the upstream gene, employing an eGFP reporter and human HEK293T cells as a model system. In total, we evaluated 227,755 mutations located at different overlapping positions within +17..+56 bp downstream of the PAS for their ability to regulate the reporter gene expression. We found that the positions +17..+44 bp downstream of the PAS are more essential for gene upregulation than those located more distal to the PAS, and that the mutation sequences ensuring high levels of eGFP mRNA expression are extremely T-rich. Next, we validated the positive effect of a couple of mutations identified in the MPRA screening on the eGFP and luciferase protein expression. The most promising mutation increased the expression of the reporter proteins 13-fold and sevenfold on average in HEK293T and CHO cells, respectively. Overall, these findings might be useful for further improving the efficiency of production of therapeutic products, e.g., recombinant antibodies.
Collapse
|
33
|
Liudkovska V, Krawczyk PS, Brouze A, Gumińska N, Wegierski T, Cysewski D, Mackiewicz Z, Ewbank JJ, Drabikowski K, Mroczek S, Dziembowski A. TENT5 cytoplasmic noncanonical poly(A) polymerases regulate the innate immune response in animals. SCIENCE ADVANCES 2022; 8:eadd9468. [PMID: 36383655 PMCID: PMC9668313 DOI: 10.1126/sciadv.add9468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Innate immunity is the first line of host defense against pathogens. Here, through global transcriptome and proteome analyses, we uncover that newly described cytoplasmic poly(A) polymerase TENT-5 (terminal nucleotidyltransferase 5) enhances the expression of secreted innate immunity effector proteins in Caenorhabditis elegans. Direct RNA sequencing revealed that multiple mRNAs with signal peptide-encoding sequences have shorter poly(A) tails in tent-5-deficient worms. Those mRNAs are translated at the endoplasmic reticulum where a fraction of TENT-5 is present, implying that they represent its direct substrates. Loss of tent-5 makes worms more susceptible to bacterial infection. Notably, the role of TENT-5 in innate immunity is evolutionarily conserved. Its orthologs, TENT5A and TENT5C, are expressed in macrophages and induced during their activation. Analysis of macrophages devoid of TENT5A/C revealed their role in the regulation of secreted proteins involved in defense response. In summary, our study reveals cytoplasmic polyadenylation to be a previously unknown component of the posttranscriptional regulation of innate immunity in animals.
Collapse
Affiliation(s)
- Vladyslava Liudkovska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Paweł S Krawczyk
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Aleksandra Brouze
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Natalia Gumińska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Tomasz Wegierski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Dominik Cysewski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Zuzanna Mackiewicz
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Jonathan J Ewbank
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | - Krzysztof Drabikowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Seweryn Mroczek
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
34
|
Shaw PJ, Kaewprommal P, Wongsombat C, Ngampiw C, Taechalertpaisarn T, Kamchonwongpaisan S, Tongsima S, Piriyapongsa J. Transcriptomic complexity of the human malaria parasite Plasmodium falciparum revealed by long-read sequencing. PLoS One 2022; 17:e0276956. [PMID: 36331983 PMCID: PMC9635732 DOI: 10.1371/journal.pone.0276956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
The Plasmodium falciparum human malaria parasite genome is incompletely annotated and does not accurately represent the transcriptomic diversity of this species. To address this need, we performed long-read transcriptomic sequencing. 5' capped mRNA was enriched from samples of total and nuclear-fractionated RNA from intra-erythrocytic stages and converted to cDNA library. The cDNA libraries were sequenced on PacBio and Nanopore long-read platforms. 12,495 novel isoforms were annotated from the data. Alternative 5' and 3' ends represent the majority of isoform events among the novel isoforms, with retained introns being the next most common event. The majority of alternative 5' ends correspond to genomic regions with features similar to those of the reference transcript 5' ends. However, a minority of alternative 5' ends showed markedly different features, including locations within protein-coding regions. Alternative 3' ends showed similar features to the reference transcript 3' ends, notably adenine-rich termination signals. Distinguishing features of retained introns could not be observed, except for a tendency towards shorter length and greater GC content compared with spliced introns. Expression of antisense and retained intron isoforms was detected at different intra-erythrocytic stages, suggesting developmental regulation of these isoform events. To gain insights into the possible functions of the novel isoforms, their protein-coding potential was assessed. Variants of P. falciparum proteins and novel proteins encoded by alternative open reading frames suggest that P. falciparum has a greater proteomic repertoire than the current annotation. We provide a catalog of annotated transcripts and encoded alternative proteins to support further studies on gene and protein regulation of this pathogen.
Collapse
Affiliation(s)
- Philip J. Shaw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Pavita Kaewprommal
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chayaphat Wongsombat
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chumpol Ngampiw
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | | | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sissades Tongsima
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Jittima Piriyapongsa
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| |
Collapse
|
35
|
Ye W, Lian Q, Ye C, Wu X. A Survey on Methods for Predicting Polyadenylation Sites from DNA Sequences, Bulk RNA-seq, and Single-cell RNA-seq. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022:S1672-0229(22)00121-8. [PMID: 36167284 PMCID: PMC10372920 DOI: 10.1016/j.gpb.2022.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/17/2022] [Accepted: 09/19/2022] [Indexed: 05/08/2023]
Abstract
Alternative polyadenylation (APA) plays important roles in modulating mRNA stability, translation, and subcellular localization, and contributes extensively to shaping eukaryotic transcriptome complexity and proteome diversity. Identification of poly(A) sites (pAs) on a genome-wide scale is a critical step toward understanding the underlying mechanism of APA-mediated gene regulation. A number of established computational tools have been proposed to predict pAs from diverse genomic data. Here we provided an exhaustive overview of computational approaches for predicting pAs from DNA sequences, bulk RNA sequencing (RNA-seq) data, and single-cell RNA sequencing (scRNA-seq) data. Particularly, we examined several representative tools using bulk RNA-seq and scRNA-seq data from peripheral blood mononuclear cells and put forward operable suggestions on how to assess the reliability of pAs predicted by different tools. We also proposed practical guidelines on choosing appropriate methods applicable to diverse scenarios. Moreover, we discussed in depth the challenges in improving the performance of pA prediction and benchmarking different methods. Additionally, we highlighted outstanding challenges and opportunities using new machine learning and integrative multi-omics techniques, and provided our perspective on how computational methodologies might evolve in the future for non-3' untranslated region, tissue-specific, cross-species, and single-cell pA prediction.
Collapse
Affiliation(s)
- Wenbin Ye
- Pasteurien College, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215000, China
| | - Qiwei Lian
- Pasteurien College, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215000, China; Department of Automation, Xiamen University, Xiamen 361005, China
| | - Congting Ye
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Xiaohui Wu
- Pasteurien College, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215000, China.
| |
Collapse
|
36
|
The Role of RNA-Binding Proteins in Hematological Malignancies. Int J Mol Sci 2022; 23:ijms23179552. [PMID: 36076951 PMCID: PMC9455611 DOI: 10.3390/ijms23179552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
Hematological malignancies comprise a plethora of different neoplasms, such as leukemia, lymphoma, and myeloma, plus a myriad of dysplasia, such as myelodysplastic syndromes or anemias. Despite all the advances in patient care and the development of new therapies, some of these malignancies remain incurable, mainly due to resistance and refractoriness to treatment. Therefore, there is an unmet clinical need to identify new biomarkers and potential therapeutic targets that play a role in treatment resistance and contribute to the poor outcomes of these tumors. RNA-binding proteins (RBPs) are a diverse class of proteins that interact with transcripts and noncoding RNAs and are involved in every step of the post-transcriptional processing of transcripts. Dysregulation of RBPs has been associated with the development of hematological malignancies, making them potential valuable biomarkers and potential therapeutic targets. Although a number of dysregulated RBPs have been identified in hematological malignancies, there is a critical need to understand the biology underlying their contribution to pathology, such as the spatiotemporal context and molecular mechanisms involved. In this review, we emphasize the importance of deciphering the regulatory mechanisms of RBPs to pinpoint novel therapeutic targets that could drive or contribute to hematological malignancy biology.
Collapse
|
37
|
Coulter M, Entizne JC, Guo W, Bayer M, Wonneberger R, Milne L, Schreiber M, Haaning A, Muehlbauer GJ, McCallum N, Fuller J, Simpson C, Stein N, Brown JWS, Waugh R, Zhang R. BaRTv2: a highly resolved barley reference transcriptome for accurate transcript-specific RNA-seq quantification. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1183-1202. [PMID: 35704392 PMCID: PMC9546494 DOI: 10.1111/tpj.15871] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/02/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Accurate characterisation of splice junctions (SJs) as well as transcription start and end sites in reference transcriptomes allows precise quantification of transcripts from RNA-seq data, and enables detailed investigations of transcriptional and post-transcriptional regulation. Using novel computational methods and a combination of PacBio Iso-seq and Illumina short-read sequences from 20 diverse tissues and conditions, we generated a comprehensive and highly resolved barley reference transcript dataset from the European 2-row spring barley cultivar Barke (BaRTv2.18). Stringent and thorough filtering was carried out to maintain the quality and accuracy of the SJs and transcript start and end sites. BaRTv2.18 shows increased transcript diversity and completeness compared with an earlier version, BaRTv1.0. The accuracy of transcript level quantification, SJs and transcript start and end sites have been validated extensively using parallel technologies and analysis, including high-resolution reverse transcriptase-polymerase chain reaction and 5'-RACE. BaRTv2.18 contains 39 434 genes and 148 260 transcripts, representing the most comprehensive and resolved reference transcriptome in barley to date. It provides an important and high-quality resource for advanced transcriptomic analyses, including both transcriptional and post-transcriptional regulation, with exceptional resolution and precision.
Collapse
Affiliation(s)
- Max Coulter
- Division of Plant SciencesUniversity of Dundee, James Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - Juan Carlos Entizne
- Division of Plant SciencesUniversity of Dundee, James Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - Wenbin Guo
- Information and Computational SciencesJames Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - Micha Bayer
- Information and Computational SciencesJames Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - Ronja Wonneberger
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstrasse 3D‐06466Stadt SeelandGermany
| | - Linda Milne
- Information and Computational SciencesJames Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - Miriam Schreiber
- Division of Plant SciencesUniversity of Dundee, James Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - Allison Haaning
- Department of Agronomy and Plant GeneticsUniversity of Minnesota1991 Upper Buford Circle, 542 Borlaug HallSt PaulMinnesota55108USA
| | - Gary J. Muehlbauer
- Department of Agronomy and Plant GeneticsUniversity of Minnesota1991 Upper Buford Circle, 542 Borlaug HallSt PaulMinnesota55108USA
| | - Nicola McCallum
- Cell and Molecular SciencesJames Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - John Fuller
- Cell and Molecular SciencesJames Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - Craig Simpson
- Cell and Molecular SciencesJames Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstrasse 3D‐06466Stadt SeelandGermany
- Center for Integrated Breeding Research (CiBreed)Georg‐August‐UniversityGöttingenGermany
| | - John W. S. Brown
- Division of Plant SciencesUniversity of Dundee, James Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
- Cell and Molecular SciencesJames Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - Robbie Waugh
- Division of Plant SciencesUniversity of Dundee, James Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
- Cell and Molecular SciencesJames Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
- School of Agriculture and Wine & Waite Research InstituteUniversity of AdelaideWaite CampusGlen OsmondSouth Australia5064Australia
| | - Runxuan Zhang
- Information and Computational SciencesJames Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| |
Collapse
|
38
|
Zhao Y, Huang F, Zou Z, Bi Y, Yang Y, Zhang C, Liu Q, Shang D, Yan Y, Ju X, Mei S, Xie P, Li X, Tian M, Tan S, Lu H, Han Z, Liu K, Zhang Y, Liang J, Liang Z, Zhang Q, Chang J, Liu WJ, Feng C, Li T, Zhang MQ, Wang X, Gao GF, Liu Y, Jin N, Jiang C. Avian influenza viruses suppress innate immunity by inducing trans-transcriptional readthrough via SSU72. Cell Mol Immunol 2022; 19:702-714. [PMID: 35332300 PMCID: PMC9151799 DOI: 10.1038/s41423-022-00843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/29/2022] [Indexed: 11/29/2022] Open
Abstract
Innate immunity plays critical antiviral roles. The highly virulent avian influenza viruses (AIVs) H5N1, H7N9, and H5N6 can better escape host innate immune responses than the less virulent seasonal H1N1 virus. Here, we report a mechanism by which transcriptional readthrough (TRT)-mediated suppression of innate immunity occurs post AIV infection. By using cell lines, mouse lungs, and patient PBMCs, we showed that genes on the complementary strand (“trans” genes) influenced by TRT were involved in the disruption of host antiviral responses during AIV infection. The trans-TRT enhanced viral lethality, and TRT abolishment increased cell viability and STAT1/2 expression. The viral NS1 protein directly bound to SSU72, and degradation of SSU72 induced TRT. SSU72 overexpression reduced TRT and alleviated mouse lung injury. Our results suggest that AIVs infection induce TRT by reducing SSU72 expression, thereby impairing host immune responses, a molecular mechanism acting through the NS1-SSU72-trans-TRT-STAT1/2 axis. Thus, restoration of SSU72 expression might be a potential strategy for preventing AIV pandemics.
Collapse
|
39
|
Shen MH, Huang CJ, Ho TF, Liu CY, Shih YY, Huang CS, Huang CC. Colorectal cancer concurrent gene signature based on coherent patterns between genomic and transcriptional alterations. BMC Cancer 2022; 22:590. [PMID: 35637462 PMCID: PMC9150289 DOI: 10.1186/s12885-022-09627-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
Background The aim of the study was to enhance colorectal cancer prognostication by integrating single nucleotide polymorphism (SNP) and gene expression (GE) microarrays for genomic and transcriptional alteration detection; genes with concurrent gains and losses were used to develop a prognostic signature. Methods The discovery dataset comprised 32 Taiwanese colorectal cancer patients, of which 31 were assayed for GE and copy number variations (CNVs) with Illumina Human HT-12 BeadChip v4.0 and Omni 25 BeadChip v1.1. Concurrent gains and losses were declared if coherent manners were observed between GE and SNP arrays. Concurrent genes were also identified in The Cancer Genome Atlas Project (TCGA) as the secondary discovery dataset (n = 345). Results The “universal” concurrent genes, which were the combination of z-transformed correlation coefficients, contained 4022 genes. Candidate genes were evaluated within each of the 10 public domain microarray datasets, and 1655 (2000 probe sets) were prognostic in at least one study. Consensus across all datasets was used to build a risk predictive model, while distinct relapse-free/overall survival patterns between defined risk groups were observed among four out of five training datasets. The predictive accuracy of recurrence, metastasis, or death was between 61 and 86% (cross-validation area under the receiver operating characteristic (ROC) curve: 0.548-0.833) from five independent validation studies. Conclusion The colorectal cancer concurrent gene signature is prognostic in terms of recurrence, metastasis, or mortality among 1746 patients. Genes with coherent patterns between genomic and transcriptional contexts are more likely to provide prognostication for colorectal cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09627-9.
Collapse
Affiliation(s)
- Ming-Hung Shen
- Department of Surgery, Fu-Jen Catholic University Hospital, No. 69, Guizi Road, Taishan District, New Taipei City, 243, Taiwan.,Ph. D Program in Nutrition and Food Science, College of Human Ecology, Fu-Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 242062, Taiwan.,School of Medicine, College of Medicine, Fu-Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 242062, Taiwan
| | - Chi-Jung Huang
- Department of Biochemistry, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490, Taiwan.,Department of Medical Research, Cathay General Hospital, No.280, Sec. 4, Renai Rd., Daan Dist., Taipei City, 106, Taiwan
| | - Thien-Fiew Ho
- Division of General Surgery, Cathay General Hospital Sijhih, No. 2, Ln. 59, Jiancheng Rd., Xizhi Dist., New Taipei City, 221, Taiwan
| | - Chih-Yi Liu
- Division of Pathology, Cathay General Hospital Sijhih, No. 2, Ln. 59, Jiancheng Rd., Xizhi Dist., New Taipei City, 221, Taiwan
| | - Ying-Yih Shih
- Division of Hematology and Oncology, Cathay General Hospital Sijhih, No. 2, Ln. 59, Jiancheng Rd., Xizhi Dist., New Taipei City, 221, Taiwan
| | - Ching-Shui Huang
- Department of Surgery, Cathay General Hospital, No.280, Sec. 4, Renai Rd., Daan Dist., Taipei City, 106, Taiwan. .,School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei City, 110, Taiwan.
| | - Chi-Cheng Huang
- Department of Surgery, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, 11217, Taiwan. .,Comprehensive Breast Health Center, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan, 11217. .,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, No.17, Xuzhou Rd., Taipei City, 100, Taiwan.
| |
Collapse
|
40
|
The role of RNA binding proteins in hepatocellular carcinoma. Adv Drug Deliv Rev 2022; 182:114114. [PMID: 35063534 DOI: 10.1016/j.addr.2022.114114] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of overall cancer deaths worldwide with limited therapeutic options. Due to the heterogeneity of HCC pathogenesis, the molecular mechanisms underlying HCC development are not fully understood. Emerging evidence indicates that RNA-binding proteins (RBPs) play a vital role throughout hepatocarcinogenesis. Thus, a deeper understanding of how RBPs contribute to HCC progression will provide new tools for early diagnosis and prognosis of this devastating disease. In this review, we summarize the tumor suppressive and oncogenic roles of RBPs and their roles in hepatocarcinogenesis. The diagnostic and therapeutic potential of RBPs in HCC, including their limitations, are also discussed.
Collapse
|
41
|
Rosa-Mercado NA, Steitz JA. Who let the DoGs out? - biogenesis of stress-induced readthrough transcripts. Trends Biochem Sci 2022; 47:206-217. [PMID: 34489151 PMCID: PMC8840951 DOI: 10.1016/j.tibs.2021.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 01/22/2023]
Abstract
Readthrough transcription caused by inefficient 3'-end cleavage of nascent mRNAs has emerged as a hallmark of the mammalian cellular stress response and results in the production of long noncoding RNAs known as downstream-of-gene (DoG)-containing transcripts. DoGs arise from around 10% of human protein-coding genes and are retained in the nucleus. They are produced minutes after cell exposure to stress and can be detected hours after stress removal. However, their biogenesis and the role(s) that DoGs or their production play in the cellular stress response are incompletely understood. We discuss findings that implicate host and viral proteins in the mechanisms underlying DoG production, as well as the transcriptional landscapes that accompany DoG induction under different stress conditions.
Collapse
Affiliation(s)
- Nicolle A Rosa-Mercado
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
42
|
Biswas B, Guemiri R, Cadix M, Labbé CM, Chakraborty A, Dutertre M, Robert C, Vagner S. Differential Effects on the Translation of Immune-Related Alternatively Polyadenylated mRNAs in Melanoma and T Cells by eIF4A Inhibition. Cancers (Basel) 2022; 14:cancers14051177. [PMID: 35267483 PMCID: PMC8909304 DOI: 10.3390/cancers14051177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 02/05/2023] Open
Abstract
Targeting the translation initiation complex eIF4F, which binds the 5' cap of mRNAs, is a promising anti-cancer approach. Silvestrol, a small molecule inhibitor of eIF4A, the RNA helicase component of eIF4F, inhibits the translation of the mRNA encoding the signal transducer and activator of transcription 1 (STAT1) transcription factor, which, in turn, reduces the transcription of the gene encoding one of the major immune checkpoint proteins, i.e., programmed death ligand-1 (PD-L1) in melanoma cells. A large proportion of human genes produce multiple mRNAs differing in their 3'-ends through the use of alternative polyadenylation (APA) sites, which, when located in alternative last exons, can generate protein isoforms, as in the STAT1 gene. Here, we provide evidence that the STAT1α, but not STAT1β protein isoform generated by APA, is required for silvestrol-dependent inhibition of PD-L1 expression in interferon-γ-treated melanoma cells. Using polysome profiling in activated T cells we find that, beyond STAT1, eIF4A inhibition downregulates the translation of some important immune-related mRNAs, such as the ones encoding TIM-3, LAG-3, IDO1, CD27 or CD137, but with little effect on the ones for BTLA and ADAR-1 and no effect on the ones encoding CTLA-4, PD-1 and CD40-L. We next apply RT-qPCR and 3'-seq (RNA-seq focused on mRNA 3' ends) on polysomal RNAs to analyze in a high throughput manner the effect of eIF4A inhibition on the translation of APA isoforms. We identify about 150 genes, including TIM-3, LAG-3, AHNAK and SEMA4D, for which silvestrol differentially inhibits the translation of APA isoforms in T cells. It is therefore crucial to consider 3'-end mRNA heterogeneity in the understanding of the anti-tumor activities of eIF4A inhibitors.
Collapse
Affiliation(s)
- Biswendu Biswas
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, 91401 Orsay, France; (B.B.); (M.C.); (C.M.L.); (A.C.); (M.D.)
- Biologie de l’ARN, Signalisation et Cancer, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, 91401 Orsay, France
- Équipe Labellisée Ligue Contre le Cancer, 91401 Orsay, France
- INSERM U981, Gustave Roussy Cancer Campus, 94805 Villejuif, France;
- Faculté de Médecine, Université Paris Sud, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France
| | - Ramdane Guemiri
- INSERM U981, Gustave Roussy Cancer Campus, 94805 Villejuif, France;
- Faculté de Médecine, Université Paris Sud, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France
| | - Mandy Cadix
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, 91401 Orsay, France; (B.B.); (M.C.); (C.M.L.); (A.C.); (M.D.)
- Biologie de l’ARN, Signalisation et Cancer, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, 91401 Orsay, France
- Équipe Labellisée Ligue Contre le Cancer, 91401 Orsay, France
| | - Céline M. Labbé
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, 91401 Orsay, France; (B.B.); (M.C.); (C.M.L.); (A.C.); (M.D.)
- Biologie de l’ARN, Signalisation et Cancer, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, 91401 Orsay, France
- Équipe Labellisée Ligue Contre le Cancer, 91401 Orsay, France
| | - Alina Chakraborty
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, 91401 Orsay, France; (B.B.); (M.C.); (C.M.L.); (A.C.); (M.D.)
- Biologie de l’ARN, Signalisation et Cancer, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, 91401 Orsay, France
- Équipe Labellisée Ligue Contre le Cancer, 91401 Orsay, France
| | - Martin Dutertre
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, 91401 Orsay, France; (B.B.); (M.C.); (C.M.L.); (A.C.); (M.D.)
- Biologie de l’ARN, Signalisation et Cancer, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, 91401 Orsay, France
- Équipe Labellisée Ligue Contre le Cancer, 91401 Orsay, France
| | - Caroline Robert
- INSERM U981, Gustave Roussy Cancer Campus, 94805 Villejuif, France;
- Faculté de Médecine, Université Paris Sud, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France
- Correspondence: (C.R.); (S.V.)
| | - Stéphan Vagner
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, 91401 Orsay, France; (B.B.); (M.C.); (C.M.L.); (A.C.); (M.D.)
- Biologie de l’ARN, Signalisation et Cancer, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, 91401 Orsay, France
- Équipe Labellisée Ligue Contre le Cancer, 91401 Orsay, France
- Correspondence: (C.R.); (S.V.)
| |
Collapse
|
43
|
Gockert M, Schmid M, Jakobsen L, Jens M, Andersen JS, Jensen TH. Rapid factor depletion highlights intricacies of nucleoplasmic RNA degradation. Nucleic Acids Res 2022; 50:1583-1600. [PMID: 35048984 PMCID: PMC8860595 DOI: 10.1093/nar/gkac001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/13/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
Turnover of nucleoplasmic transcripts by the mammalian multi-subunit RNA exosome is mediated by two adaptors: the Nuclear EXosome Targeting (NEXT) complex and the Poly(A) tail eXosome Targeting (PAXT) connection. Functional analyses of NEXT and PAXT have largely utilized long-term factor depletion strategies, facilitating the appearance of indirect phenotypes. Here, we rapidly deplete NEXT, PAXT and core exosome components, uncovering the direct consequences of their acute losses. Generally, proteome changes are sparse and largely dominated by co-depletion of other exosome and adaptor subunits, reflecting possible subcomplex compositions. While parallel high-resolution 3′ end sequencing of newly synthesized RNA confirms previously established factor specificities, it concomitantly demonstrates an inflation of long-term depletion datasets by secondary effects. Most strikingly, a general intron degradation phenotype, observed in long-term NEXT depletion samples, is undetectable upon short-term depletion, which instead emphasizes NEXT targeting of snoRNA-hosting introns. Further analysis of these introns uncovers an unusual mode of core exosome-independent RNA decay. Our study highlights the accumulation of RNAs as an indirect result of long-term decay factor depletion, which we speculate is, at least partly, due to the exhaustion of alternative RNA decay pathways.
Collapse
Affiliation(s)
- Maria Gockert
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark
| | - Manfred Schmid
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark
| | - Lis Jakobsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Marvin Jens
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, 68-271A, Cambridge, MA 02139-4307, USA
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark
| |
Collapse
|
44
|
Chan D, Feng C, England WE, Wyman D, Flynn R, Wang X, Shi Y, Mortazavi A, Spitale R. Diverse functional elements in RNA predicted transcriptome-wide by orthogonal RNA structure probing. Nucleic Acids Res 2021; 49:11868-11882. [PMID: 34634799 PMCID: PMC8599799 DOI: 10.1093/nar/gkab885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 01/02/2023] Open
Abstract
RNA molecules can fold into complex structures and interact with trans-acting factors to control their biology. Recent methods have been focused on developing novel tools to measure RNA structure transcriptome-wide, but their utility to study and predict RNA-protein interactions or RNA processing has been limited thus far. Here, we extend these studies with the first transcriptome-wide mapping method for cataloging RNA solvent accessibility, icLASER. By combining solvent accessibility (icLASER) with RNA flexibility (icSHAPE) data, we efficiently predict RNA-protein interactions transcriptome-wide and catalog RNA polyadenylation sites by RNA structure alone. These studies showcase the power of designing novel chemical approaches to studying RNA biology. Further, our study exemplifies merging complementary methods to measure RNA structure inside cells and its utility for predicting transcriptome-wide interactions that are critical for control of and regulation by RNA structure. We envision such approaches can be applied to studying different cell types or cells under varying conditions, using RNA structure and footprinting to characterize cellular interactions and processing involving RNA.
Collapse
Affiliation(s)
- Dalen Chan
- Department of Pharmaceutical Sciences, University of California, Irvine. Irvine, CA 92697, USA
| | - Chao Feng
- Department of Pharmaceutical Sciences, University of California, Irvine. Irvine, CA 92697, USA
| | - Whitney E England
- Department of Pharmaceutical Sciences, University of California, Irvine. Irvine, CA 92697, USA
| | - Dana Wyman
- Department of Developmental and Cellular Biology, University of California, Irvine. Irvine, CA 92697, USA
| | - Ryan A Flynn
- Stem Cell Program, Boston Children’s Hospital, Boston, MA, USA and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Xiuye Wang
- Department Microbiology and Molecular Genetics, University of California, Irvine. Irvine, CA 92697, USA
| | - Yongsheng Shi
- Department Microbiology and Molecular Genetics, University of California, Irvine. Irvine, CA 92697, USA
| | - Ali Mortazavi
- Department of Developmental and Cellular Biology, University of California, Irvine. Irvine, CA 92697, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine. Irvine, CA 92697, USA
- Department of Chemistry, University of California, Irvine. Irvine, CA 92697, USA
| |
Collapse
|
45
|
Ingram Z, Fischer DK, Ambrose Z. Disassembling the Nature of Capsid: Biochemical, Genetic, and Imaging Approaches to Assess HIV-1 Capsid Functions. Viruses 2021; 13:v13112237. [PMID: 34835043 PMCID: PMC8618418 DOI: 10.3390/v13112237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) capsid and its disassembly, or capsid uncoating, has remained an active area of study over the past several decades. Our understanding of the HIV-1 capsid as solely a protective shell has since shifted with discoveries linking it to other complex replication events. The interplay of the HIV-1 capsid with reverse transcription, nuclear import, and integration has led to an expansion of knowledge of capsid functionality. Coincident with advances in microscopy, cell, and biochemistry assays, several models of capsid disassembly have been proposed, in which it occurs in either the cytoplasmic, nuclear envelope, or nuclear regions of the cell. Here, we discuss how the understanding of the HIV-1 capsid has evolved and the key methods that made these discoveries possible.
Collapse
Affiliation(s)
- Zachary Ingram
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; (Z.I.); (D.K.F.)
- Pittsburgh Center for HIV Protein Interactions, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Douglas K. Fischer
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; (Z.I.); (D.K.F.)
- Pittsburgh Center for HIV Protein Interactions, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; (Z.I.); (D.K.F.)
- Pittsburgh Center for HIV Protein Interactions, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Correspondence:
| |
Collapse
|
46
|
Aloufi N, Alluli A, Eidelman DH, Baglole CJ. Aberrant Post-Transcriptional Regulation of Protein Expression in the Development of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:ijms222111963. [PMID: 34769392 PMCID: PMC8584689 DOI: 10.3390/ijms222111963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an incurable and prevalent respiratory disorder that is characterized by chronic inflammation and emphysema. COPD is primarily caused by cigarette smoke (CS). CS alters numerous cellular processes, including the post-transcriptional regulation of mRNAs. The identification of RNA-binding proteins (RBPs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) as main factors engaged in the regulation of RNA biology opens the door to understanding their role in coordinating physiological cellular processes. Dysregulation of post-transcriptional regulation by foreign particles in CS may lead to the development of diseases such as COPD. Here we review current knowledge about post-transcriptional events that may be involved in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Noof Aloufi
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada; (N.A.); (A.A.)
- Department of Medical Laboratory Technology, Applied Medical Science, Taibah University, Universities Road, Medina P.O. Box 344, Saudi Arabia
| | - Aeshah Alluli
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada; (N.A.); (A.A.)
| | - David H. Eidelman
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada;
| | - Carolyn J. Baglole
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada; (N.A.); (A.A.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada;
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
- Correspondence:
| |
Collapse
|
47
|
Mohanan NK, Shaji F, Koshre GR, Laishram RS. Alternative polyadenylation: An enigma of transcript length variation in health and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1692. [PMID: 34581021 DOI: 10.1002/wrna.1692] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Alternative polyadenylation (APA) is a molecular mechanism during a pre-mRNA processing that involves usage of more than one polyadenylation site (PA-site) generating transcripts of varying length from a single gene. The location of a PA-site affects transcript length and coding potential of an mRNA contributing to both mRNA and protein diversification. This variation in the transcript length affects mRNA stability and translation, mRNA subcellular and tissue localization, and protein function. APA is now considered as an important regulatory mechanism in the pathophysiology of human diseases. An important consequence of the changes in the length of 3'-untranslated region (UTR) from disease-induced APA is altered protein expression. Yet, the relationship between 3'-UTR length and protein expression remains a paradox in a majority of diseases. Here, we review occurrence of APA, mechanism of PA-site selection, and consequences of transcript length variation in different diseases. Emerging evidence reveals coordinated involvement of core RNA processing factors including poly(A) polymerases in the PA-site selection in diseases-associated APAs. Targeting such APA regulators will be therapeutically significant in combating drug resistance in cancer and other complex diseases. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease Translation > Regulation.
Collapse
Affiliation(s)
- Neeraja K Mohanan
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Feba Shaji
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ganesh R Koshre
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|
48
|
Liu H, Moore CL. On the Cutting Edge: Regulation and Therapeutic Potential of the mRNA 3' End Nuclease. Trends Biochem Sci 2021; 46:772-784. [PMID: 33941430 PMCID: PMC8364479 DOI: 10.1016/j.tibs.2021.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/18/2021] [Accepted: 04/02/2021] [Indexed: 12/24/2022]
Abstract
Cleavage of nascent transcripts is a fundamental process for eukaryotic mRNA maturation and for the production of different mRNA isoforms. In eukaryotes, cleavage of mRNA precursors by the highly conserved endonuclease CPSF73 is critical for mRNA stability, export from the nucleus, and translation. As an essential enzyme in the cell, CPSF73 surprisingly shows promise as a drug target for specific cancers and for protozoan parasites. In this review, we cover our current understanding of CPSF73 in cleavage and polyadenylation, histone pre-mRNA processing, and transcription termination. We discuss the potential of CPSF73 as a target for novel therapeutics and highlight further research into the regulation of CPSF73 that will be critical to understanding its role in cancer and other diseases.
Collapse
Affiliation(s)
- Huiyun Liu
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Claire L Moore
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
49
|
Novel insights into the pervasive role of RNA structure in post-transcriptional regulation of gene expression in plants. Biochem Soc Trans 2021; 49:1829-1839. [PMID: 34436520 PMCID: PMC8421050 DOI: 10.1042/bst20210318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/30/2022]
Abstract
RNA folding is an intrinsic property of RNA that serves a key role in every step of post-transcriptional regulation of gene expression, from RNA maturation to translation in plants. Recent developments of genome-wide RNA structure profiling methods have transformed research in this area enabling focus to shift from individual molecules to the study of tens of thousands of RNAs. Here, we provide a comprehensive review of recent advances in the field. We discuss these new insights of RNA structure functionality within the context of post-transcriptional regulation including mRNA maturation, translation, and RNA degradation in plants. Notably, we also provide an overview of how plants exhibit different RNA structures in response to environmental changes.
Collapse
|
50
|
Dharmalingam P, Mahalingam R, Yalamanchili HK, Weng T, Karmouty-Quintana H, Guha A, A Thandavarayan R. Emerging roles of alternative cleavage and polyadenylation (APA) in human disease. J Cell Physiol 2021; 237:149-160. [PMID: 34378793 DOI: 10.1002/jcp.30549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022]
Abstract
In the messenger RNA (mRNA) maturation process, the 3'-end of pre-mRNA is cleaved and a poly(A) sequence is added, this is an important determinant of mRNA stability and its cellular functions. More than 60%-70% of human genes have three or more polyadenylation (APA) sites and can be cleaved at different sites, generating mRNA transcripts of varying lengths. This phenomenon is termed as alternative cleavage and polyadenylation (APA) and it plays role in key biological processes like gene regulation, cell proliferation, senescence, and also in various human diseases. Loss of regulatory microRNA binding sites and interactions with RNA-binding proteins leading to APA are largely investigated in human diseases. However, the functions of the core APA machinery and related factors during disease conditions remain largely unknown. In this review, we discuss the roles of polyadenylation machinery in relation to brain disease, cardiac failure, pulmonary fibrosis, cancer, infectious conditions, and other human diseases. Collectively, we believe this review will be a useful avenue for understanding the emerging role of APA in the pathobiology of various human diseases.
Collapse
Affiliation(s)
- Prakash Dharmalingam
- Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India
| | - Rajasekaran Mahalingam
- Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hari Krishna Yalamanchili
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics - Neurology, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Tingting Weng
- Department of Biochemistry and Molecular Biology & Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology & Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ashrith Guha
- Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas, USA
| | | |
Collapse
|