1
|
Sze H, Klodová B, Ward JM, Harper JF, Palanivelu R, Johnson MA, Honys D. A wave of specific transcript and protein accumulation accompanies pollen dehydration. PLANT PHYSIOLOGY 2024; 195:1775-1795. [PMID: 38530638 DOI: 10.1093/plphys/kiae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 03/28/2024]
Abstract
In flowering plants, male gametes are immotile and carried by dry pollen grains to the female organ. Dehydrated pollen is thought to withstand abiotic stress when grains are dispersed from the anther to the pistil, after which sperm cells are delivered via pollen tube growth for fertilization and seed set. Yet, the underlying molecular changes accompanying dehydration and the impact on pollen development are poorly understood. To gain a systems perspective, we analyzed published transcriptomes and proteomes of developing Arabidopsis thaliana pollen. Waves of transcripts are evident as microspores develop to bicellular, tricellular, and mature pollen. Between the "early"- and "late"-pollen-expressed genes, an unrecognized cluster of transcripts accumulated, including those encoding late-embryogenesis abundant (LEA), desiccation-related protein, transporters, lipid-droplet associated proteins, pectin modifiers, cysteine-rich proteins, and mRNA-binding proteins. Results suggest dehydration onset initiates after bicellular pollen is formed. Proteins accumulating in mature pollen like ribosomal proteins, initiation factors, and chaperones are likely components of mRNA-protein condensates resembling "stress" granules. Our analysis has revealed many new transcripts and proteins that accompany dehydration in developing pollen. Together with published functional studies, our results point to multiple processes, including (1) protect developing pollen from hyperosmotic stress, (2) remodel the endomembrane system and walls, (3) maintain energy metabolism, (4) stabilize presynthesized mRNA and proteins in condensates of dry pollen, and (5) equip pollen for compatibility determination at the stigma and for recovery at rehydration. These findings offer novel models and molecular candidates to further determine the mechanistic basis of dehydration and desiccation tolerance in plants.
Collapse
Affiliation(s)
- Heven Sze
- Department Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Božena Klodová
- Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Praha 2, 128 00, Czech Republic
| | - John M Ward
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | | | - Mark A Johnson
- Department of Molecular, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - David Honys
- Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague 6, Czech Republic
| |
Collapse
|
2
|
Porat J, Vakiloroayaei A, Remnant BM, Talebi M, Cargill T, Bayfield MA. Crosstalk between the tRNA methyltransferase Trm1 and RNA chaperone La influences eukaryotic tRNA maturation. J Biol Chem 2023; 299:105326. [PMID: 37805140 PMCID: PMC10652106 DOI: 10.1016/j.jbc.2023.105326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/09/2023] Open
Abstract
tRNAs undergo an extensive maturation process involving posttranscriptional modifications often associated with tRNA structural stability and promoting the native fold. Impaired posttranscriptional modification has been linked to human disease, likely through defects in translation, mitochondrial function, and increased susceptibility to degradation by various tRNA decay pathways. More recently, evidence has emerged that bacterial tRNA modification enzymes can act as tRNA chaperones to guide tRNA folding in a manner independent from catalytic activity. Here, we provide evidence that the fission yeast tRNA methyltransferase Trm1, which dimethylates nuclear- and mitochondrial-encoded tRNAs at G26, can also promote tRNA functionality in the absence of catalysis. We show that WT and catalytic-dead Trm1 are active in an in vivo tRNA-mediated suppression assay and possess RNA strand annealing and dissociation activity in vitro, similar to previously characterized RNA chaperones. Trm1 and the RNA chaperone La have previously been proposed to function synergistically in promoting tRNA maturation, yet we surprisingly demonstrate that La binding to nascent pre-tRNAs decreases Trm1 tRNA dimethylation in vivo and in vitro. Collectively, these results support the hypothesis for tRNA modification enzymes that combine catalytic and noncatalytic activities to promote tRNA maturation, as well as expand our understanding of how La function can influence tRNA modification.
Collapse
|
3
|
Mikhaylina A, Svoeglazova A, Stolboushkina E, Tishchenko S, Kostareva O. The RNA-Binding and RNA-Melting Activities of the Multifunctional Protein Nucleobindin 1. Int J Mol Sci 2023; 24:ijms24076193. [PMID: 37047165 PMCID: PMC10093973 DOI: 10.3390/ijms24076193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Nucleobindin 1 (NUCB1) is a ubiquitous multidomain protein that belongs to the EF-hand Ca2+-binding superfamily. NUCB1 interacts with Galphai3 protein, cyclooxygenase, amyloid precursor protein, and lipids. It is involved in stress response and human diseases. In addition, this protein is a transcription factor that binds to the DNA E-box motif. Using surface plasmon resonance and molecular beacon approaches, we first showed the RNA binding and RNA melting activities of NUCB1. We suggest that NUCB1 could induce local changes in structured RNAs via binding to the GGAUAU loop sequence. Our results demonstrate the importance of the multidomain structure of NUCB1 for its RNA-chaperone activity in vitro.
Collapse
|
4
|
Porat J, Kothe U, Bayfield MA. Revisiting tRNA chaperones: New players in an ancient game. RNA (NEW YORK, N.Y.) 2021; 27:rna.078428.120. [PMID: 33593999 PMCID: PMC8051267 DOI: 10.1261/rna.078428.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/10/2021] [Indexed: 05/03/2023]
Abstract
tRNAs undergo an extensive maturation process including post-transcriptional modifications that influence secondary and tertiary interactions. Precursor and mature tRNAs lacking key modifications are often recognized as aberrant and subsequently targeted for decay, illustrating the importance of modifications in promoting structural integrity. tRNAs also rely on tRNA chaperones to promote the folding of misfolded substrates into functional conformations. The best characterized tRNA chaperone is the La protein, which interacts with nascent RNA polymerase III transcripts to promote folding and offers protection from exonucleases. More recently, certain tRNA modification enzymes have also been demonstrated to possess tRNA folding activity distinct from their catalytic activity, suggesting that they may act as tRNA chaperones. In this review, we will discuss pioneering studies relating post-transcriptional modification to tRNA stability and decay pathways, present recent advances into the mechanism by which the RNA chaperone La assists pre-tRNA maturation, and summarize emerging research directions aimed at characterizing modification enzymes as tRNA chaperones. Together, these findings shed light on the importance of tRNA folding and how tRNA chaperones, in particular, increase the fraction of nascent pre-tRNAs that adopt a folded, functional conformation.
Collapse
|
5
|
Kaliatsi EG, Argyriou AI, Bouras G, Apostolidi M, Konstantinidou P, Shaukat AN, Spyroulias GA, Stathopoulos C. Functional and Structural Aspects of La Protein Overexpression in Lung Cancer. J Mol Biol 2020; 432:166712. [PMID: 33197462 DOI: 10.1016/j.jmb.2020.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
La is an abundant phosphoprotein that protects polymerase III transcripts from 3'-5' exonucleolytic degradation and facilitates their folding. Consisting of the evolutionary conserved La motif (LAM) and two consecutive RNA Recognition Motifs (RRMs), La was also found to bind additional RNA transcripts or RNA domains like internal ribosome entry site (IRES), through sequence-independent binding modes which are poorly understood. Although it has been reported overexpressed in certain cancer types and depletion of its expression sensitizes cancer cells to certain chemotherapeutic agents, its role in cancer remains essentially uncharacterized. Herein, we study the effects of La overexpression in A549 lung adenocarcinoma cells, which leads to increased cell proliferation and motility. Expression profiling of several transcription and translation factors indicated that La overexpression leads to downregulation of global translation through hypophosphorylation of 4E-BPs and upregulation of IRES-mediated translation. Moreover, analysis of La localization after nutrition deprivation of the transfected cells showed a normal distribution in the nucleus and nucleoli. Although the RNA binding capacity of La has been primarily linked to the synergy between the conserved LAM and RRM1 domains which act as a module, we show that recombinant stand-alone LAM can specifically bind a pre-tRNA ligand, based on binding experiments combined with NMR analysis. We propose that LAM RNA binding properties could support the expanding and diverse RNA ligand repertoire of La, thus promoting its modulatory role, both under normal and pathogenic conditions like cancer.
Collapse
Affiliation(s)
- Eleni G Kaliatsi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | - Georgios Bouras
- Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - Maria Apostolidi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | | | | | | |
Collapse
|
6
|
Basu R, Eichhorn CD, Cheng R, Peterson RD, Feigon J. Structure of S. pombe telomerase protein Pof8 C-terminal domain is an xRRM conserved among LARP7 proteins. RNA Biol 2020; 18:1181-1192. [PMID: 33131423 DOI: 10.1080/15476286.2020.1836891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
La-related proteins 7 (LARP7) are a class of RNA chaperones that bind the 3' ends of RNA and are constitutively associated with their specific target RNAs. In metazoa, Larp7 binds to the long non-coding 7SK RNA as a core component of the 7SK RNP, a major regulator of eukaryotic transcription. In the ciliate Tetrahymena the LARP7 protein p65 is a component of telomerase, an essential ribonucleoprotein complex that maintains the telomeric DNA at eukaryotic chromosome ends. p65 is important for the ordered assembly of telomerase RNA (TER) with telomerase reverse transcriptase. Unexpectedly, Schizosaccharomyces pombe Pof8 was recently identified as a LARP7 protein and a core component of fission yeast telomerase essential for biogenesis. LARP7 proteins have a conserved N-terminal La motif and RRM1 (La module) and C-terminal RRM2 with specific RNA substrate recognition attributed to RRM2, first structurally characterized in p65 as an atypical RRM named xRRM. Here we present the X-ray crystal structure and NMR studies of S. pombe Pof8 RRM2. Sequence and structure comparison of Pof8 RRM2 to p65 and human Larp7 xRRMs reveals conserved features for RNA binding with the main variability in the length of the non-canonical helix α3. This study shows that Pof8 has conserved xRRM features, providing insight into TER recognition and the defining characteristics of the xRRM.
Collapse
Affiliation(s)
- Ritwika Basu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Catherine D Eichhorn
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Ryan Cheng
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Robert D Peterson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Abstract
RNA-binding proteins are important regulators of RNA metabolism and are of critical importance in all steps of the gene expression cascade. The role of aberrantly expressed RBPs in human disease is an exciting research field and the potential application of RBPs as a therapeutic target or a diagnostic marker represents a fast-growing area of research.Aberrant overexpression of the human RNA-binding protein La has been found in various cancer entities including lung, cervical, head and neck, and chronic myelogenous leukaemia. Cancer-associated La protein supports tumour-promoting processes such as proliferation, mobility, invasiveness and tumour growth. Moreover, the La protein maintains the survival of cancer cells by supporting an anti-apoptotic state that may cause resistance to chemotherapeutic therapy.The human La protein represents a multifunctional post-translationally modified RNA-binding protein with RNA chaperone activity that promotes processing of non-coding precursor RNAs but also stimulates the translation of selective messenger RNAs encoding tumour-promoting and anti-apoptotic factors. In our model, La facilitates the expression of those factors and helps cancer cells to cope with cellular stress. In contrast to oncogenes, able to initiate tumorigenesis, we postulate that the aberrantly elevated expression of the human La protein contributes to the non-oncogenic addiction of cancer cells. In this review, we summarize the current understanding about the implications of the RNA-binding protein La in cancer progression and therapeutic resistance. The concept of exploiting the RBP La as a cancer drug target will be discussed.
Collapse
Affiliation(s)
- Gunhild Sommer
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Regensburg, Germany
| | - Tilman Heise
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|