1
|
Nemes K, Gil JF, Liebe S, Mansi M, Poimenopoulou E, Lennefors BL, Varrelmann M, Savenkov EI. Intermolecular base-pairing interactions, a unique topology and exoribonuclease-resistant noncoding RNAs drive formation of viral chimeric RNAs in plants. THE NEW PHYTOLOGIST 2024; 241:861-877. [PMID: 37897070 DOI: 10.1111/nph.19346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
In plants, exoribonuclease-resistant RNAs (xrRNAs) are produced by many viruses. Whereas xrRNAs contribute to the pathogenicity of these viruses, the role of xrRNAs in the virus infectious cycle remains elusive. Here, we show that xrRNAs produced by a benyvirus (a multipartite RNA virus with four genomic segments) in plants are involved in the formation of monocistronic coat protein (CP)-encoding chimeric RNAs. Naturally occurring chimeric RNAs, we discovered, are composed of 5'-end of RNA 2 and 3'-end of either RNA 3 or RNA 4 bearing conservative exoribonuclease-resistant 'coremin' region. Using computational tools and site-directed mutagenesis, we show that de novo formation of chimeric RNAs requires intermolecular base-pairing interaction between 'coremin' and 3'-proximal part of the CP gene of RNA 2 as well as a stem-loop structure immediately adjacent to the CP gene. Moreover, knockdown of the expression of the XRN4 gene, encoding 5'→3' exoribonuclease, inhibits biogenesis of both xrRNAs and chimeric RNAs. Our findings suggest a novel mechanism involving a unique tropology of the intermolecular base-pairing complex between xrRNAs and RNA2 to promote formation of chimeric RNAs in plants. XrRNAs, essential for chimeric RNA biogenesis, are generated through the action of cytoplasmic Xrn 4 5'→3' exoribonuclease conserved in all plant species.
Collapse
Affiliation(s)
- Katalin Nemes
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, 75007, Sweden
| | - Jose F Gil
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, 75007, Sweden
- VEDAS Corporación de Investigación e Innovación (VEDAS CII), Medellín, 050024, Colombia
| | - Sebastian Liebe
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, 37079, Germany
| | - Mansi Mansi
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, 75007, Sweden
| | - Efstratia Poimenopoulou
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, 75007, Sweden
| | | | - Mark Varrelmann
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, 37079, Germany
| | - Eugene I Savenkov
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, 75007, Sweden
| |
Collapse
|
2
|
Abram QH, Landry BN, Wang AB, Kothe RF, Hauch HC, Sagan SM. The myriad roles of RNA structure in the flavivirus life cycle. RNA Biol 2024; 21:14-30. [PMID: 38797925 PMCID: PMC11135854 DOI: 10.1080/15476286.2024.2357857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
As positive-sense RNA viruses, the genomes of flaviviruses serve as the template for all stages of the viral life cycle, including translation, replication, and infectious particle production. Yet, they encode just 10 proteins, suggesting that the structure and dynamics of the viral RNA itself helps shepherd the viral genome through these stages. Herein, we highlight advances in our understanding of flavivirus RNA structural elements through the lens of their impact on the viral life cycle. We highlight how RNA structures impact translation, the switch from translation to replication, negative- and positive-strand RNA synthesis, and virion assembly. Consequently, we describe three major themes regarding the roles of RNA structure in flavivirus infections: 1) providing a layer of specificity; 2) increasing the functional capacity; and 3) providing a mechanism to support genome compaction. While the interactions described herein are specific to flaviviruses, these themes appear to extend more broadly across RNA viruses.
Collapse
Affiliation(s)
- Quinn H. Abram
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Breanna N. Landry
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Alex B. Wang
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Ronja F. Kothe
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Hannah C.H. Hauch
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Selena M. Sagan
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Dilweg IW, Peer J, Olsthoorn RCL. Xrn1-resistant RNA motifs are disseminated throughout the RNA virome and are able to block scanning ribosomes. Sci Rep 2023; 13:15987. [PMID: 37749116 PMCID: PMC10520033 DOI: 10.1038/s41598-023-43001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
RNAs that are able to prevent degradation by the 5'-3' exoribonuclease Xrn1 have emerged as crucial structures during infection by an increasing number of RNA viruses. Several plant viruses employ the so-called coremin motif, an Xrn1-resistant RNA that is usually located in 3' untranslated regions. Investigation of its structural and sequence requirements has led to its identification in plant virus families beyond those in which the coremin motif was initially discovered. In this study, we identified coremin-like motifs that deviate from the original in the number of nucleotides present in the loop region of the 5' proximal hairpin. They are present in a number of viral families that previously did not have an Xrn1-resistant RNA identified yet, including the double-stranded RNA virus families Hypoviridae and Chrysoviridae. Through systematic mutational analysis, we demonstrated that a coremin motif carrying a 6-nucleotide loop in the 5' proximal hairpin generally requires a YGNNAD consensus for stalling Xrn1, similar to the previously determined YGAD consensus required for Xrn1 resistance of the original coremin motif. Furthermore, we determined the minimal requirements for the 3' proximal hairpin. Since some putative coremin motifs were found in intergenic regions or coding sequences, we demonstrated their capacity for inhibiting translation through an in vitro ribosomal scanning inhibition assay. Consequently, this study provides a further expansion on the number of viral families with known Xrn1-resistant elements, while adding a novel, potentially regulatory function for this structure.
Collapse
Affiliation(s)
- Ivar W Dilweg
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Jasper Peer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - René C L Olsthoorn
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands.
| |
Collapse
|
4
|
Olsthoorn RCL. Replication of alphaviruses requires a pseudoknot that involves the poly(A) tail. RNA (NEW YORK, N.Y.) 2022; 28:1348-1358. [PMID: 35906005 PMCID: PMC9479738 DOI: 10.1261/rna.079243.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Alphaviruses, such as the Sindbis virus and the Chikungunya virus, are RNA viruses with a positive sense single-stranded RNA genome that infect various vertebrates, including humans. A conserved sequence element (CSE) of ∼19 nt in the 3' noncoding region is important for replication. Despite extensive mutational analysis of the CSE, no comprehensive model of this element exists to date. Here, it is shown that the CSE can form an RNA pseudoknot with part of the poly(A) tail and is similar to the human telomerase pseudoknot with which it shares 17 nt. Mutants that alter the stability of the pseudoknot were investigated in the context of a replicon of the Sindbis virus and by native gel electrophoresis. These studies reveal that the pseudoknot is required for virus replication and is stabilized by UAU base triples. The new model is discussed in relation to previous data on Sindbis virus mutants and revertants lacking (part of) the CSE.
Collapse
Affiliation(s)
- René C L Olsthoorn
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
5
|
Kutschera LS, Wolfinger MT. Evolutionary traits of Tick-borne encephalitis virus: Pervasive non-coding RNA structure conservation and molecular epidemiology. Virus Evol 2022; 8:veac051. [PMID: 35822110 PMCID: PMC9272599 DOI: 10.1093/ve/veac051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/14/2022] [Accepted: 06/09/2022] [Indexed: 12/17/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is the aetiological agent of tick-borne
encephalitis, an infectious disease of the central nervous system that is often associated
with severe sequelae in humans. While TBEV is typically classified into three subtypes,
recent evidence suggests a more varied range of TBEV subtypes and lineages that differ
substantially in the architecture of their 3ʹ untranslated region (3ʹUTR). Building on
comparative genomic approaches and thermodynamic modelling, we characterize the TBEV UTR
structureome diversity and propose a unified picture of pervasive non-coding RNA structure
conservation. Moreover, we provide an updated phylogeny of TBEV, building on more than 220
publicly available complete genomes, and investigate the molecular epidemiology and
phylodynamics with Nextstrain, a web-based visualization framework for real-time pathogen
evolution.
Collapse
Affiliation(s)
- Lena S Kutschera
- Department of Theoretical Chemistry, University of Vienna, Währinger Straße 17, Vienna 1090, Austria
| | - Michael T Wolfinger
- Department of Theoretical Chemistry, University of Vienna, Währinger Straße 17, Vienna 1090, Austria
| |
Collapse
|
6
|
Campbell AJ, Anderson JR, Wilusz J. A plant-infecting subviral RNA associated with poleroviruses produces a subgenomic RNA which resists exonuclease XRN1 in vitro. Virology 2022; 566:1-8. [PMID: 34808564 PMCID: PMC9832584 DOI: 10.1016/j.virol.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/13/2023]
Abstract
Subviral agents are nucleic acids which lack the features for classification as a virus. Tombusvirus-like associated RNAs (tlaRNAs) are subviral positive-sense, single-stranded RNAs that replicate autonomously, yet depend on a coinfecting virus for encapsidation and transmission. TlaRNAs produce abundant subgenomic RNA (sgRNA) upon infection. Here, we investigate how the well-studied tlaRNA, ST9, produces sgRNA and its function. We found ST9 is a noncoding RNA, due to its lack of protein coding capacity. We used resistance assays with eukaryotic Exoribonuclease-1 (XRN1) to investigate sgRNA production via incomplete degradation of genomic RNA. The ST9 3' untranslated region stalled XRN1 very near the 5' sgRNA end. Thus, the XRN family of enzymes drives sgRNA accumulation in ST9-infected tissue by incomplete degradation of ST9 RNA. This work suggests tlaRNAs are not just parasites of viruses with compatible capsids, but also mutually beneficial partners that influence host cell RNA biology.
Collapse
Affiliation(s)
- A J Campbell
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA.
| | - John R Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
7
|
Effects of the noncoding subgenomic RNA of red clover necrotic mosaic virus in virus infection. J Virol 2021; 96:e0181521. [PMID: 34851690 PMCID: PMC8826918 DOI: 10.1128/jvi.01815-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In recent years, a new class of viral noncoding subgenomic RNA (ncsgRNA) has been identified. This RNA is generated as a stable degradation product via an exoribonuclease-resistant RNA (xrRNA) structure, which blocks the progression of 5′→3′ exoribonuclease on viral RNAs in infected cells. Here, we assess the effects of the ncsgRNA of red clover necrotic mosaic virus (RCNMV), called SR1f, in infected plants. We demonstrate the following: (i) the absence of SR1f reduces symptoms and decreases viral RNA accumulation in Nicotiana benthamiana and Arabidopsis thaliana plants; (ii) SR1f has an essential function other than suppression of RNA silencing; and (iii) the cytoplasmic exoribonuclease involved in mRNA turnover, XRN4, is not required for SR1f production or virus infection. A comparative transcriptomic analysis in N. benthamiana infected with wild-type RCNMV or an SR1f-deficient mutant RCNMV revealed that wild-type RCNMV infection, which produces SR1f and much higher levels of virus, has a greater and more significant impact on cellular gene expression than the SR1f-deficient mutant. Upregulated pathways include plant hormone signaling, plant-pathogen interaction, MAPK signaling, and several metabolic pathways, while photosynthesis-related genes were downregulated. We compare this to host genes known to participate in infection by other tombusvirids. Viral reads revealed a 10- to 100-fold ratio of positive to negative strand, and the abundance of reads of both strands mapping to the 3′ region of RCNMV RNA1 support the premature transcription termination mechanism of synthesis for the coding sgRNA. These results provide a framework for future studies of the interactions and functions of noncoding RNAs of plant viruses. IMPORTANCE Knowledge of how RNA viruses manipulate host and viral gene expression is crucial to our understanding of infection and disease. Unlike viral protein-host interactions, little is known about the control of gene expression by viral RNA. Here, we begin to address this question by investigating the noncoding subgenomic RNA (ncsgRNA) of red clover necrotic mosaic virus (RCNMV), called SR1f. Similar exoribonuclease-resistant RNAs of flaviviruses are well studied, but the roles of plant viral ncsgRNAs, and how they arise, are poorly understood. Surprisingly, we find the likely exonuclease candidate, XRN4, is not required to generate SR1f, and we assess the effects of SR1f on virus accumulation and symptom development. Finally, we compare the effects of infection by wild-type RCNMV versus an SR1f-deficient mutant on host gene expression in Nicotiana benthamiana, which reveals that ncsgRNAs such as SR1f are key players in virus-host interactions to facilitate productive infection.
Collapse
|
8
|
Zhang S, Sun R, Perdoncini Carvalho C, Han J, Zheng L, Qu F. Replication-Dependent Biogenesis of Turnip Crinkle Virus Long Noncoding RNAs. J Virol 2021; 95:e0016921. [PMID: 34160262 PMCID: PMC8387050 DOI: 10.1128/jvi.00169-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) of virus origin accumulate in cells infected by many positive-strand (+) RNA viruses to bolster viral infectivity. Their biogenesis mostly utilizes exoribonucleases of host cells that degrade viral genomic or subgenomic RNAs in the 5'-to-3' direction until being stalled by well-defined RNA structures. Here, we report a viral lncRNA that is produced by a novel replication-dependent mechanism. This lncRNA corresponds to the last 283 nucleotides of the turnip crinkle virus (TCV) genome and hence is designated tiny TCV subgenomic RNA (ttsgR). ttsgR accumulated to high levels in TCV-infected Nicotiana benthamiana cells when the TCV-encoded RNA-dependent RNA polymerase (RdRp), also known as p88, was overexpressed. Both (+) and (-) strand forms of ttsgR were produced in a manner dependent on the RdRp functionality. Strikingly, templates as short as ttsgR itself were sufficient to program ttsgR amplification, as long as the TCV-encoded replication proteins p28 and p88 were provided in trans. Consistent with its replicational origin, ttsgR accumulation required a 5' terminal carmovirus consensus sequence (CCS), a sequence motif shared by genomic and subgenomic RNAs of many viruses phylogenetically related to TCV. More importantly, introducing a new CCS motif elsewhere in the TCV genome was alone sufficient to cause the emergence of another lncRNA. Finally, abolishing ttsgR by mutating its 5' CCS gave rise to a TCV mutant that failed to compete with wild-type TCV in Arabidopsis. Collectively, our results unveil a replication-dependent mechanism for the biogenesis of viral lncRNAs, thus suggesting that multiple mechanisms, individually or in combination, may be responsible for viral lncRNA production. IMPORTANCE Many positive-strand (+) RNA viruses produce long noncoding RNAs (lncRNAs) during the process of cellular infections and mobilize these lncRNAs to counteract antiviral defenses, as well as coordinate the translation of viral proteins. Most viral lncRNAs arise from 5'-to-3' degradation of longer viral RNAs being stalled at stable secondary structures. Here, we report a viral lncRNA that is produced by the replication machinery of turnip crinkle virus (TCV). This lncRNA, designated ttsgR, shares the terminal characteristics with TCV genomic and subgenomic RNAs and overaccumulates in the presence of moderately overexpressed TCV RNA-dependent RNA polymerase (RdRp). Furthermore, templates that are of similar sizes as ttsgR are readily replicated by TCV replication proteins (p28 and RdRp) provided from nonviral sources. In summary, this study establishes an approach for uncovering low abundance viral lncRNAs, and characterizes a replicating TCV lncRNA. Similar investigations on human-pathogenic (+) RNA viruses could yield novel therapeutic targets.
Collapse
Affiliation(s)
- Shaoyan Zhang
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - Rong Sun
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - Camila Perdoncini Carvalho
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - Junping Han
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - Limin Zheng
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - Feng Qu
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| |
Collapse
|
9
|
Vicens Q, Kieft JS. Shared properties and singularities of exoribonuclease-resistant RNAs in viruses. Comput Struct Biotechnol J 2021; 19:4373-4380. [PMID: 34471487 PMCID: PMC8374639 DOI: 10.1016/j.csbj.2021.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022] Open
Abstract
What viral RNA genomes lack in size, they make up for in intricacy. Elaborate RNA structures embedded in viral genomes can hijack essential cellular mechanisms aiding virus propagation. Exoribonuclease-resistant RNAs (xrRNAs) are an emerging class of viral elements, which resist degradation by host cellular exoribonucleases to produce viral RNAs with diverse roles during infection. Detailed three-dimensional structural studies of xrRNAs from flaviviruses and a subset of plant viruses led to a mechanistic model in which xrRNAs block enzymatic digestion using a ring-like structure that encircles the 5' end of the resistant structure. In this mini-review, we describe the state of our understanding of the phylogenetic distribution of xrRNAs, their structures, and their conformational dynamics. Because xrRNAs have now been found in several major superfamilies of RNA viruses, they may represent a more widely used strategy than currently appreciated. Could xrRNAs represent a 'molecular clock' that would help us understand virus evolution and pathogenicity? The more we study xrRNAs in viruses, the closer we get to finding xrRNAs within cellular RNAs.
Collapse
Affiliation(s)
- Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
- RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Jeffrey S. Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
- RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
10
|
Mechanical strength of RNA knot in Zika virus protects against cellular defenses. Nat Chem Biol 2021; 17:975-981. [PMID: 34253909 DOI: 10.1038/s41589-021-00829-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 06/03/2021] [Indexed: 12/21/2022]
Abstract
Unusual knot-like structures recently discovered in viral exoribonuclease-resistant RNAs (xrRNAs) prevent digestion by host RNases to create subgenomic RNAs enhancing infection and pathogenicity. xrRNAs are proposed to prevent digestion through mechanical resistance to unfolding. However, their unfolding force has not been measured, and the factors determining RNase resistance are unclear. Furthermore, how these knots fold remains unknown. Unfolding a Zika virus xrRNA with optical tweezers revealed that it was the most mechanically stable RNA yet observed. The knot formed by threading the 5' end into a three-helix junction before pseudoknot interactions closed a ring around it. The pseudoknot and tertiary contacts stabilizing the threaded 5' end were both required to generate extreme force resistance, whereas removing a 5'-end contact produced a low-force knot lacking RNase resistance. These results indicate mechanical resistance plays a central functional role, with the fraction of molecules forming extremely high-force knots determining the RNase resistance level.
Collapse
|
11
|
Opium Poppy Mosaic Virus Has an Xrn-Resistant, Translated Subgenomic RNA and a BTE 3' CITE. J Virol 2021; 95:JVI.02109-20. [PMID: 33597210 DOI: 10.1128/jvi.02109-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/08/2021] [Indexed: 12/30/2022] Open
Abstract
Opium poppy mosaic virus (OPMV) is a recently discovered umbravirus in the family Tombusviridae OPMV has a plus-sense genomic RNA (gRNA) of 4,241 nucleotides (nt) from which replication protein p35 and p35 extension product p98, the RNA-dependent RNA polymerase (RdRp), are expressed. Movement proteins p27 (long distance) and p28 (cell to cell) are expressed from a 1,440-nt subgenomic RNA (sgRNA2). A highly conserved structure was identified just upstream from the sgRNA2 transcription start site in all umbraviruses, which includes a carmovirus consensus sequence, denoting generation by an RdRp-mediated mechanism. OPMV also has a second sgRNA of 1,554 nt (sgRNA1) that starts just downstream of a canonical exoribonuclease-resistant sequence (xrRNAD). sgRNA1 codes for a 30-kDa protein in vitro that is in frame with p28 and cannot be synthesized in other umbraviruses. Eliminating sgRNA1 or truncating the p30 open reading frame (ORF) without affecting p28 substantially reduced accumulation of OPMV gRNA, suggesting a functional role for the protein. The 652-nt 3' untranslated region of OPMV contains two 3' cap-independent translation enhancers (3' CITEs), a T-shaped structure (TSS) near its 3' end, and a Barley yellow dwarf virus-like translation element (BTE) in the central region. Only the BTE is functional in luciferase reporter constructs containing gRNA or sgRNA2 5' sequences in vivo, which differs from how umbravirus 3' CITEs were used in a previous study. Similarly to most 3' CITEs, the OPMV BTE links to the 5' end via a long-distance RNA-RNA interaction. Analysis of 14 BTEs revealed additional conserved sequences and structural features beyond the previously identified 17-nt conserved sequence.IMPORTANCE Opium poppy mosaic virus (OPMV) is an umbravirus in the family Tombusviridae We determined that OPMV accumulates two similarly sized subgenomic RNAs (sgRNAs), with the smaller known to code for proteins expressed from overlapping open reading frames. The slightly larger sgRNA1 has a 5' end just upstream from a previously predicted xrRNAD site, identifying this sgRNA as an unusually long product produced by exoribonuclease trimming. Although four umbraviruses have similar predicted xrRNAD sites, only sgRNA1 of OPMV can code for a protein that is an extension product of umbravirus ORF4. Inability to generate the sgRNA or translate this protein was associated with reduced gRNA accumulation in vivo We also characterized the OPMV BTE structure, a 3' cap-independent translation enhancer (3' CITE). Comparisons of 13 BTEs with the OPMV BTE revealed additional stretches of sequence similarity beyond the 17-nt signature sequence, as well as conserved structural features not previously recognized in these 3' CITEs.
Collapse
|
12
|
Liu J, Carino E, Bera S, Gao F, May JP, Simon AE. Structural Analysis and Whole Genome Mapping of a New Type of Plant Virus Subviral RNA: Umbravirus-Like Associated RNAs. Viruses 2021; 13:646. [PMID: 33918656 PMCID: PMC8068935 DOI: 10.3390/v13040646] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/13/2022] Open
Abstract
We report the biological and structural characterization of umbravirus-like associated RNAs (ulaRNAs), a new category of coat-protein dependent subviral RNA replicons that infect plants. These RNAs encode an RNA-dependent RNA polymerase (RdRp) following a -1 ribosomal frameshift event, are 2.7-4.6 kb in length, and are related to umbraviruses, unlike similar RNA replicons that are related to tombusviruses. Three classes of ulaRNAs are proposed, with citrus yellow vein associated virus (CYVaV) placed in Class 2. With the exception of CYVaV, Class 2 and Class 3 ulaRNAs encode an additional open reading frame (ORF) with movement protein-like motifs made possible by additional sequences just past the RdRp termination codon. The full-length secondary structure of CYVaV was determined using Selective 2' Hydroxyl Acylation analyzed by Primer Extension (SHAPE) structure probing and phylogenic comparisons, which was used as a template for determining the putative structures of the other Class 2 ulaRNAs, revealing a number of distinctive structural features. The ribosome recoding sites of nearly all ulaRNAs, which differ significantly from those of umbraviruses, may exist in two conformations and are highly efficient. The 3' regions of Class 2 and Class 3 ulaRNAs have structural elements similar to those of nearly all umbraviruses, and all Class 2 ulaRNAs have a unique, conserved 3' cap-independent translation enhancer. CYVaV replicates independently in protoplasts, demonstrating that the reported sequence is full-length. Additionally, CYVaV contains a sequence in its 3' UTR that confers protection to nonsense mediated decay (NMD), thus likely obviating the need for umbravirus ORF3, a known suppressor of NMD. This initial characterization lays down a road map for future investigations into these novel virus-like RNAs.
Collapse
Affiliation(s)
- Jingyuan Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA; (J.L.); (E.C.); (S.B.)
| | - Elizabeth Carino
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA; (J.L.); (E.C.); (S.B.)
| | - Sayanta Bera
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA; (J.L.); (E.C.); (S.B.)
| | - Feng Gao
- Silvec Biologics, Rockville, MD 20850, USA;
| | - Jared P. May
- Department of Cell and Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, MO 64110, USA;
| | - Anne E. Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA; (J.L.); (E.C.); (S.B.)
| |
Collapse
|
13
|
Discoveries of Exoribonuclease-Resistant Structures of Insect-Specific Flaviviruses Isolated in Zambia. Viruses 2020; 12:v12091017. [PMID: 32933075 PMCID: PMC7551683 DOI: 10.3390/v12091017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
To monitor the arthropod-borne virus transmission in mosquitoes, we have attempted both to detect and isolate viruses from 3304 wild-caught female mosquitoes in the Livingstone (Southern Province) and Mongu (Western Province) regions in Zambia in 2017. A pan-flavivirus RT-PCR assay was performed to identify flavivirus genomes in total RNA extracted from mosquito lysates, followed by virus isolation and full genome sequence analysis using next-generation sequencing and rapid amplification of cDNA ends. We isolated a newly identified Barkedji virus (BJV Zambia) (10,899 nt) and a novel flavivirus, tentatively termed Barkedji-like virus (BJLV) (10,885 nt) from Culex spp. mosquitoes which shared 96% and 75% nucleotide identity with BJV which has been isolated in Israel, respectively. These viruses could replicate in C6/36 cells but not in mammalian and avian cell lines. In parallel, a comparative genomics screening was conducted to study evolutionary traits of the 5'- and 3'-untranslated regions (UTRs) of isolated viruses. Bioinformatic analyses of the secondary structures in the UTRs of both viruses revealed that the 5'-UTRs exhibit canonical stem-loop structures, while the 3'-UTRs contain structural homologs to exoribonuclease-resistant RNAs (xrRNAs), SL-III, dumbbell, and terminal stem-loop (3'SL) structures. The function of predicted xrRNA structures to stop RNA degradation by Xrn1 exoribonuclease was further proved by the in vitro Xrn1 resistance assay.
Collapse
|
14
|
Sanfaçon H. Modulation of disease severity by plant positive-strand RNA viruses: The complex interplay of multifunctional viral proteins, subviral RNAs and virus-associated RNAs with plant signaling pathways and defense responses. Adv Virus Res 2020; 107:87-131. [PMID: 32711736 DOI: 10.1016/bs.aivir.2020.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant viruses induce a range of symptoms of varying intensity, ranging from severe systemic necrosis to mild or asymptomatic infection. Several evolutionary constraints drive virus virulence, including the dependence of viruses on host factors to complete their infection cycle, the requirement to counteract or evade plant antiviral defense responses and the mode of virus transmission. Viruses have developed an array of strategies to modulate disease severity. Accumulating evidence has highlighted not only the multifunctional role that viral proteins play in disrupting or highjacking plant factors, hormone signaling pathways and intracellular organelles, but also the interaction networks between viral proteins, subviral RNAs and/or other viral-associated RNAs that regulate disease severity. This review focusses on positive-strand RNA viruses, which constitute the majority of characterized plant viruses. Using well-characterized viruses with different genome types as examples, recent advances are discussed as well as knowledge gaps and opportunities for further research.
Collapse
Affiliation(s)
- Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada.
| |
Collapse
|
15
|
Hyodo K, Okuno T. Hijacking of host cellular components as proviral factors by plant-infecting viruses. Adv Virus Res 2020; 107:37-86. [PMID: 32711734 DOI: 10.1016/bs.aivir.2020.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant viruses are important pathogens that cause serious crop losses worldwide. They are obligate intracellular parasites that commandeer a wide array of proteins, as well as metabolic resources, from infected host cells. In the past two decades, our knowledge of plant-virus interactions at the molecular level has exploded, which provides insights into how plant-infecting viruses co-opt host cellular machineries to accomplish their infection. Here, we review recent advances in our understanding of how plant viruses divert cellular components from their original roles to proviral functions. One emerging theme is that plant viruses have versatile strategies that integrate a host factor that is normally engaged in plant defense against invading pathogens into a viral protein complex that facilitates viral infection. We also highlight viral manipulation of cellular key regulatory systems for successful virus infection: posttranslational protein modifications for fine control of viral and cellular protein dynamics; glycolysis and fermentation pathways to usurp host resources, and ion homeostasis to create a cellular environment that is beneficial for viral genome replication. A deeper understanding of viral-infection strategies will pave the way for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Kiwamu Hyodo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan.
| | - Tetsuro Okuno
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
| |
Collapse
|
16
|
Langeberg CJ, Welch WRW, McGuire JV, Ashby A, Jackson AD, Chapman EG. Biochemical Characterization of Yeast Xrn1. Biochemistry 2020; 59:1493-1507. [PMID: 32251580 DOI: 10.1021/acs.biochem.9b01035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Messenger RNA degradation is an important component of overall gene expression. During the final step of eukaryotic mRNA degradation, exoribonuclease 1 (Xrn1) carries out 5' → 3' processive, hydrolytic degradation of RNA molecules using divalent metal ion catalysis. To initiate studies of the 5' → 3' RNA decay machinery in our lab, we expressed a C-terminally truncated version of Saccharomyces cerevisiae Xrn1 and explored its enzymology using a second-generation, time-resolved fluorescence RNA degradation assay. Using this system, we quantitatively explored Xrn1's preference for 5'-monophosphorylated RNA substrates, its pH dependence, and the importance of active site mutations in the molecule's conserved catalytic core. Furthermore, we explore Xrn1's preference for RNAs containing a 5' single-stranded region both in an intermolecular hairpin structure and in an RNA-DNA hybrid duplex system. These results both expand and solidify our understanding of Xrn1, a centrally important enzyme whose biochemical properties have implications in numerous RNA degradation and processing pathways.
Collapse
Affiliation(s)
- Conner J Langeberg
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - William R W Welch
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - John V McGuire
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Alison Ashby
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Alexander D Jackson
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Erich G Chapman
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| |
Collapse
|
17
|
Gunawardene CD, Newburn LR, White K. A 212-nt long RNA structure in the Tobacco necrosis virus-D RNA genome is resistant to Xrn degradation. Nucleic Acids Res 2019; 47:9329-9342. [PMID: 31392982 PMCID: PMC6755097 DOI: 10.1093/nar/gkz668] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 06/26/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022] Open
Abstract
Plus-strand RNA viruses can accumulate viral RNA degradation products during infections. Some of these decay intermediates are generated by the cytosolic 5'-to-3' exoribonuclease Xrn1 (mammals and yeast) or Xrn4 (plants) and are formed when the enzyme stalls on substrate RNAs upon encountering inhibitory RNA structures. Many Xrn-generated RNAs correspond to 3'-terminal segments within the 3'-UTR of viral genomes and perform important functions during infections. Here we have investigated a 3'-terminal small viral RNA (svRNA) generated by Xrn during infections with Tobacco necrosis virus-D (family Tombusviridae). Our results indicate that (i) unlike known stalling RNA structures that are compact and modular, the TNV-D structure encompasses the entire 212 nt of the svRNA and is not functionally transposable, (ii) at least two tertiary interactions within the RNA structure are required for effective Xrn blocking and (iii) most of the svRNA generated in infections is derived from viral polymerase-generated subgenomic mRNA1. In vitro and in vivo analyses allowed for inferences on roles for the svRNA. Our findings provide a new and distinct addition to the growing list of Xrn-resistant viral RNAs and stalling structures found associated with different plant and animal RNA viruses.
Collapse
Affiliation(s)
| | - Laura R Newburn
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| | - K Andrew White
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| |
Collapse
|