1
|
Arrowsmith TJ, Xu X, Xu S, Usher B, Stokes P, Guest M, Bronowska AK, Genevaux P, Blower TR. Inducible auto-phosphorylation regulates a widespread family of nucleotidyltransferase toxins. Nat Commun 2024; 15:7719. [PMID: 39231966 PMCID: PMC11375011 DOI: 10.1038/s41467-024-51934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
Nucleotidyltransferases (NTases) control diverse physiological processes, including RNA modification, DNA replication and repair, and antibiotic resistance. The Mycobacterium tuberculosis NTase toxin family, MenT, modifies tRNAs to block translation. MenT toxin activity can be stringently regulated by diverse MenA antitoxins. There has been no unifying mechanism linking antitoxicity across MenT homologues. Here we demonstrate through structural, biochemical, biophysical and computational studies that despite lacking kinase motifs, antitoxin MenA1 induces auto-phosphorylation of MenT1 by repositioning the MenT1 phosphoacceptor T39 active site residue towards bound nucleotide. Finally, we expand this predictive model to explain how unrelated antitoxin MenA3 is similarly able to induce auto-phosphorylation of cognate toxin MenT3. Our study reveals a conserved mechanism for the control of tuberculosis toxins, and demonstrates how active site auto-phosphorylation can regulate the activity of widespread NTases.
Collapse
Affiliation(s)
| | - Xibing Xu
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Shangze Xu
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Ben Usher
- Department of Biosciences, Durham University, Durham, UK
| | - Peter Stokes
- Department of Chemistry, Durham University, Durham, UK
| | - Megan Guest
- Department of Biosciences, Durham University, Durham, UK
| | - Agnieszka K Bronowska
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| | - Tim R Blower
- Department of Biosciences, Durham University, Durham, UK.
| |
Collapse
|
2
|
Siddika T, Balasuriya N, Frederick MI, Rozik P, Heinemann IU, O’Donoghue P. Delivery of Active AKT1 to Human Cells. Cells 2022; 11:cells11233834. [PMID: 36497091 PMCID: PMC9738475 DOI: 10.3390/cells11233834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Protein kinase B (AKT1) is a serine/threonine kinase and central transducer of cell survival pathways. Typical approaches to study AKT1 biology in cells rely on growth factor or insulin stimulation that activates AKT1 via phosphorylation at two key regulatory sites (Thr308, Ser473), yet cell stimulation also activates many other kinases. To produce cells with specific AKT1 activity, we developed a novel system to deliver active AKT1 to human cells. We recently established a method to produce AKT1 phospho-variants from Escherichia coli with programmed phosphorylation. Here, we fused AKT1 with an N-terminal cell penetrating peptide tag derived from the human immunodeficiency virus trans-activator of transcription (TAT) protein. The TAT-tag did not alter AKT1 kinase activity and was necessary and sufficient to rapidly deliver AKT1 protein variants that persisted in human cells for 24 h without the need to use transfection reagents. TAT-pAKT1T308 induced selective phosphorylation of the known AKT1 substrate GSK-3α, but not GSK-3β, and downstream stimulation of the AKT1 pathway as evidenced by phosphorylation of ribosomal protein S6 at Ser240/244. The data demonstrate efficient delivery of AKT1 with programmed phosphorylation to human cells, thus establishing a cell-based model system to investigate signaling that is dependent on AKT1 activity.
Collapse
Affiliation(s)
- Tarana Siddika
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Nileeka Balasuriya
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Mallory I. Frederick
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Peter Rozik
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Correspondence: (I.U.H.); (P.O.)
| | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Correspondence: (I.U.H.); (P.O.)
| |
Collapse
|
3
|
miRNA-Dependent Regulation of AKT1 Phosphorylation. Cells 2022; 11:cells11050821. [PMID: 35269443 PMCID: PMC8909289 DOI: 10.3390/cells11050821] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
The phosphoinositide-3-kinase (PI3K)/AKT pathway regulates cell survival and is over-activated in most human cancers, including ovarian cancer. Following growth factor stimulation, AKT1 is activated by phosphorylation at T308 and S473. Disruption of the AKT1 signaling pathway is sufficient to inhibit the epithelial-mesenchymal transition in epithelial ovarian cancer (EOC) cells. In metastatic disease, adherent EOC cells transition to a dormant spheroid state, characterized previously by low S473 phosphorylation in AKT1. We confirmed this finding and observed that T308 phosphorylation was yet further reduced in EOC spheroids and that the transition from adherent to spheroid growth is accompanied by significantly increased levels of let-7 miRNAs. We then used mechanistic studies to investigate the impact of let-7 miRNAs on AKT1 phosphorylation status and activity in cells. In growth factor-stimulated HEK 293T cells supplemented with let-7a, we found increased phosphorylation of AKT1 at T308, decreased phosphorylation at S473, and enhanced downstream AKT1 substrate GSK-3β phosphorylation. Let-7b and let-7g also deregulated AKT signaling by rendering AKT1 insensitive to growth factor simulation. We uncovered let-7a-dependent deregulation of PI3K pathway components, including PI3KC2A, PDK1, and RICTOR, that govern AKT1 phosphorylation and activity. Together, our data show a new role for miRNAs in regulating AKT signaling.
Collapse
|
4
|
Chung CZ, Balasuriya N, Siddika T, Frederick MI, Heinemann IU. Gld2 activity and RNA specificity is dynamically regulated by phosphorylation and interaction with QKI-7. RNA Biol 2021; 18:397-408. [PMID: 34288801 DOI: 10.1080/15476286.2021.1952540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
In the cell, RNA abundance is dynamically controlled by transcription and decay rates. Posttranscriptional nucleotide addition at the RNA 3' end is a means of regulating mRNA and RNA stability and activity, as well as marking RNAs for degradation. The human nucleotidyltransferase Gld2 polyadenylates mRNAs and monoadenylates microRNAs, leading to an increase in RNA stability. The broad substrate range of Gld2 and its role in controlling RNA stability make the regulation of Gld2 activity itself imperative. Gld2 activity can be regulated by post-translational phosphorylation via the oncogenic kinase Akt1 and other kinases, leading to either increased or almost abolished enzymatic activity, and here we confirm that Akt1 phosphorylates Gld2 in a cellular context. Another means to control Gld2 RNA specificity and activity is the interaction with RNA binding proteins. Known interactors are QKI-7 and CPEB, which recruit Gld2 to specific miRNAs and mRNAs. We investigate the interplay between five phosphorylation sites in the N-terminal domain of Gld2 and three RNA binding proteins. We found that the activity and RNA specificity of Gld2 is dynamically regulated by this network. Binding of QKI-7 or phosphorylation at S62 relieves the autoinhibitory function of the Gld2 N-terminal domain. Binding of QKI-7 to a short peptide sequence within the N-terminal domain can also override the deactivation caused by Akt1 phosphorylation at S116. Our data revealed that Gld2 substrate specificity and activity can be dynamically regulated to match the cellular need of RNA stabilization and turnover.
Collapse
Affiliation(s)
- Christina Z Chung
- Department of Biochemistry, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada
| | - Nileeka Balasuriya
- Department of Biochemistry, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada
| | - Tarana Siddika
- Department of Biochemistry, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada
| | - Mallory I Frederick
- Department of Biochemistry, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada
| |
Collapse
|
5
|
Frederick MI, Heinemann IU. Regulation of RNA stability at the 3' end. Biol Chem 2021; 402:425-431. [PMID: 33938180 PMCID: PMC10884531 DOI: 10.1515/hsz-2020-0325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/04/2020] [Indexed: 01/09/2023]
Abstract
RNA homeostasis is regulated by a multitude of cellular pathways. Although the addition of untemplated adenine residues to the 3' end of mRNAs has long been known to affect RNA stability, newly developed techniques for 3'-end sequencing of RNAs have revealed various unexpected RNA modifications. Among these, uridylation is most recognized for its role in mRNA decay but is also a key regulator of numerous RNA species, including miRNAs and tRNAs, with dual roles in both stability and maturation of miRNAs. Additionally, low levels of untemplated guanidine and cytidine residues have been observed as parts of more complex tailing patterns.
Collapse
Affiliation(s)
- Mallory I Frederick
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London ON, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London ON, Canada
| |
Collapse
|
6
|
McKenna M, Balasuriya N, Zhong S, Li SSC, O'Donoghue P. Phospho-Form Specific Substrates of Protein Kinase B (AKT1). Front Bioeng Biotechnol 2021; 8:619252. [PMID: 33614606 PMCID: PMC7886700 DOI: 10.3389/fbioe.2020.619252] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/29/2020] [Indexed: 11/17/2022] Open
Abstract
Protein kinase B (AKT1) is hyper-activated in diverse human tumors. AKT1 is activated by phosphorylation at two key regulatory sites, Thr308 and Ser473. Active AKT1 phosphorylates many, perhaps hundreds, of downstream cellular targets in the cytosol and nucleus. AKT1 is well-known for phosphorylating proteins that regulate cell survival and apoptosis, however, the full catalog of AKT1 substrates remains unknown. Using peptide arrays, we recently discovered that each phosphorylated form of AKT1 (pAKT1S473, pAKT1T308, and ppAKT1S473,T308) has a distinct substrate specificity, and these data were used to predict potential new AKT1 substrates. To test the high-confidence predictions, we synthesized target peptides representing putative AKT1 substrates. Peptides substrates were synthesized by solid phase synthesis and their purity was confirmed by mass spectrometry. Most of the predicted peptides showed phosphate accepting activity similar to or greater than that observed with a peptide derived from a well-established AKT1 substrate, glycogen synthase kinase 3β (GSK-3β). Among the novel substrates, AKT1 was most active with peptides representing PIP3-binding protein Rab11 family-interacting protein 2 and cysteinyl leukotriene receptor 1, indicating their potential role in AKT1-dependent cellular signaling. The ppAKT1S473,T308 enzyme was highly selective for peptides containing a patch of basic residues at −5, −4, −3 and aromatic residues (Phe/Tyr) at +1 positions from the phosphorylation site. The pAKT1S473 variant preferred more acidic peptides, Ser or Pro at +4, and was agnostic to the residue at −5. The data further support our hypothesis that Ser473 phosphorylation plays a key role in modulating AKT1 substrate selectivity.
Collapse
Affiliation(s)
- McShane McKenna
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Nileeka Balasuriya
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Shanshan Zhong
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Shawn Shun-Cheng Li
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada.,Department of Chemistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
7
|
Wang F, Chen X, Sun B, Ma Y, Niu W, Zhai J, Sun Y. Hypermethylation-mediated downregulation of lncRNA PVT1 promotes granulosa cell apoptosis in premature ovarian insufficiency via interacting with Foxo3a. J Cell Physiol 2021; 236:5162-5175. [PMID: 33393111 DOI: 10.1002/jcp.30222] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Long noncoding RNA PVT1 is involved in the progression of female gynecological cancers. However, the role of PVT1 in ovarian granulosa cell apoptosis-mediated premature ovarian insufficiency (POI) remains unclear. This study aims to elucidate the role of PVT1 in ovarian granulosa cell apoptosis-mediated POI. The expression of PVT1 was compared between ovarian tissues from POI patients and normal controls. The methylation level in the PVT1 promoter region was detected by methylation-specific polymerase chain reaction. The interaction between PVT1 and forkhead box class O3A (Foxo3a) was confirmed by RNA pull-down and RNA immunoprecipitation assays. Granulosa cell apoptosis was detected using flow cytometry. The effect of PVT1 on transcription activity of Foxo3a was detected by luciferase reporter assay. The expression of PVT1 was low in the POI ovarian tissues compared with the controls, and such a low expression was related to the hypermethylation of the PVT1 promoter. PVT1 was localized in both the cytoplasm and the nucleus of granulosa cells. We determined that PVT1 could bind with Foxo3a and that downregulating PVT1 by small interfering RNAs inhibited Foxo3a phosphorylation by promoting SCP4-mediated Foxo3a dephosphorylation, resulting in an increase in Foxo3a transcription activity. Moreover, downregulating PVT1 promoted granulosa cell apoptosis by increasing the Foxo3a protein levels. An in vivo experiment showed that the injection of PVT1 overexpressing vectors restored the ovarian function in POI mice. Hypermethylation-induced downregulation of PVT1 promotes granulosa cell apoptosis in POI by inhibiting Foxo3a phosphorylation and increases the Foxo3a transcription activity.
Collapse
Affiliation(s)
- Fang Wang
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuemei Chen
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Bo Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yujia Ma
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenbin Niu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jun Zhai
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingpu Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Balasuriya N, Davey NE, Johnson JL, Liu H, Biggar KK, Cantley LC, Li SSC, O'Donoghue P. Phosphorylation-dependent substrate selectivity of protein kinase B (AKT1). J Biol Chem 2020; 295:8120-8134. [PMID: 32350110 DOI: 10.1074/jbc.ra119.012425] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/22/2020] [Indexed: 12/31/2022] Open
Abstract
Protein kinase B (AKT1) is a central node in a signaling pathway that regulates cell survival. The diverse pathways regulated by AKT1 are communicated in the cell via the phosphorylation of perhaps more than 100 cellular substrates. AKT1 is itself activated by phosphorylation at Thr-308 and Ser-473. Despite the fact that these phosphorylation sites are biomarkers for cancers and tumor biology, their individual roles in shaping AKT1 substrate selectivity are unknown. We recently developed a method to produce AKT1 with programmed phosphorylation at either or both of its key regulatory sites. Here, we used both defined and randomized peptide libraries to map the substrate selectivity of site-specific, singly and doubly phosphorylated AKT1 variants. To globally quantitate AKT1 substrate preferences, we synthesized three AKT1 substrate peptide libraries: one based on 84 "known" substrates and two independent and larger oriented peptide array libraries (OPALs) of ∼1011 peptides each. We found that each phospho-form of AKT1 has common and distinct substrate requirements. Compared with pAKT1T308, the addition of Ser-473 phosphorylation increased AKT1 activities on some, but not all of its substrates. This is the first report that Ser-473 phosphorylation can positively or negatively regulate kinase activity in a substrate-dependent fashion. Bioinformatics analysis indicated that the OPAL-activity data effectively discriminate known AKT1 substrates from closely related kinase substrates. Our results also enabled predictions of novel AKT1 substrates that suggest new and expanded roles for AKT1 signaling in regulating cellular processes.
Collapse
Affiliation(s)
- Nileeka Balasuriya
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom
| | - Jared L Johnson
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, New York, United States
| | - Huadong Liu
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada.,Center for Mitochondrial Biology and Medicine, Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Kyle K Biggar
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada.,Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, New York, United States
| | - Shawn Shun-Cheng Li
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada .,Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|