1
|
Liau WS, Zhao Q, Bademosi A, Gormal RS, Gong H, Marshall PR, Periyakaruppiah A, Madugalle SU, Zajaczkowski EL, Leighton LJ, Ren H, Musgrove M, Davies J, Rauch S, He C, Dickinson BC, Li X, Wei W, Meunier FA, Fernández-Moya SM, Kiebler MA, Srinivasan B, Banerjee S, Clark M, Spitale RC, Bredy TW. Fear extinction is regulated by the activity of long noncoding RNAs at the synapse. Nat Commun 2023; 14:7616. [PMID: 37993455 PMCID: PMC10665438 DOI: 10.1038/s41467-023-43535-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) represent a multidimensional class of regulatory molecules that are involved in many aspects of brain function. Emerging evidence indicates that lncRNAs are localized to the synapse; however, a direct role for their activity in this subcellular compartment in memory formation has yet to be demonstrated. Using lncRNA capture-seq, we identified a specific set of lncRNAs that accumulate in the synaptic compartment within the infralimbic prefrontal cortex of adult male C57/Bl6 mice. Among these was a splice variant related to the stress-associated lncRNA, Gas5. RNA immunoprecipitation followed by mass spectrometry and single-molecule imaging revealed that this Gas5 isoform, in association with the RNA binding proteins G3BP2 and CAPRIN1, regulates the activity-dependent trafficking and clustering of RNA granules. In addition, we found that cell-type-specific, activity-dependent, and synapse-specific knockdown of the Gas5 variant led to impaired fear extinction memory. These findings identify a new mechanism of fear extinction that involves the dynamic interaction between local lncRNA activity and RNA condensates in the synaptic compartment.
Collapse
Affiliation(s)
- Wei-Siang Liau
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| | - Qiongyi Zhao
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Adekunle Bademosi
- Single Molecule Neuroscience Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Rachel S Gormal
- Single Molecule Neuroscience Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Hao Gong
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Marshall
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ambika Periyakaruppiah
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Sachithrani U Madugalle
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Esmi L Zajaczkowski
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Laura J Leighton
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Haobin Ren
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Mason Musgrove
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Joshua Davies
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Simone Rauch
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Wuhan University, Wuhan, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Frédéric A Meunier
- Single Molecule Neuroscience Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Sandra M Fernández-Moya
- Biomedical Centre, Ludwig Maximilian University of Munich, Munich, Germany
- Gene Regulation of Cell Identity, Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Advancing Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet del Llobregat, 08908, Barcelona, Spain
| | - Michael A Kiebler
- Biomedical Centre, Ludwig Maximilian University of Munich, Munich, Germany
| | | | | | - Michael Clark
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, The University of California, Irvine, CA, USA
| | - Timothy W Bredy
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
2
|
The Targeting of Noncoding RNAs by Quercetin in Cancer Prevention and Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4330681. [PMID: 35656022 PMCID: PMC9155922 DOI: 10.1155/2022/4330681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/11/2022] [Indexed: 12/14/2022]
Abstract
The dietary flavonoid quercetin is ubiquitously distributed in fruits, vegetables, and medicinal herbs. Quercetin has been a focal point in recent years due to its versatile health-promoting benefits and high pharmacological values. It has well documented that quercetin exerts anticancer actions by inhibiting cell proliferation, inducing apoptosis, and retarding the invasion and metastasis of cancer cells. However, the exact mechanism of quercetin-mediated cancer chemoprevention is still not fully understood. With the advances in high-throughput sequencing technologies, the intricate oncogenic signaling networks have been gradually characterized. Increasing evidence on the close association between noncoding RNA (ncRNAs) and cancer etiopathogenesis emphasizes the potential of ncRNAs as promising molecular targets for cancer treatment. Available experimental studies indicate that quercetin can dominate multiple cancer-associated ncRNAs, hence repressing carcinogenesis and cancer development. Thus, modulation of ncRNAs serves as a key mechanism responsible for the anticancer effects of quercetin. In this review, we focus on the chemopreventive effects of quercetin on cancer pathogenesis by targeting cancer-relevant ncRNAs, supporting the viewpoint that quercetin holds promise as a drug candidate for cancer chemoprevention and chemotherapy. An in-depth comprehension of the interplay between quercetin and ncRNAs in the inhibition of cancer development and progression will raise the possibility of developing this bioactive compound as an anticancer agent that could be highly efficacious and safe in clinical practice.
Collapse
|
3
|
Gao X, Zhang K, Zhou H, Zellmer L, Yuan C, Huang H, Liao DJ. At elevated temperatures, heat shock protein genes show altered ratios of different RNAs and expression of new RNAs, including several novel HSPB1 mRNAs encoding HSP27 protein isoforms. Exp Ther Med 2021; 22:900. [PMID: 34257713 PMCID: PMC8243336 DOI: 10.3892/etm.2021.10332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
Heat shock proteins (HSP) serve as chaperones to maintain the physiological conformation and function of numerous cellular proteins when the ambient temperature is increased. To determine how accurate the general assumption that HSP gene expression is increased in febrile situations is, the RNA levels of the HSF1 (heat shock transcription factor 1) gene and certain HSP genes were determined in three cell lines cultured at 37˚C or 39˚C for three days. At 39˚C, the expression of HSF1, HSPB1, HSP90AA1 and HSP70A1L genes demonstrated complex changes in the ratios of expression levels between different RNA variants of the same gene. Several older versions of the RNAs of certain HSP genes that have been replaced by a newer version in the National Center for Biotechnology Information database were also detected, indicating that the older versions are actually RNA variants of these genes. The present study cloned four new RNA variants of the HSP27-encoding HSPB1 gene, which together encode three short HSP27 peptides. Reanalysis of the proteomics data from our previous studies also demonstrated that proteins from certain HSP genes could be detected simultaneously at multiple positions using SDS-PAGE, suggesting that these genes may engender multiple protein isoforms. These results collectively suggested that, besides increasing their expression, certain HSP and associated genes also use alternative transcription start sites to produce multiple RNA transcripts and use alternative splicing of a transcript to produce multiple mature RNAs, as important mechanisms for responding to an increased ambient temperature in vitro.
Collapse
Affiliation(s)
- Xia Gao
- Department of Pathology, Guizhou Medical University Hospital, Guiyang, Guizhou 550004, P.R. China.,Key Lab of Endemic and Ethnic Diseases of The Ministry of Education of China in Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Keyin Zhang
- Department of Pathology, Guizhou Medical University Hospital, Guiyang, Guizhou 550004, P.R. China.,Key Lab of Endemic and Ethnic Diseases of The Ministry of Education of China in Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Haiyan Zhou
- Clinical Research Center, Guizhou Medical University Hospital, Guiyang, Guizhou 550004, P.R. China
| | - Lucas Zellmer
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chengfu Yuan
- Department of Biochemistry, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Hai Huang
- Center for Clinical Laboratories, Guizhou Medical University Hospital, Guiyang, Guizhou 550004, P.R. China
| | - Dezhong Joshua Liao
- Key Lab of Endemic and Ethnic Diseases of The Ministry of Education of China in Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Center for Clinical Laboratories, Guizhou Medical University Hospital, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|