1
|
Tang YF, Wang YZ, Wen GB, Jiang JJ. Prognostic model of kidney renal clear cell carcinoma using aging-related long noncoding RNA signatures identifies THBS1-IT1 as a potential prognostic biomarker for multiple cancers. Aging (Albany NY) 2023; 15:8630-8663. [PMID: 37708239 PMCID: PMC10522375 DOI: 10.18632/aging.204949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/15/2023] [Indexed: 09/16/2023]
Abstract
Aging is responsible for the main intrinsic triggers of cancers; however, the studies of aging risk factors in cancer animal models and cancer patients are rare and insufficient to be represented in cancer clinical trials. For a better understanding of the complex regulatory networks of aging and cancers, 8 candidate aging related long noncoding RNAs (CarLncs) identified from the healthy aging models, centenarians and their offsprings, were selected and their association with kidney renal clear cell carcinoma (KIRC) was explored by series of cutting edge analyses such as support vector machine (SVM) and random forest (RF) algorithms. Using data downloaded from TCGA and GTEx databases, a regulatory network of CarLncs-miRNA-mRNA was constructed and five genes within the network were screened out as aging related feature genes for developing KIRC prognostic models. After a strict filtering pipeline for modeling, a formula using the transcript per million (TPM) values of feature genes "LncAging_score = 0.008* MMP11 + 0.066* THBS1-IT1 + (-0.014)* DYNLL2 + (-0.030)* RMND5A+ 0.008* PEG10" was developed. ROC analysis and nomogram suggest our model achieves a great performance in KIRC prognosis. Among the 8 CarLncs, we found that THBS1-IT1 was significantly dysregulated in 12 cancer types. A comprehensive pan-cancer analysis demonstrated that THBS1-IT1 is a potential prognostic biomarker in not only KIRC but also multiple cancers, such as LUSC, BLCA, GBM, LGG, MESO, PAAD, STAD and THCA, it was correlated with tumor microenvironment (TME) and tumor immune cell infiltration (TICI) and its high expression was related with poor survival.
Collapse
Affiliation(s)
- Yi-Fan Tang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yu-Zhi Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Gui-Biao Wen
- Department of Urology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jian-Jun Jiang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
2
|
Luo YM, Yang SD, Wen MY, Wang B, Liu JH, Li ST, Li YY, Cheng H, Zhao LL, Li SM, Jiang JJ. Insights into the mechanisms of triptolide nephrotoxicity through network pharmacology-based analysis and RNA-seq. FRONTIERS IN PLANT SCIENCE 2023; 14:1144583. [PMID: 36959927 PMCID: PMC10027700 DOI: 10.3389/fpls.2023.1144583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Triptolide (TPL) is a promising plant-derived compound for clinical therapy of multiple human diseases; however, its application was limited considering its toxicity. METHODS To explore the underlying molecular mechanism of TPL nephrotoxicity, a network pharmacology based approach was utilized to predict candidate targets related with TPL toxicity, followed by deep RNA-seq analysis to characterize the features of three transcriptional elements include protein coding genes (PCGs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) as well as their associations with nephrotoxicity in rats with TPL treatment. RESULTS & DISCUSSION Although the deeper mechanisms of TPL nephrotoxcity remain further exploration, our results suggested that c-Jun is a potential target of TPL and Per1 related circadian rhythm signaling is involved in TPL induced renal toxicity.
Collapse
Affiliation(s)
- Yue-Ming Luo
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shu-Dong Yang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Miao-Yu Wen
- Department of Geriatrics, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Bing Wang
- Department of Nephrology, Shenzhen Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia-Hui Liu
- Department of Nephrology, Shenzhen Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Si-Ting Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Yan Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hong Cheng
- Department of Geriatrics, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Li-Li Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Graduate school of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Shun-Min Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jian-Jun Jiang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
3
|
Trivedi DD, Dalai SK, Bakshi SR. The Mystery of Cancer Resistance: A Revelation Within Nature. J Mol Evol 2023; 91:133-155. [PMID: 36693985 DOI: 10.1007/s00239-023-10092-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023]
Abstract
Cancer, a disease due to uncontrolled cell proliferation is as ancient as multicellular organisms. A 255-million-years-old fossilized forerunner mammal gorgonopsian is probably the oldest evidence of cancer, to date. Cancer seems to have evolved by adapting to the microenvironment occupied by immune sentinel, modulating the cellular behavior from cytotoxic to regulatory, acquiring resistance to chemotherapy and surviving hypoxia. The interaction of genes with environmental carcinogens is central to cancer onset, seen as a spectrum of cancer susceptibility among human population. Cancer occurs in life forms other than human also, although their exposure to environmental carcinogens can be different. Role of genetic etiology in cancer in multiple species can be interesting with regard to not only cancer susceptibility, but also genetic conservation and adaptation in speciation. The widely used model organisms for cancer research are mouse and rat which are short-lived and reproduce rapidly. Research in these cancer prone animal models has been valuable as these have led to cancer therapy. However, another rewarding area of cancer research can be the cancer-resistant animal species. The Peto's paradox and G-value paradox are evident when natural cancer resistance is observed in large mammals, like elephant and whale, small rodents viz. Naked Mole Rat and Blind Mole Rat, and Bat. The cancer resistance remains to be explored in other small or large and long-living animals like giraffe, camel, rhinoceros, water buffalo, Indian bison, Shire horse, polar bear, manatee, elephant seal, walrus, hippopotamus, turtle and tortoise, sloth, and squirrel. Indeed, understanding the molecular mechanisms of avoiding neoplastic transformation across various life forms can be potentially having translational value for human cancer management. Adapted and Modified from (Hanahan and Weinberg 2011).
Collapse
|
4
|
Alternative telomere maintenance mechanism in Alligator sinensis provides insights into aging evolution. iScience 2022; 26:105850. [PMID: 36636341 PMCID: PMC9829719 DOI: 10.1016/j.isci.2022.105850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 11/27/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
Lifespan is a life-history trait that undergoes natural selection. Telomeres are hallmarks of aging, and shortening rate predicts species lifespan, making telomere maintenance mechanisms throughout different lifespans a worthy topic for study. Alligators are suitable for the exploration of anti-aging molecular mechanisms, because they exhibit low or even negligible mortality in adults and no significant telomere shortening. Telomerase reverse transcriptase (TERT) expression is absent in the adult Alligator sinensis, as in humans. Selection analyses on telomere maintenance genes indicated that ATM, FANCE, SAMHD1, HMBOX1, NAT10, and MAP3K4 experienced positive selection on A. sinensis. Repressed pleiotropic ATM kinase in A. sinensis suggests their fitness optimum shift. In ATM downstream, Alternative Lengthening of Telomeres (ALT)-related genes were clustered in a higher expression pattern in A. sinensis, which covers 10-15% of human cancers showing no telomerase activities. In summary, we demonstrated how telomere shortening, telomerase activities, and ALT contributed to anti-aging strategies.
Collapse
|
5
|
Specific Gain and Loss of Co-Expression Modules in Long-Lived Individuals Indicate a Role of circRNAs in Human Longevity. Genes (Basel) 2022; 13:genes13050749. [PMID: 35627134 PMCID: PMC9140997 DOI: 10.3390/genes13050749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022] Open
Abstract
Deep RNA sequencing of 164 blood samples collected from long-lived families was performed to investigate the expression patterns of circular RNAs (circRNAs). Unlike that observed in previous studies, circRNA expression in long-lived elderly individuals (98.3 ± 3.4 year) did not exhibit an age-accumulating pattern. Based on weighted circRNA co-expression network analysis, we found that longevous elders specifically gained eight but lost seven conserved circRNA-circRNA co-expression modules (c-CCMs) compared with normal elder controls (spouses of offspring of long-lived individuals, age = 59.3 ± 5.8 year). Further analysis showed that these modules were associated with healthy aging-related pathways. These results together suggest an important role of circRNAs in regulating human lifespan extension.
Collapse
|
6
|
Li M, Pan D, Sun H, Zhang L, Cheng H, Shao T, Wang Z. The hypoxia adaptation of small mammals to plateau and underground burrow conditions. Animal Model Exp Med 2021; 4:319-328. [PMID: 34977483 PMCID: PMC8690988 DOI: 10.1002/ame2.12183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Oxygen is one of the important substances for the survival of most life systems on the earth, and plateau and underground burrow systems are two typical hypoxic environments. Small mammals living in hypoxic environments have evolved different adaptation strategies, which include increased oxygen delivery, metabolic regulation of physiological responses and other physiological responses that change tissue oxygen utilization. Multi-omics predictions have also shown that these animals have evolved different adaptations to extreme environments. In particular, vascular endothelial growth factor (VEGF) and erythropoietin (EPO), which have specific functions in the control of O2 delivery, have evolved adaptively in small mammals in hypoxic environments. Naked mole-rats and blind mole-rats are typical hypoxic model animals as they have some resistance to cancer. This review primarily summarizes the main living environment of hypoxia tolerant small mammals, as well as the changes of phenotype, physiochemical characteristics and gene expression mode of their long-term living in hypoxia environment.
Collapse
Affiliation(s)
- Mengke Li
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Dan Pan
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Hong Sun
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
- Centre for Nutritional EcologyZhengzhou UniversityZhengzhouP.R. China
| | - Lei Zhang
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Han Cheng
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Tian Shao
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Zhenlong Wang
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| |
Collapse
|
7
|
Pergande MR, Amoroso VG, Nguyen TTA, Li W, Vice E, Park TJ, Cologna SM. PPARα and PPARγ Signaling Is Enhanced in the Brain of the Naked Mole-Rat, a Mammal that Shows Intrinsic Neuroprotection from Oxygen Deprivation. J Proteome Res 2021; 20:4258-4271. [PMID: 34351155 DOI: 10.1021/acs.jproteome.1c00131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Naked mole-rats (NMRs) are a long-lived animal that do not develop age-related diseases including neurodegeneration and cancer. Additionally, NMRs have a profound ability to consume reactive oxygen species (ROS) and survive long periods of oxygen deprivation. Here, we evaluated the unique proteome across selected brain regions of NMRs at different ages. Compared to mice, we observed numerous differentially expressed proteins related to altered mitochondrial function in all brain regions, suggesting that the mitochondria in NMRs may have adapted to compensate for energy demands associated with living in a harsh, underground environment. Keeping in mind that ROS can induce polyunsaturated fatty acid peroxidation under periods of neuronal stress, we investigated docosahexaenoic acid (DHA) and arachidonic acid (AA) peroxidation under oxygen-deprived conditions and observed that NMRs undergo DHA and AA peroxidation to a far less extent compared to mice. Further, our proteomic analysis also suggested enhanced peroxisome proliferator-activated receptor (PPAR)-retinoid X receptor (RXR) activation in NMRs via the PPARα-RXR and PPARγ-RXR complexes. Correspondingly, we present several lines of evidence supporting PPAR activation, including increased eicosapetenoic and omega-3 docosapentaenoic acid, as well as an upregulation of fatty acid-binding protein 3 and 4, known transporters of omega-3 fatty acids and PPAR activators. These results suggest enhanced PPARα and PPARγ signaling as a potential, innate neuroprotective mechanism in NMRs.
Collapse
Affiliation(s)
- Melissa R Pergande
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Vince G Amoroso
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Thu T A Nguyen
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Wenping Li
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Emily Vice
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Thomas J Park
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States.,Laboratory for Integrative Neuroscience, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States.,Laboratory for Integrative Neuroscience, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
8
|
Jiang J, Cheng L, Yan L, Ge M, Yang L, Ying H, Kong Q. Decoding the role of long noncoding RNAs in the healthy aging of centenarians. Brief Bioinform 2021; 22:6124916. [PMID: 33517370 DOI: 10.1093/bib/bbaa439] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/23/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022] Open
Abstract
Aging is the largest risk factor of major human diseases. Long noncoding RNAs (lncRNAs) as the key regulatory elements have shown a strong impact on multiple biological processes as well as human disease mechanisms. However, the roles of lncRNAs in aging/healthy aging processes remain largely unknown. Centenarians are good models for healthy aging studies due to avoiding major chronic diseases and disabilities. To illustrate their ubiquitous nature in the genome and the 'secrets' of healthy aging regulation from the perspective of lncRNAs, peripheral blood samples from two regions consisting 76 centenarians (CENs), 54 centenarian-children (F1) and 41 spouses of centenarian-children (F1SP) were collected for deep RNA-seq. We identified 11 CEN-specific lncRNAs that is particularly expressed in longevous individuals. By kmers clustering, hundreds of human lncRNAs show similarities with CEN-specific lncRNAs, especially with ENST00000521663 and ENST00000444998. Using F1SP as normal elder controls (age: 59.9 ± 6.6 years), eight lncRNAs that are differentially expressed in longevous elders (CEN group, age: 102.2 ± 2.4 years) were identified as candidate aging/health aging-related lncRNAs (car-lncs). We found that the expression of eight car-lncs in human diploid fibroblasts displayed dynamic changes during cell passage and/or H2O2/rapamycin treatment; of which, overexpression either of THBS1-IT1 and THBS1-AS1, two lncRNAs that highly expressed in CENs, can remarkably decrease p16, p21 and the activity of senescent related β-galactosidase, suggesting that THBS1-IT1 and THBS1-AS1 can inhibit cellular senescence. We provided the first comprehensive analysis of lncRNA expression in longevous populations, and our results hinted that dysregulated lncRNAs in CENs are potential protective factors in healthy aging process.
Collapse
Affiliation(s)
- Jianjun Jiang
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lehua Cheng
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming Key Laboratory of Healthy Aging Study, Chinese Academy of Sciences, Kunming, 650223, China
| | - Liang Yan
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mingxia Ge
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming Key Laboratory of Healthy Aging Study, Chinese Academy of Sciences, Kunming, 650223, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liqin Yang
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming Key Laboratory of Healthy Aging Study, Chinese Academy of Sciences, Kunming, 650223, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, 650223, China
| | - Haoqiang Ying
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qingpeng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming Key Laboratory of Healthy Aging Study, Chinese Academy of Sciences, Kunming, 650223, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|