1
|
Xie Y, Wang R, McClatchy DB, Ma Y, Diedrich J, Sanchez-Alavez M, Petrascheck M, Yates JR, Cline HT. Activity-dependent synthesis of Emerin gates neuronal plasticity by regulating proteostasis. Cell Rep 2025; 44:115439. [PMID: 40208794 DOI: 10.1016/j.celrep.2025.115439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/26/2024] [Accepted: 02/26/2025] [Indexed: 04/12/2025] Open
Abstract
Neurons dynamically regulate their proteome in response to sensory input, a key process underlying experience-dependent plasticity. We characterized the visual experience-dependent nascent proteome in mice within a brief, defined time window after stimulation using an optimized metabolic labeling approach. Visual experience induced cell-type-specific and age-dependent alterations in the nascent proteome, including proteostasis-related proteins. Emerin is the top activity-induced candidate plasticity protein. Activity-induced neuronal Emerin synthesis is rapid and transcription independent. Emerin broadly inhibits protein synthesis, decreasing translation regulators and synaptic proteins. Decreasing Emerin shifted the dendritic spine population from a predominantly mushroom morphology to filopodia and decreased network connectivity. Blocking visual experience-induced Emerin reduced visually evoked electrophysiological responses and impaired behaviorally assessed visual information processing. Our findings support a proteostatic model in which visual experience-induced Emerin provides a feedforward block on further protein synthesis, refining temporal control of activity-induced plasticity proteins and optimizing visual system function.
Collapse
Affiliation(s)
- Yi Xie
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Graduate Program, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ruoxi Wang
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel B McClatchy
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yuanhui Ma
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jolene Diedrich
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Manuel Sanchez-Alavez
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael Petrascheck
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hollis T Cline
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Puangmalai N, Aday AE, Samples M, Bhatt N, Cascio FL, Marcatti M, Park SJ, Fung L, Jerez C, Penalva LO, Zhao Y, Hao H, Lugano D, Kayed R, Montalbano M. Pathogenic oligomeric Tau alters neuronal RNA processes through the formation of nuclear heteromeric amyloids with RNA-binding protein Musashi1. Prog Neurobiol 2025; 247:102742. [PMID: 40064283 PMCID: PMC11984483 DOI: 10.1016/j.pneurobio.2025.102742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
Alzheimer's disease (AD) is marked by cytoplasmic proteinopathies, primarily involving misfolded Tau protein. Pathogenic Tau species, such as soluble oligomers and fibrils, disrupt RNA metabolism, though the mechanisms are unclear. Recent research indicates that RNA has a crucial role in Tau aggregation. Our study builds on this by noting significant co-deposition of RNA-Binding Proteins (RBPs) with Tau in AD and Frontotemporal dementia (FTLD) brains. Using molecular and cellular techniques, we investigate the interaction between RNA dynamics and Tau aggregation, focusing on the localization and aggregation of Tau and RBPs, particularly Musashi (MSI), within neuronal nuclei. Through cyto-fluorometric, biochemical, and cellular assays, we reveal the importance of Tau/RBP interplay in primary cortical neurons expressing wild-type and mutant Tau. Pathogenic Tau oligomers alter MSI protein localization and function, causing cytoplasmic and nuclear aggregation. Mass spectrometry of the MSI1 nuclear interactome in Tau models shows disrupted RNA metabolism pathways, including ribosomal biogenesis, RNA splicing, and protein folding. Moreover, RNA immunoprecipitation assay revealed a remarkable impact of mutant P301L Tau on MSI1 ability to bind RNA targets. These findings highlight potential targets for early neurodegenerative therapeutic interventions.
Collapse
Affiliation(s)
- Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; Departments of Neurology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Abbigael E Aday
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; Departments of Neurology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Madison Samples
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; Departments of Neurology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; Departments of Neurology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Filippa Lo Cascio
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; Departments of Neurology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Michela Marcatti
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; Departments of Neurology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Suhyeorn J Park
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; Departments of Neurology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Leiana Fung
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; Departments of Neurology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Cynthia Jerez
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; Departments of Neurology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Luiz O Penalva
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA; Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA.
| | - Yingxin Zhao
- Department of Internal Medicine, The University of Texas Medical Branch, 301 University Blvd, Galveston TX 77555, USA.
| | - Haiping Hao
- Director, UTMB Next Gen Sequencing Core, Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA.
| | - Doreen Lugano
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi Kenya.
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; Departments of Neurology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; Departments of Neurology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| |
Collapse
|
3
|
Bruel AL, Vulto-vanSilfhout AT, Bilan F, Le Guyader G, Gilbert-Dussardier B, Le Guillou X, Rondeau S, Rio M, Lee KN, Beil A, Suri M, Guerin F, Ruault V, Goldenberg A, Lecoquierre F, Bertsch N, Anderson R, Yang XR, Inness M, Rikeros-Orozco E, Palomares-Bralo M, Hayek JC, Cech J, Jhuraney A, Kumar RD, Mercimek-Andrews S, Ambrose A, Wakeling EN, Wentzensen IM, Torti E, Gooch C, Faivre L, Philippe C, Duffourd Y, Vitobello A, Thauvin-Robinet C. Heterozygous CELF4 variants in the N-term region crucial for the RNA-binding activity lead to neurodevelopmental disorder and obesity. Eur J Hum Genet 2025:10.1038/s41431-025-01809-w. [PMID: 40108438 DOI: 10.1038/s41431-025-01809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/25/2024] [Accepted: 01/30/2025] [Indexed: 03/22/2025] Open
Abstract
RNA-binding proteins play a key role in post-transcriptional events, such as mRNA splicing, transport, stability, translation and decay. Dysregulation of RNA life can have dramatic consequences. CELF RNA-binding proteins appear to be essential during embryo development. In this study, we identified 15 patients with heterozygous missense or loss-of-function variants in the CELF4 gene by exome or genome sequencing. All variants affecting the N-terminus of the protein are essential and sufficient for the RNA-binding and splicing activity or RRM domains. Most patients presented with neurodevelopmental disorders including global developmental delay/intellectual disability (11/14), seizures (9/15) and overweight/obesity (10/14) that began in childhood. Clinical features are similar to the reported celf4-mouse mutant phenotype. This study highlights the essential role of CELF4 in development and its involvement as a novel etiology of neurodevelopmental disorders with obesity.
Collapse
Affiliation(s)
- Ange-Line Bruel
- INSERM UMR 1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, Dijon, France.
- Laboratoire de Génomique Médicale, CHU Dijon-Bourgogne, Dijon, France.
- FHU-TRANSLAD, Fédération Hospitalo-Universitaire Médecine Transrationnelle et Anomalies du Développement, CHU Dijon-Bourgogne, Dijon, France.
| | | | - Frédéric Bilan
- Department of Genetics, CHU de Poitiers, Poitiers, France
- Department of Experimental and Clinical Neurosciences, INSERM U1084, Université de Poitiers, Poitiers, France
| | | | | | | | - Sophie Rondeau
- Department of Genetics, Necker Enfants Malades Hospital, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Marlène Rio
- Department of Genetics, Necker Enfants Malades Hospital, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Kristen N Lee
- Department of Pediatrics, Division of Pediatric Genetics, Metabolism and Genomic Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Adelyn Beil
- Department of Pediatrics, Division of Pediatric Genetics, Metabolism and Genomic Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mohnish Suri
- Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - François Guerin
- Service de Pédiatrie, CH de La Rochelle, La Rochelle, France
| | - Valentin Ruault
- Medical Genetics and Rare Diseases Department, Montpellier University Hospital, Montpellier, France
| | - Alice Goldenberg
- Department of Genetics and Reference Center for Developmental Disorders, Rouen Normandie University, Inserm U12045 and CHU Rouen, FHU-G4 Génomique, Rouen, France
| | - François Lecoquierre
- Department of Genetics and Reference Center for Developmental Disorders, Rouen Normandie University, Inserm U12045 and CHU Rouen, FHU-G4 Génomique, Rouen, France
| | - Nicole Bertsch
- The Community Health Clinic Shipshewana, Shipshewana, IN, USA
| | - Rhonda Anderson
- The Community Health Clinic Shipshewana, Shipshewana, IN, USA
| | - Xiao-Ru Yang
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Micheil Inness
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Emi Rikeros-Orozco
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, Madrid, Spain
| | - Maria Palomares-Bralo
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- ITHACA-European Reference Network, Madrid, Spain
| | - Jennifer Cassady Hayek
- Seattle Children's Hospital, Seattle, WA, USA
- University of Washington Medical Center, Seattle, WA, USA
| | | | - Ankita Jhuraney
- University of Washington Medical Center, Seattle, WA, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Runjun D Kumar
- University of Washington Medical Center, Seattle, WA, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Saadet Mercimek-Andrews
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Anastasia Ambrose
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | | | | | - Catherine Gooch
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Laurence Faivre
- INSERM UMR 1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, Dijon, France
- FHU-TRANSLAD, Fédération Hospitalo-Universitaire Médecine Transrationnelle et Anomalies du Développement, CHU Dijon-Bourgogne, Dijon, France
- Centre de Génétique, Hôpital d'Enfants, CHU Dijon-Bourgogne, Dijon, France
| | - Christophe Philippe
- INSERM UMR 1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, Dijon, France
- Laboratoire de Génomique Médicale, CHU Dijon-Bourgogne, Dijon, France
- FHU-TRANSLAD, Fédération Hospitalo-Universitaire Médecine Transrationnelle et Anomalies du Développement, CHU Dijon-Bourgogne, Dijon, France
| | - Yannis Duffourd
- INSERM UMR 1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, Dijon, France
- Laboratoire de Génomique Médicale, CHU Dijon-Bourgogne, Dijon, France
- FHU-TRANSLAD, Fédération Hospitalo-Universitaire Médecine Transrationnelle et Anomalies du Développement, CHU Dijon-Bourgogne, Dijon, France
| | - Antonio Vitobello
- INSERM UMR 1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, Dijon, France
- Laboratoire de Génomique Médicale, CHU Dijon-Bourgogne, Dijon, France
- FHU-TRANSLAD, Fédération Hospitalo-Universitaire Médecine Transrationnelle et Anomalies du Développement, CHU Dijon-Bourgogne, Dijon, France
| | - Christel Thauvin-Robinet
- INSERM UMR 1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, Dijon, France
- Laboratoire de Génomique Médicale, CHU Dijon-Bourgogne, Dijon, France
- FHU-TRANSLAD, Fédération Hospitalo-Universitaire Médecine Transrationnelle et Anomalies du Développement, CHU Dijon-Bourgogne, Dijon, France
- Centre de Génétique, Hôpital d'Enfants, CHU Dijon-Bourgogne, Dijon, France
| |
Collapse
|
4
|
Vidal Ceballos A, Geissmann A, Favaro DC, Deshpande P, Elbaum-Garfinkle S. RNA guanine content and G-quadruplex structure tune the phase behavior and material properties of biomolecular condensates. Sci Rep 2025; 15:9295. [PMID: 40102453 PMCID: PMC11920403 DOI: 10.1038/s41598-025-88499-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/28/2025] [Indexed: 03/20/2025] Open
Abstract
RNA binding proteins (RBPs) are enriched in phase separated biomolecular assemblies across cell types. These RBPs often harbor arginine-glycine rich RGG motifs, which can drive phase separation, and can preferentially interact with RNA G-quadruplex (G4) structures, particularly in the neuron. Increasing evidence underscores the important role that RNA sequence and structure play in contributing to the form and function of protein condensates, however, less is known about the role of G4 RNAs and their interaction with RGG domains specifically. In this study we focused on the model protein, Fragile X mental retardation protein (FMRP), to investigate how G4-containing RNA sequences impact the phase behavior and material properties of condensates. FMRP is implicated in the development of Fragile X Syndrome, and is enriched in neuronal granules where it is thought to aid in mRNA trafficking and translational control. Here, we examined RNA sequences with increasing G content and G4 propensity in complex with the RGG-containing low complexity region (LCR) of FMRP. We found, that while increasing G content triggers aggregation of poly-arginine, all RNA sequences supported phase separation into liquid droplets with FMRP-LCR. Combining microrheology, and fluorescence recovery after photobleaching, we measured a moderate increase in viscosity and decrease in dynamics for increasing G-content, and detected no measurable increase in elasticity as a function of G4 structure. Additionally, we found that while methylation of FMRP decreased RNA binding affinity, this modification did not impact condensate material properties suggesting that RNA sequence/structure can play a greater role than binding affinity in determining the emergent properties of condensates. Together, this work lends much needed insight into the ways in which G-rich RNA sequences tune the assembly, dynamics and material properties of protein/RNA condensates and/or granules.
Collapse
Affiliation(s)
- Alfredo Vidal Ceballos
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY, USA
| | - Anna Geissmann
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY, USA
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Denize C Favaro
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY, USA
| | - Priyasha Deshpande
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY, USA
- Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Shana Elbaum-Garfinkle
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY, USA.
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA.
- Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA.
- Ph.D. Program in Biology, Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
5
|
Lancaster CL, Moberg KH, Corbett AH. Post-Transcriptional Regulation of Gene Expression and the Intricate Life of Eukaryotic mRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70007. [PMID: 40059537 PMCID: PMC11949413 DOI: 10.1002/wrna.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025]
Abstract
In recent years, there has been a growing appreciation for how regulatory events that occur either co- or post-transcriptionally contribute to the control of gene expression. Messenger RNAs (mRNAs) are extensively regulated throughout their metabolism in a precise spatiotemporal manner that requires sophisticated molecular mechanisms for cell-type-specific gene expression, which dictates cell function. Moreover, dysfunction at any of these steps can result in a variety of human diseases, including cancers, muscular atrophies, and neurological diseases. This review summarizes the steps of the central dogma of molecular biology, focusing on the post-transcriptional regulation of gene expression.
Collapse
Affiliation(s)
- Carly L. Lancaster
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia, USA
- Department of Cell Biology Emory University School of Medicine, Atlanta, Georgia, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University Atlanta, Georgia, USA
| | - Kenneth H. Moberg
- Department of Cell Biology Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anita H. Corbett
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Martinez‐Salas E, Abellan S, Francisco‐Velilla R. Understanding GEMIN5 Interactions: From Structural and Functional Insights to Selective Translation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70008. [PMID: 40176294 PMCID: PMC11965781 DOI: 10.1002/wrna.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 04/04/2025]
Abstract
GEMIN5 is a predominantly cytoplasmic protein, initially identified as a member of the survival of motor neurons (SMN) complex. In addition, this abundant protein modulates diverse aspects of RNA-dependent processes, executing its functions through the formation of multi-component complexes. The modular organization of structural domains present in GEMIN5 enables this protein to perform various functions through its interaction with distinct partners. The protein is responsible for the recognition of small nuclear (sn)RNAs through its N-terminal region, and therefore for snRNP assembly. Beyond its role in spliceosome assembly, GEMIN5 regulates translation through the interaction with either RNAs or proteins. In the central region, a robust dimerization domain acts as a hub for protein-protein interaction, while a non-canonical RNA-binding site is located towards the C-terminus. Interestingly, GEMIN5 regulates the partitioning of mRNAs into polysomes, likely due to its RNA-binding capacity and its ability to bind native ribosomes. Understanding the functional and structural organization of the protein has brought an increasing interest in the last years with important implications in human disease. Patients carrying GEMIN5 biallelic variants suffer from neurodevelopmental delay, hypotonia, and cerebellar ataxia. This review discusses recent relevant works aimed at understanding the molecular mechanisms of GEMIN5 activity in gene expression, and also the challenges to discover new functions.
Collapse
|
7
|
Chatterjee S, Maity A, Bahadur RP. Conformational switches in human RNA binding proteins involved in neurodegeneration. Biochim Biophys Acta Gen Subj 2025; 1869:130760. [PMID: 39798673 DOI: 10.1016/j.bbagen.2025.130760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/03/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Conformational switching in RNA binding proteins (RBPs) is crucial for regulation of RNA processing and transport. Dysregulation or mutations in RBPs and broad RNA processing abnormalities are related to many human diseases including neurodegenerative disorders. Here, we review the role of protein-RNA conformational switches in RBP-RNA complexes. RBP-RNA complexes exhibit wide range of conformational switching depending on the RNA molecule and its ability to induce conformational changes in its partner RBP. We categorize the conformational switches into three groups: rigid body, semi-flexible and full flexible. We also investigate conformational switches in large cellular assemblies including ribosome, spliceosome and RISC complexes. In addition, the role of intrinsic disorder in RBP-RNA conformational switches is discussed. We have also discussed the effect of different disease-causing mutations on conformational switching of proteins associated with neurodegenerative diseases. We believe that this study will enhance our understanding on the role of protein-RNA conformational switches. Furthermore, the availability of a large number of atomic structures of RBP-RNA complexes in near future would facilitate to create a complete repertoire of human RBP-RNA conformational switches.
Collapse
Affiliation(s)
- Sonali Chatterjee
- Computational Structural Biology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Atanu Maity
- Bioinformatics Centre, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ranjit Prasad Bahadur
- Computational Structural Biology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Bioinformatics Centre, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
8
|
Breunig K, Lei X, Montalbano M, Guardia GDA, Ostadrahimi S, Alers V, Kosti A, Chiou J, Klein N, Vinarov C, Wang L, Li M, Song W, Kraus WL, Libich DS, Tiziani S, Weintraub ST, Galante PAF, Penalva LO. SERBP1 interacts with PARP1 and is present in PARylation-dependent protein complexes regulating splicing, cell division, and ribosome biogenesis. eLife 2025; 13:RP98152. [PMID: 39937575 DOI: 10.7554/elife.98152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. Serpine1 mRNA-binding protein 1 (SERBP1) is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. We defined SERBP1's interactome, uncovered novel roles in splicing, cell division and ribosomal biogenesis, and showed its participation in pathological stress granules and Tau aggregates in Alzheimer's brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.
Collapse
Affiliation(s)
- Kira Breunig
- Children's Cancer Research Institute, UT Health San Antonio, San Antonio, United States
| | - Xuifen Lei
- Children's Cancer Research Institute, UT Health San Antonio, San Antonio, United States
| | - Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, United States
- Department of Neurology, University of Texas Medical Branch, Galveston, United States
| | | | - Shiva Ostadrahimi
- Children's Cancer Research Institute, UT Health San Antonio, San Antonio, United States
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, United States
| | - Victoria Alers
- Children's Cancer Research Institute, UT Health San Antonio, San Antonio, United States
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, United States
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, United States
| | - Adam Kosti
- Children's Cancer Research Institute, UT Health San Antonio, San Antonio, United States
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, United States
| | - Jennifer Chiou
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, Austin, United States
| | - Nicole Klein
- Children's Cancer Research Institute, UT Health San Antonio, San Antonio, United States
| | - Corina Vinarov
- Children's Cancer Research Institute, UT Health San Antonio, San Antonio, United States
| | - Lily Wang
- Children's Cancer Research Institute, UT Health San Antonio, San Antonio, United States
| | - Mujia Li
- Children's Cancer Research Institute, UT Health San Antonio, San Antonio, United States
| | - Weidan Song
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences,The University of Texas Southwestern Medical Center, Dallas, United States
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences,The University of Texas Southwestern Medical Center, Dallas, United States
| | - David S Libich
- Children's Cancer Research Institute, UT Health San Antonio, San Antonio, United States
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, United States
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, Austin, United States
- Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, United States
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, United States
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, United States
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Luiz O Penalva
- Children's Cancer Research Institute, UT Health San Antonio, San Antonio, United States
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, United States
| |
Collapse
|
9
|
Doherty CA, Tijjani A, Munger SC, Laird DJ. Mammalian oocytes receive maternal-effect RNAs from granulosa cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637575. [PMID: 39990310 PMCID: PMC11844425 DOI: 10.1101/2025.02.10.637575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
It is currently thought that growing mammalian oocytes receive only small molecules via gap junctions from surrounding support cells, the granulosa cells. From the study of chimeric preantral oocyte and granulosa cell reaggregations, we provide evidence that growing mouse oocytes receive mRNAs from granulosa cells. Among the >1,000 granulosa-transcribed RNAs we identified in the oocyte, those that contribute to proper oocyte maturation and early embryo development were highly enriched. Predicted motifs for two RNA-binding proteins that function in RNA trafficking, FMRP and TDP43, were abundant in the UTRs of the granulosa-derived transcripts. Immunostaining demonstrated that both FMRP and TDP43 co-localize with the actin-rich granulosa cell protrusions that span the zone pellucida and connect to the oocyte, suggesting their role in importing mRNAs. Our results offer the possibility that oocyte failure may not always reflect an intrinsic oocyte deficiency but could arise from insufficient supply of maternal transcripts by granulosa cells during oocyte growth.
Collapse
Affiliation(s)
- Caroline A. Doherty
- Department of Obstetrics, Gynecology and Reproductive Medicine; San Francisco, CA, 94143
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; San Francisco, CA 94143
| | | | - Steven C. Munger
- The Jackson Laboratory; Bar Harbor, ME, 04609, USA
- Graduate School of Biomedical Sciences, Tufts University; Boston, MA 02111, USA
| | - Diana J. Laird
- Department of Obstetrics, Gynecology and Reproductive Medicine; San Francisco, CA, 94143
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; San Francisco, CA 94143
| |
Collapse
|
10
|
Dunbar EK, Greer PJ, Saloman JL, Albers KM, Yadav D, Whitcomb DC. Genetics of constant and severe pain in the NAPS2 cohort of recurrent acute and chronic pancreatitis patients. THE JOURNAL OF PAIN 2025; 27:104754. [PMID: 39674387 DOI: 10.1016/j.jpain.2024.104754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/08/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Recurrent acute and chronic pancreatitis (RAP, CP) are complex, progressive inflammatory diseases with variable pain experiences impacting patient function and quality of life. The genetic variants and pain pathways in patients contributing to most severe pain experiences are unknown. We used previously genotyped individuals with RAP/CP from the North American Pancreatitis Study II (NAPS2) of European Ancestry for nested genome-wide associated study (GWAS) for pain-severity, chronicity, or both. Lead variants from GWAS were determined using FUMA. Loci with p<1e-5 were identified for post-hoc candidate identification. Transcriptome-wide association studies (TWAS) identified loci in cis and trans to the lead variants. Serum from phenotyped individuals with CP from the PROspective Evaluation of Chronic Pancreatitis for EpidEmiologic and Translational StuDies (PROCEED) was assessed for BDNF levels using Meso Scale Discovery Immunoassay. We identified four pain systems defined by candidate genes: 1) Pancreas-associated injury/stress mitigation genes include: REG gene cluster, CTRC, NEURL3 and HSF22. 2) Neural development and axon guidance tracing genes include: SNPO, RGMA, MAML1 and DOK6 (part of the RET complex). 3) Genes linked to psychiatric stress disorders include TMEM65, RBFOX1, and ZNF385D. 4) Genes in the dorsal horn pain-modulating BDNF/neuropathic pathway included SYNPR, NTF3 and RBFOX1. In an independent cohort BDNF was significantly elevated in patients with constant-severe pain. Extension and expansion of this exploratory study may identify pathway- and mechanism-dependent targets for individualized pain treatments in CP patients. PERSPECTIVE: Pain is the most distressing and debilitating feature of chronic pancreatitis. Yet many patients with chronic pancreatitis have little or no pain. The North American Pancreatitis Study II (NAPS2) includes over 1250 pancreatitis patients of all progressive stages with all clinical and phenotypic characteristics carefully recorded. Pain did not correlate well with disease stage, inflammation, fibrosis or other features. Here we spit the patients into groups with the most severe pain and/or chronic pain syndromes and compared them genetically with patients reporting mild or minimal pain. Although some genetic variants associated with pain were expressed in cells (1) of the pancreas, most genetic variants were linked to genes expressed in the nervous system cells associated with (2) neural development and axon guidance (as needed for the descending inhibition pathway), (3) psychiatric stress disorders, and (4) cells regulating sensory nerves associated with BDNF and neuropathic pain. Similar and overlapping genetic variants in systems 2 -4 are also seen in pain syndromes form other organs. The implications for treating pancreatic pain are great in that we can no longer focus on just the pancreas. Furthermore, new treatments designed for pain disorders in other tissues may be effective in some patient with pain syndromes from the pancreas. Further research is needed to replicate and extend these observations so that new, genetics-guided rational treatments can be developed and delivered.
Collapse
Affiliation(s)
- Ellyn K Dunbar
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Phil J Greer
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jami L Saloman
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kathryn M Albers
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dhiraj Yadav
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David C Whitcomb
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA; Department of Cell Biology & Molecular Physiology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Chen L, Guo X, Zhang L, Li Y, Zhou L, Zhao J, Luo Y, Hu Y, Chen X, Kang X, Fang X, Feng Z. Upregulation of FMRP Is Involved in Neuropathic Pain by Regulating GluN2B Activation in Rat Spinal Cord. J Neurochem 2025; 169:e70022. [PMID: 39989404 DOI: 10.1111/jnc.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
Fragile X mental retardation protein (FMRP) has been proposed to play a potential role in the pathogenesis of autonomy and nociceptive paresthesia. However, the involvement of spinal FMRP in neuropathic pain remains unexplored. Using a rat model of neuropathic pain induced by chronic constriction injury (CCI), our investigation demonstrated an upregulation of FMRP at 3, 7, and 14 days post-CCI operation in the spinal dorsal horn (SDH). Immunofluorescence staining revealed predominant FMRP expression in spinal neurons, which colocalized with Glutamate Ionotropic Receptor NMDA Type Subunit 2B (GluN2B). The Co-immunoprecipitation results suggested an interaction between spinal FMRP and GluN2B. Genetic knockout of the Fmr1 gene or transient interference with the FMRP protein alleviated CCI-induced pain hypersensitivity and suppressed the increase in spinal GluN2B expression. Conversely, intrathecal administration of the GluN2B-specific inhibitor Ifenprodil significantly suppressed the CCI-induced increase in spinal FMRP expression. In conclusion, our findings highlight the pivotal role of spinal FMRP in developing neuropathic pain and modulating GluN2B levels within the SDH. Furthermore, our results suggest a reciprocal regulatory relationship, indicating that GluN2B may also influence FMRP expression. This study provides insights into the molecular mechanisms underlying neuropathic pain, suggesting the potential for therapeutic intervention targeting the FMRP-GluN2B axis in pain management.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pain Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Department of Anesthesiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Xuejiao Guo
- Department of Pain Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Long Zhang
- Department of Pain Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Department of Anesthesiology, Ningbo no. 6 Hospital, Zhejiang, Ningbo, China
| | - Yunze Li
- Department of Pain Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Li Zhou
- Department of Pain Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Department of Anesthesiology, Ningbo no. 6 Hospital, Zhejiang, Ningbo, China
| | - Jinsong Zhao
- Department of Pain Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Department of Anesthesiology, Ningbo no. 6 Hospital, Zhejiang, Ningbo, China
| | - Yujia Luo
- Department of Pain Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Yanling Hu
- Department of Pain Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Xiaowei Chen
- Ningbo University School of Medicine, Zhejiang, Ningbo, China
| | - Xianhui Kang
- Department of Anesthesiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiying Feng
- Department of Pain Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| |
Collapse
|
12
|
Mosti F, Hoye ML, Escobar-Tomlienovich CF, Silver DL. Multi-modal investigation reveals pathogenic features of diverse DDX3X missense mutations. PLoS Genet 2025; 21:e1011555. [PMID: 39836689 PMCID: PMC11771946 DOI: 10.1371/journal.pgen.1011555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/27/2025] [Accepted: 12/27/2024] [Indexed: 01/23/2025] Open
Abstract
De novo mutations in the RNA binding protein DDX3X cause neurodevelopmental disorders including DDX3X syndrome and autism spectrum disorder. Amongst ~200 mutations identified to date, half are missense. While DDX3X loss of function is known to impair neural cell fate, how the landscape of missense mutations impacts neurodevelopment is almost entirely unknown. Here, we integrate transcriptomics, proteomics, and live imaging to demonstrate clinically diverse DDX3X missense mutations perturb neural development via distinct cellular and molecular mechanisms. Using mouse primary neural progenitors, we investigate four recurrently mutated DDX3X missense variants, spanning clinically severe (2) to mild (2). While clinically severe mutations impair neurogenesis, mild mutations have only a modest impact on cell fate. Moreover, expression of severe mutations leads to profound neuronal death. Using a proximity labeling screen in neural progenitors, we discover DDX3X missense variants have unique protein interactors. We observe notable overlap amongst severe mutations, suggesting common mechanisms underlying altered cell fate and survival. Transcriptomic analysis and subsequent cellular investigation highlights new pathways associated with DDX3X missense variants, including upregulated DNA Damage Response. Notably, clinically severe mutations exhibit excessive DNA damage in neurons, associated with increased cytoplasmic DNA:RNA hybrids and formation of stress granules. These findings highlight aberrant RNA metabolism and DNA damage in DDX3X-mediated neuronal cell death. In sum our findings reveal new mechanisms by which clinically distinct DDX3X missense mutations differentially impair neurodevelopment.
Collapse
Affiliation(s)
- Federica Mosti
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Mariah L. Hoye
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Carla F. Escobar-Tomlienovich
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Debra L. Silver
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Institute for Brain Sciences and Duke Regeneration Center, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
13
|
Kuldell JC, Kaplan CD. RNA Polymerase II Activity Control of Gene Expression and Involvement in Disease. J Mol Biol 2025; 437:168770. [PMID: 39214283 PMCID: PMC11781076 DOI: 10.1016/j.jmb.2024.168770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Gene expression is dependent on RNA Polymerase II (Pol II) activity in eukaryotes. In addition to determining the rate of RNA synthesis for all protein coding genes, Pol II serves as a platform for the recruitment of factors and regulation of co-transcriptional events, from RNA processing to chromatin modification and remodeling. The transcriptome can be shaped by changes in Pol II kinetics affecting RNA synthesis itself or because of alterations to co-transcriptional events that are responsive to or coupled with transcription. Genetic, biochemical, and structural approaches to Pol II in model organisms have revealed critical insights into how Pol II works and the types of factors that regulate it. The complexity of Pol II regulation generally increases with organismal complexity. In this review, we describe fundamental aspects of how Pol II activity can shape gene expression, discuss recent advances in how Pol II elongation is regulated on genes, and how altered Pol II function is linked to human disease and aging.
Collapse
Affiliation(s)
- James C Kuldell
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States
| | - Craig D Kaplan
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States.
| |
Collapse
|
14
|
Borrego-Ruiz A, Borrego JJ. Epigenetic Mechanisms in Aging: Extrinsic Factors and Gut Microbiome. Genes (Basel) 2024; 15:1599. [PMID: 39766866 PMCID: PMC11675900 DOI: 10.3390/genes15121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Aging is a natural physiological process involving biological and genetic pathways. Growing evidence suggests that alterations in the epigenome during aging result in transcriptional changes, which play a significant role in the onset of age-related diseases, including cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. For this reason, the epigenetic alterations in aging and age-related diseases have been reviewed, and the major extrinsic factors influencing these epigenetic alterations have been identified. In addition, the role of the gut microbiome and its metabolites as epigenetic modifiers has been addressed. RESULTS Long-term exposure to extrinsic factors such as air pollution, diet, drug use, environmental chemicals, microbial infections, physical activity, radiation, and stress provoke epigenetic changes in the host through several endocrine and immune pathways, potentially accelerating the aging process. Diverse studies have reported that the gut microbiome plays a critical role in regulating brain cell functions through DNA methylation and histone modifications. The interaction between genes and the gut microbiome serves as a source of adaptive variation, contributing to phenotypic plasticity. However, the molecular mechanisms and signaling pathways driving this process are still not fully understood. CONCLUSIONS Extrinsic factors are potential inducers of epigenetic alterations, which may have important implications for longevity. The gut microbiome serves as an epigenetic effector influencing host gene expression through histone and DNA modifications, while bidirectional interactions with the host and the underexplored roles of microbial metabolites and non-bacterial microorganisms such as fungi and viruses highlight the need for further research.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
15
|
Zou Y, Gao B, Lu J, Zhang K, Zhai M, Yuan Z, Aschner M, Chen J, Luo W, Wang L, Zhang J. Long non-coding RNA CASC15 enhances learning and memory in mice by promoting synaptic plasticity in hippocampal neurons. EXPLORATION (BEIJING, CHINA) 2024; 4:20230154. [PMID: 39713210 PMCID: PMC11655312 DOI: 10.1002/exp.20230154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/01/2024] [Indexed: 12/24/2024]
Abstract
Alzheimer's disease (AD) is a debilitating systemic disorder that has a detrimental impact on the overall well-being of individuals. Emerging research suggests that long non-coding RNAs play a role in neural development and function. Nevertheless, the precise relationship between lncRNAs and Alzheimer's disease remains uncertain. The authors' recent discoveries have uncovered an unconventional mechanism involving the regulation of synaptic plasticity and the functioning of the hippocampal fragile X mental retardation protein 1 (FMR1)-neurotrophin 3 (NTF3) pathway, which is mediated by cancer susceptibility candidate 15 (CASC15). Subsequently, functional rescue experiments were performed to illustrate the efficient delivery of exosomes harboring a significant amount of 2610307p16Rik transcripts, which is the murine equivalent of human CASC15, to the hippocampal region of mice. This resulted in significant improvements in synaptic morphological plasticity and cognitive function in APP/PS1 mice. Given the pivotal involvement of CASC15 in synaptic plasticity and the distinctive regulatory mechanisms of the CASC15-FMR1-NTF3 axis, CASC15 emerges as a promising biomarker for Alzheimer's disease and may even possess potential as a feasible therapeutic target.
Collapse
Affiliation(s)
- Yuankang Zou
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Bo Gao
- Institute of Orthopaedic SurgeryXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Jiaqiao Lu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Keying Zhang
- Department of UrologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Maodeng Zhai
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Ziyan Yuan
- Institute of Medical Information and LibraryChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Michael Aschner
- Department of Molecular PharmacologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Jingyuan Chen
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Wenjing Luo
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Lei Wang
- Department of Medical Research Center, Clinical Medical CollegeYangzhou UniversityYangzhouChina
| | - Jianbin Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| |
Collapse
|
16
|
Roy PR, Link N. Loss of neuronal Imp induces seizure behavior through Syndecan function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624719. [PMID: 39605343 PMCID: PMC11601543 DOI: 10.1101/2024.11.21.624719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Seizures affect a large proportion of the global population and occur due to abnormal neuronal activity in the brain. Unfortunately, widespread genetic and phenotypic heterogeneity contribute to insufficient treatment options. It is critical to identify the genetic underpinnings of how seizures occur to better understand seizure disorders and improve therapeutic development. We used the Drosophila model to identify that IGF-II mRNA Binding Protein (Imp) is linked to the onset of this phenotype. Specific reduction of Imp in neurons causes seizures after mechanical stimulation. Importantly, gross motor behavior is unaffected, showing Imp loss does not affect general neuronal activity. Developmental loss of Imp is sufficient to cause seizures in adults, thus Imp-modulated neuron development affects mature neuronal function. Since Imp is an RNA-binding protein, we sought to identify the mRNA target that Imp regulates in neurons to ensure proper neuronal activity after mechanical stress. We find that Imp protein binds Syndecan ( Sdc ) mRNA, and reduction of Sdc also causes mechanically-induced seizures. Expression of Sdc in Imp deficient neurons rescues seizure defects, showing that Sdc is sufficient to restore normal behavior after mechanical stress. We suggest that Imp protein binds Sdc mRNA in neurons, and this functional interaction is important for normal neuronal biology and animal behavior in a mechanically-induced seizure model. Since Imp and Sdc are conserved, our work highlights a neuronal specific pathway that might contribute to seizure disorder when mutated in humans.
Collapse
|
17
|
Hashmi MATS, Fatima H, Ahmad S, Rehman A, Safdar F. The interplay between epitranscriptomic RNA modifications and neurodegenerative disorders: Mechanistic insights and potential therapeutic strategies. IBRAIN 2024; 10:395-426. [PMID: 39691424 PMCID: PMC11649393 DOI: 10.1002/ibra.12183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 12/19/2024]
Abstract
Neurodegenerative disorders encompass a group of age-related conditions characterized by the gradual decline in both the structure and functionality of the central nervous system (CNS). RNA modifications, arising from the epitranscriptome or RNA-modifying protein mutations, have recently been observed to contribute significantly to neurodegenerative disorders. Specific modifications like N6-methyladenine (m6A), N1-methyladenine (m1A), 5-methylcytosine (m5C), pseudouridine and adenosine-to-inosine (A-to-I) play key roles, with their regulators serving as crucial therapeutic targets. These epitranscriptomic changes intricately control gene expression, influencing cellular functions and contributing to disease pathology. Dysregulation of RNA metabolism, affecting mRNA processing and noncoding RNA biogenesis, is a central factor in these diseases. This review underscores the complex relationship between RNA modifications and neurodegenerative disorders, emphasizing the influence of RNA modification and the epitranscriptome, exploring the function of RNA modification enzymes in neurodegenerative processes, investigating the functional consequences of RNA modifications within neurodegenerative pathways, and evaluating the potential therapeutic advancements derived from assessing the epitranscriptome.
Collapse
Affiliation(s)
| | | | - Sadia Ahmad
- Institute of ZoologyUniversity of PunjabLahorePakistan
| | - Amna Rehman
- Institute of ZoologyUniversity of PunjabLahorePakistan
| | - Fiza Safdar
- Department of BiochemistryUniversity of NarowalNarowalPakistan
| |
Collapse
|
18
|
Qiao L, Welch CL, Hernan R, Wynn J, Krishnan US, Zalieckas JM, Buchmiller T, Khlevner J, De A, Farkouh-Karoleski C, Wagner AJ, Heydweiller A, Mueller AC, de Klein A, Warner BW, Maj C, Chung D, McCulley DJ, Schindel D, Potoka D, Fialkowski E, Schulz F, Kipfmuller F, Lim FY, Magielsen F, Mychaliska GB, Aspelund G, Reutter HM, Needelman H, Schnater JM, Fisher JC, Azarow K, Elfiky M, Nöthen MM, Danko ME, Li M, Kosiński P, Wijnen RMH, Cusick RA, Soffer SZ, Cochius-Den Otter SCM, Schaible T, Crombleholme T, Duron VP, Donahoe PK, Sun X, High FA, Bendixen C, Brosens E, Shen Y, Chung WK. Common variants increase risk for congenital diaphragmatic hernia within the context of de novo variants. Am J Hum Genet 2024; 111:2362-2381. [PMID: 39332409 PMCID: PMC11568762 DOI: 10.1016/j.ajhg.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/29/2024] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a severe congenital anomaly often accompanied by other structural anomalies and/or neurobehavioral manifestations. Rare de novo protein-coding variants and copy-number variations contribute to CDH in the population. However, most individuals with CDH remain genetically undiagnosed. Here, we perform integrated de novo and common-variant analyses using 1,469 CDH individuals, including 1,064 child-parent trios and 6,133 ancestry-matched, unaffected controls for the genome-wide association study. We identify candidate CDH variants in 15 genes, including eight novel genes, through deleterious de novo variants. We further identify two genomic loci contributing to CDH risk through common variants with similar effect sizes among Europeans and Latinx. Both loci are in putative transcriptional regulatory regions of developmental patterning genes. Estimated heritability in common variants is ∼19%. Strikingly, there is no significant difference in estimated polygenic risk scores between isolated and complex CDH or between individuals harboring deleterious de novo variants and individuals without these variants. The data support a polygenic model as part of the CDH genetic architecture.
Collapse
Affiliation(s)
- Lu Qiao
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Carrie L Welch
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rebecca Hernan
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julia Wynn
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Usha S Krishnan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jill M Zalieckas
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Terry Buchmiller
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julie Khlevner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aliva De
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Amy J Wagner
- Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Andreas Heydweiller
- Department of General, Visceral, Vascular, and Thoracic Surgery, Unit of Pediatric Surgery, University Hospital Bonn, Bonn, Germany
| | - Andreas C Mueller
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Brad W Warner
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carlo Maj
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Dai Chung
- Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN 37232, USA
| | - David J McCulley
- Department of Pediatrics, San Diego Medical School, University of California, San Diego, San Diego, CA 92092, USA
| | | | | | | | - Felicitas Schulz
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Florian Kipfmuller
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Foong-Yen Lim
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Frank Magielsen
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | | | - Gudrun Aspelund
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Heiko Martin Reutter
- Neonatology and Pediatric Intensive Care, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Howard Needelman
- University of Nebraska Medical Center College of Medicine, Omaha, NE 68114, USA
| | - J Marco Schnater
- Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Jason C Fisher
- New York University Grossman School of Medicine, Hassenfeld Children's Hospital at NYU Langone, New York, NY 10016, USA
| | - Kenneth Azarow
- Oregon Health and Science University, Portland, OR 97239, USA
| | | | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Melissa E Danko
- Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN 37232, USA
| | - Mindy Li
- Rush University Medical Center, Chicago, IL 60612, USA
| | - Przemyslaw Kosiński
- Department of Obstetrics, Perinatology and Gynecology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Rene M H Wijnen
- Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Robert A Cusick
- University of Nebraska Medical Center College of Medicine, Omaha, NE 68114, USA
| | | | - Suzan C M Cochius-Den Otter
- Department of Neonatology and Pediatric Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Thomas Schaible
- Department of Neonatology, University Children's Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Vincent P Duron
- Department of Surgery (Pediatrics), Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Patricia K Donahoe
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Xin Sun
- Department of Pediatrics, San Diego Medical School, University of California, San Diego, San Diego, CA 92092, USA
| | - Frances A High
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Charlotte Bendixen
- Department of General, Visceral, Vascular, and Thoracic Surgery, Unit of Pediatric Surgery, University Hospital Bonn, Bonn, Germany
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA; JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Maji D, Jenkins JL, Boutz PL, Kielkopf CL. Recurrent Neurodevelopmentally Associated Variants of the Pre-mRNA Splicing Factor U2AF2 Alter RNA Binding Affinities and Interactions. Biochemistry 2024; 63:2718-2722. [PMID: 39388459 PMCID: PMC11542177 DOI: 10.1021/acs.biochem.4c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
De novo mutations affecting the pre-mRNA splicing factor U2AF2 are associated with developmental delays and intellectual disabilities, yet the molecular basis is unknown. Here, we demonstrated by fluorescence anisotropy RNA binding assays that recurrent missense mutants (Arg149Trp, Arg150His, or Arg150Cys) decreased the binding affinity of U2AF2 for a consensus splice site RNA. Crystal structures at 1.4 Å resolutions showed that Arg149Trp or Arg150His disrupted hydrogen bonds between U2AF2 and the terminal nucleotides of the RNA site. Reanalysis of publicly available RNaseq data confirmed that U2AF2 depletion altered splicing of transcripts encoding RNA binding proteins (RBPs). These results confirmed that the impaired RNA interactions of Arg149Trp and Arg150His U2AF2 variants could contribute to dysregulating an RBP-governed neurodevelopmental program of alternative splicing.
Collapse
Affiliation(s)
| | - Jermaine L. Jenkins
- Department of Biochemistry and Biophysics,
and the Center for RNA Biology, University
of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Paul L. Boutz
- Department of Biochemistry and Biophysics,
and the Center for RNA Biology, University
of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Clara L. Kielkopf
- Department of Biochemistry and Biophysics,
and the Center for RNA Biology, University
of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| |
Collapse
|
20
|
Dery KJ, Wong Z, Wei M, Kupiec-Weglinski JW. Mechanistic Insights into Alternative Gene Splicing in Oxidative Stress and Tissue Injury. Antioxid Redox Signal 2024; 41:890-909. [PMID: 37776178 PMCID: PMC11631805 DOI: 10.1089/ars.2023.0437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023]
Abstract
Significance: Oxidative stress (OS) and inflammation are inducers of tissue injury. Alternative splicing (AS) is an essential regulatory step for diversifying the eukaryotic proteome. Human diseases link AS to OS; however, the underlying mechanisms must be better understood. Recent Advances: Genome‑wide profiling studies identify new differentially expressed genes induced by OS-dependent ischemia/reperfusion injury. Overexpression of RNA-binding protein RBFOX1 protects against inflammation. Hypoxia-inducible factor-1α directs polypyrimidine tract binding protein 1 to regulate mouse carcinoembryonic antigen-related cell adhesion molecule 1 (Ceacam1) AS under OS conditions. Heterogeneous nuclear ribonucleoprotein L variant 1 contains an RGG/RG motif that coordinates with transcription factors to influence human CEACAM1 AS. Hypoxia intervention involving short interfering RNAs directed to long-noncoding RNA 260 polarizes M2 macrophages toward an anti-inflammatory phenotype and alleviates OS by inhibiting IL-28RA gene AS. Critical Issues: Protective mechanisms that eliminate reactive oxygen species (ROS) are important for resolving imbalances that lead to chronic inflammation. Defects in AS can cause ROS generation, cell death regulation, and the activation of innate and adaptive immune factors. We propose that AS pathways link redox regulation to the activation or suppression of the inflammatory response during cellular stress. Future Directions: Emergent studies using molecule-mediated RNA splicing are being conducted to exploit the immunogenicity of AS protein products. Deciphering the mechanisms that connect misspliced OS and pathologies should remain a priority. Controlled release of RNA directly into cells with clinical applications is needed as the demand for innovative nucleic acid delivery systems continues to be demonstrated.
Collapse
Affiliation(s)
- Kenneth J. Dery
- The Dumont-UCLA Transplantation Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Zeriel Wong
- The Dumont-UCLA Transplantation Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Megan Wei
- The Dumont-UCLA Transplantation Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jerzy W. Kupiec-Weglinski
- The Dumont-UCLA Transplantation Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
21
|
Carrick BH, Crittenden SL, Linsley M, Dos Santos SJC, Wickens M, Kimble J. The PUF RNA-binding protein, FBF-2, maintains stem cells without binding to RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620246. [PMID: 39484565 PMCID: PMC11527184 DOI: 10.1101/2024.10.25.620246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Like all canonical PUF proteins, C. elegans FBF-2 binds to specific RNAs via tripartite recognition motifs (TRMs). Here we report that an FBF-2 mutant protein that cannot bind to RNA, is nonetheless biologically active and maintains stem cells. This unexpected result challenges the conventional wisdom that RBPs must bind to RNAs to achieve biological activity. Also unexpectedly, FBF-2 interactions with partner proteins can compensate for loss of RNA-binding. FBF-2 only loses biological activity when its RNA-binding and partner interactions are both defective. These findings highlight the complementary contributions of RNA-binding and protein partner interactions to activity of an RNA-binding protein.
Collapse
Affiliation(s)
- Brian H. Carrick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
- Present address: MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | | | - MaryGrace Linsley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
- Present address: Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA
| | - Stephany J. Costa Dos Santos
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
- Present address: WiCell Research Institute, Inc., Madison WI
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
22
|
Yang G, Yang Y, Song Z, Chen L, Liu F, Li Y, Jiang S, Xue S, Pei J, Wu Y, He Y, Chu B, Wu H. Spliceosomal GTPase Eftud2 deficiency-triggered ferroptosis leads to Purkinje cell degeneration. Neuron 2024; 112:3452-3469.e9. [PMID: 39153477 DOI: 10.1016/j.neuron.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/20/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
Spliceosomal GTPase elongation factor Tu GTP binding domain containing 2 (EFTUD2) is a causative gene for mandibulofacial dysostosis with microcephaly (MFDM) syndrome comprising cerebellar hypoplasia and motor dysfunction. How EFTUD2 deficiency contributes to these symptoms remains elusive. Here, we demonstrate that specific ablation of Eftud2 in cerebellar Purkinje cells (PCs) in mice results in severe ferroptosis, PC degeneration, dyskinesia, and cerebellar atrophy, which recapitulates phenotypes observed in patients with MFDM. Mechanistically, Eftud2 promotes Scd1 and Gch1 expression, upregulates monounsaturated fatty acid phospholipids, and enhances antioxidant activity, thereby suppressing PC ferroptosis. Importantly, we identified transcription factor Atf4 as a downstream target to regulate anti-ferroptosis effects in PCs in a p53-independent manner. Inhibiting ferroptosis efficiently rescued cerebellar deficits in Eftud2 cKO mice. Our data reveal an important role of Eftud2 in maintaining PC survival, showing that pharmacologically or genetically inhibiting ferroptosis may be a promising therapeutic strategy for EFTUD2 deficiency-induced disorders.
Collapse
Affiliation(s)
- Guochao Yang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, 226019 Nantong, China
| | - Yinghong Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250100 Jinan, China
| | - Zhihong Song
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Fengjiao Liu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Ying Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Shaofei Jiang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Saisai Xue
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Jie Pei
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166 Nanjing, China
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250100 Jinan, China.
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, 226019 Nantong, China; Chinese Institute for Brain Research, 102206 Beijing, China.
| |
Collapse
|
23
|
Breunig K, Lei X, Montalbano M, Guardia GDA, Ostadrahimi S, Alers V, Kosti A, Chiou J, Klein N, Vinarov C, Wang L, Li M, Song W, Kraus WL, Libich DS, Tiziani S, Weintraub ST, Galante PAF, Penalva LOF. SERBP1 interacts with PARP1 and is present in PARylation-dependent protein complexes regulating splicing, cell division, and ribosome biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586270. [PMID: 38585848 PMCID: PMC10996453 DOI: 10.1101/2024.03.22.586270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. Serpine1 mRNA-binding protein 1 (SERBP1) is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. We defined SERBP1's interactome, uncovered novel roles in splicing, cell division and ribosomal biogenesis, and showed its participation in pathological stress granules and Tau aggregates in Alzheimer's brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.
Collapse
|
24
|
Hayden AN, Brandel KL, Pietryk EW, Merlau PR, Vijayakumar P, Leptich EJ, Gaytan ES, Williams MI, Ni CW, Chao HT, Rosenfeld JA, Arey RN. Behavioral screening reveals a conserved residue in Y-Box RNA-binding protein required for associative learning and memory in C. elegans. PLoS Genet 2024; 20:e1011443. [PMID: 39423228 PMCID: PMC11524487 DOI: 10.1371/journal.pgen.1011443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/30/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
RNA-binding proteins (RBPs) regulate translation and plasticity which are required for memory. RBP dysfunction has been linked to a range of neurological disorders where cognitive impairments are a key symptom. However, of the 2,000 RBPs in the human genome, many are uncharacterized with regards to neurological phenotypes. To address this, we used the model organism C. elegans to assess the role of 20 conserved RBPs in memory. We identified eight previously uncharacterized memory regulators, three of which are in the C. elegans Y-Box (CEY) RBP family. Of these, we determined that cey-1 is the closest ortholog to the mammalian Y-Box (YBX) RBPs. We found that CEY-1 is both necessary in the nervous system for memory ability and sufficient to promote memory. Leveraging human datasets, we found both copy number variation losses and single nucleotide variants in YBX1 and YBX3 in individuals with neurological symptoms. We identified one predicted deleterious YBX3 variant of unknown significance, p.Asn127Tyr, in two individuals with neurological symptoms. Introducing this variant into endogenous cey-1 locus caused memory deficits in the worm. We further generated two humanized worm lines expressing human YBX3 or YBX1 at the cey-1 locus to test evolutionary conservation of YBXs in memory and the potential functional significance of the p.Asn127Tyr variant. Both YBX1/3 can functionally replace cey-1, and introduction of p.Asn127Tyr into the humanized YBX3 locus caused memory deficits. Our study highlights the worm as a model to reveal memory regulators and identifies YBX dysfunction as a potential new source of rare neurological disease.
Collapse
Affiliation(s)
- Ashley N. Hayden
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Katie L. Brandel
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Edward W. Pietryk
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Paul R. Merlau
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Priyadharshini Vijayakumar
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Emily J. Leptich
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Elizabeth S. Gaytan
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
- Postbaccalaureate Research Education Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Meredith I. Williams
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Connie W. Ni
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Rice University, Houston, Texas, United States of America
| | - Hsiao-Tuan Chao
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Cain Pediatric Neurology Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, Texas, United States of America
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Baylor Genetics Laboratories, Houston, Texas, United States of America
| | - Rachel N. Arey
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
25
|
Park M, Shin JE, Yee J, Ahn YM, Joo EJ. Gene-gene interaction analysis for age at onset of bipolar disorder in a Korean population. J Affect Disord 2024; 361:97-103. [PMID: 38834091 DOI: 10.1016/j.jad.2024.05.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Multiple genes might interact to determine the age at onset of bipolar disorder. We investigated gene-gene interactions related to age at onset of bipolar disorder in the Korean population, using genome-wide association study (GWAS) data. METHODS The study population consisted of 303 patients with bipolar disorder. First, the top 1000 significant single-nucleotide polymorphisms (SNPs) associated with age at onset of bipolar disorder were selected through single SNP analysis by simple linear regression. Subsequently, the QMDR method was used to find gene-gene interactions. RESULTS The best 10 SNPs from simple regression were located in chromosome 1, 2, 3, 10, 11, 14, 19, and 21. Only five SNPs were found in several genes, such as FOXN3, KIAA1217, OPCML, CAMSAP2, and PTPRS. On QMDR analyses, five pairs of SNPs showed significant interactions with a CVC exceeding 1/5 in a two-locus model. The best interaction was found for the pair of rs60830549 and rs12952733 (CVC = 1/5, P < 1E-07). In three-locus models, four combinations of SNPs showed significant associations with age at onset, with a CVC of >1/5. The best three-locus combination was rs60830549, rs12952733, and rs12952733 (CVC = 2/5, P < 1E-6). The SNPs showing significant interactions were located in the KIAA1217, RBFOX3, SDK2, CYP19A1, NTM, SMYD3, and RBFOX1 genes. CONCLUSIONS Our analysis confirmed genetic interactions influencing the age of onset for bipolar disorder and identified several potential candidate genes. Further exploration of the functions of these promising genes, which may have multiple roles within the neuronal network, is necessary.
Collapse
Affiliation(s)
- Mira Park
- Department of Preventive Medicine, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Ji-Eun Shin
- Department of Biomedical Informatics, School of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Jaeyong Yee
- Department of Physiology and Biophysics, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Yong Min Ahn
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eun-Jeong Joo
- Department of Psychiatry, Uijeongbu Eulji Medical Center, Eulji University, Gyeonggi, Republic of Korea; Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon, Republic of Korea.
| |
Collapse
|
26
|
Stocks J, Gilbert N. Nuclear RNA: a transcription-dependent regulator of chromatin structure. Biochem Soc Trans 2024; 52:1605-1615. [PMID: 39082979 PMCID: PMC11668306 DOI: 10.1042/bst20230787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/29/2024]
Abstract
Although the majority of RNAs are retained in the nucleus, their significance is often overlooked. However, it is now becoming clear that nuclear RNA forms a dynamic structure through interacting with various proteins that can influence the three-dimensional structure of chromatin. We review the emerging evidence for a nuclear RNA mesh or gel, highlighting the interplay between DNA, RNA and RNA-binding proteins (RBPs), and assessing the critical role of protein and RNA in governing chromatin architecture. We also discuss a proposed role for the formation and regulation of the nuclear gel in transcriptional control. We suggest that it may concentrate the transcriptional machinery either by direct binding or inducing RBPs to form microphase condensates, nanometre sized membraneless structures with distinct properties to the surrounding medium and an enrichment of particular macromolecules.
Collapse
Affiliation(s)
- Jon Stocks
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, U.K
| | - Nick Gilbert
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
27
|
Liang Q, Yu T, Kofman E, Jagannatha P, Rhine K, Yee BA, Corbett KD, Yeo GW. High-sensitivity in situ capture of endogenous RNA-protein interactions in fixed cells and primary tissues. Nat Commun 2024; 15:7067. [PMID: 39152130 PMCID: PMC11329496 DOI: 10.1038/s41467-024-50363-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/09/2024] [Indexed: 08/19/2024] Open
Abstract
RNA-binding proteins (RBPs) have pivotal functions in RNA metabolism, but current methods are limited in retrieving RBP-RNA interactions within endogenous biological contexts. Here, we develop INSCRIBE (IN situ Sensitive Capture of RNA-protein Interactions in Biological Environments), circumventing the challenges through in situ RNA labeling by precisely directing a purified APOBEC1-nanobody fusion to the RBP of interest. This method enables highly specific RNA-binding site identification across a diverse range of fixed biological samples such as HEK293T cells and mouse brain tissue and accurately identifies the canonical binding motifs of RBFOX2 (UGCAUG) and TDP-43 (UGUGUG) in native cellular environments. Applicable to any RBP with available primary antibodies, INSCRIBE enables sensitive capture of RBP-RNA interactions from ultra-low input equivalent to ~5 cells. The robust, versatile, and sensitive INSCRIBE workflow is particularly beneficial for precious tissues such as clinical samples, empowering the exploration of genuine RBP-RNA interactions in RNA-related disease contexts.
Collapse
Affiliation(s)
- Qishan Liang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
- Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA, USA
| | - Tao Yu
- Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Eric Kofman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Pratibha Jagannatha
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Kevin Rhine
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Brian A Yee
- Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kevin D Corbett
- Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA.
| | - Gene W Yeo
- Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Sanford Stem Cell Institute and Stem Cell Program, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
28
|
Scott-Hewitt N, Mahoney M, Huang Y, Korte N, Yvanka de Soysa T, Wilton DK, Knorr E, Mastro K, Chang A, Zhang A, Melville D, Schenone M, Hartigan C, Stevens B. Microglial-derived C1q integrates into neuronal ribonucleoprotein complexes and impacts protein homeostasis in the aging brain. Cell 2024; 187:4193-4212.e24. [PMID: 38942014 DOI: 10.1016/j.cell.2024.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/08/2024] [Accepted: 05/31/2024] [Indexed: 06/30/2024]
Abstract
Neuroimmune interactions mediate intercellular communication and underlie critical brain functions. Microglia, CNS-resident macrophages, modulate the brain through direct physical interactions and the secretion of molecules. One such secreted factor, the complement protein C1q, contributes to complement-mediated synapse elimination in both developmental and disease models, yet brain C1q protein levels increase significantly throughout aging. Here, we report that C1q interacts with neuronal ribonucleoprotein (RNP) complexes in an age-dependent manner. Purified C1q protein undergoes RNA-dependent liquid-liquid phase separation (LLPS) in vitro, and the interaction of C1q with neuronal RNP complexes in vivo is dependent on RNA and endocytosis. Mice lacking C1q have age-specific alterations in neuronal protein synthesis in vivo and impaired fear memory extinction. Together, our findings reveal a biophysical property of C1q that underlies RNA- and age-dependent neuronal interactions and demonstrate a role of C1q in critical intracellular neuronal processes.
Collapse
Affiliation(s)
- Nicole Scott-Hewitt
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Matthew Mahoney
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Youtong Huang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nils Korte
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - T Yvanka de Soysa
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel K Wilton
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Emily Knorr
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kevin Mastro
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Allison Chang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Allison Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - David Melville
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Monica Schenone
- The Broad Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christina Hartigan
- The Broad Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Investigator, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Xie Y, Wang R, McClatchy DB, Ma Y, Diedrich J, Sanchez-Alavez M, Petrascheck M, Yates JR, Cline HT. Activity-dependent synthesis of Emerin gates neuronal plasticity by regulating proteostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.600712. [PMID: 38979362 PMCID: PMC11230442 DOI: 10.1101/2024.06.30.600712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Neurons dynamically regulate their proteome in response to sensory input, a key process underlying experience-dependent plasticity. We characterized the visual experience-dependent nascent proteome within a brief, defined time window after stimulation using an optimized metabolic labeling approach. Visual experience induced cell type-specific and age-dependent alterations in the nascent proteome, including proteostasis-related processes. We identified Emerin as the top activity-induced candidate plasticity protein and demonstrated that its rapid activity-induced synthesis is transcription-independent. In contrast to its nuclear localization and function in myocytes, activity-induced neuronal Emerin is abundant in the endoplasmic reticulum and broadly inhibits protein synthesis, including translation regulators and synaptic proteins. Downregulating Emerin shifted the dendritic spine population from predominantly mushroom morphology to filopodia and decreased network connectivity. In mice, decreased Emerin reduced visual response magnitude and impaired visual information processing. Our findings support an experience-dependent feed-forward role for Emerin in temporally gating neuronal plasticity by negatively regulating translation.
Collapse
|
30
|
Völkers M, Preiss T, Hentze MW. RNA-binding proteins in cardiovascular biology and disease: the beat goes on. Nat Rev Cardiol 2024; 21:361-378. [PMID: 38163813 DOI: 10.1038/s41569-023-00958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Cardiac development and function are becoming increasingly well understood from different angles, including signalling, transcriptional and epigenetic mechanisms. By contrast, the importance of the post-transcriptional landscape of cardiac biology largely remains to be uncovered, building on the foundation of a few existing paradigms. The discovery during the past decade of hundreds of additional RNA-binding proteins in mammalian cells and organs, including the heart, is expected to accelerate progress and has raised intriguing possibilities for better understanding the intricacies of cardiac development, metabolism and adaptive alterations. In this Review, we discuss the progress and new concepts on RNA-binding proteins and RNA biology and appraise them in the context of common cardiovascular clinical conditions, from cell and organ-wide perspectives. We also discuss how a better understanding of cardiac RNA-binding proteins can fill crucial knowledge gaps in cardiology and might pave the way to developing better treatments to reduce cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Mirko Völkers
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg and Mannheim, Germany
| | - Thomas Preiss
- Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Matthias W Hentze
- European Molecular Biology Laboratory, Heidelberg, Germany.
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany.
| |
Collapse
|
31
|
Mishra S, Manohar V, Chandel S, Manoj T, Bhattacharya S, Hegde N, Nath VR, Krishnan H, Wendling C, Di Mattia T, Martinet A, Chimata P, Alpy F, Raghu P. A genetic screen to uncover mechanisms underlying lipid transfer protein function at membrane contact sites. Life Sci Alliance 2024; 7:e202302525. [PMID: 38499328 PMCID: PMC10948934 DOI: 10.26508/lsa.202302525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
Lipid transfer proteins mediate the transfer of lipids between organelle membranes, and the loss of function of these proteins has been linked to neurodegeneration. However, the mechanism by which loss of lipid transfer activity leads to neurodegeneration is not understood. In Drosophila photoreceptors, depletion of retinal degeneration B (RDGB), a phosphatidylinositol transfer protein, leads to defective phototransduction and retinal degeneration, but the mechanism by which loss of this activity leads to retinal degeneration is not understood. RDGB is localized to membrane contact sites through the interaction of its FFAT motif with the ER integral protein VAP. To identify regulators of RDGB function in vivo, we depleted more than 300 VAP-interacting proteins and identified a set of 52 suppressors of rdgB The molecular identity of these suppressors indicates a role of novel lipids in regulating RDGB function and of transcriptional and ubiquitination processes in mediating retinal degeneration in rdgB9 The human homologs of several of these molecules have been implicated in neurodevelopmental diseases underscoring the importance of VAP-mediated processes in these disorders.
Collapse
Affiliation(s)
- Shirish Mishra
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bangalore, India
| | - Vaishnavi Manohar
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bangalore, India
| | - Shabnam Chandel
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bangalore, India
| | - Tejaswini Manoj
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bangalore, India
| | | | - Nidhi Hegde
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bangalore, India
| | - Vaisaly R Nath
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bangalore, India
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Harini Krishnan
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bangalore, India
| | - Corinne Wendling
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
| | - Thomas Di Mattia
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
| | - Arthur Martinet
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
| | - Prasanth Chimata
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bangalore, India
| | - Fabien Alpy
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
| | - Padinjat Raghu
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bangalore, India
| |
Collapse
|
32
|
Hawkins S, Mondaini A, Namboori SC, Nguyen GG, Yeo GW, Javed A, Bhinge A. ePRINT: exonuclease assisted mapping of protein-RNA interactions. Genome Biol 2024; 25:140. [PMID: 38807229 PMCID: PMC11134894 DOI: 10.1186/s13059-024-03271-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/09/2024] [Indexed: 05/30/2024] Open
Abstract
RNA-binding proteins (RBPs) regulate key aspects of RNA processing including alternative splicing, mRNA degradation and localization by physically binding RNA molecules. Current methods to map these interactions, such as CLIP, rely on purifying single proteins at a time. Our new method, ePRINT, maps RBP-RNA interaction networks on a global scale without purifying individual RBPs. ePRINT uses exoribonuclease XRN1 to precisely map the 5' end of the RBP binding site and uncovers direct and indirect targets of an RBP of interest. Importantly, ePRINT can also uncover RBPs that are differentially activated between cell fate transitions, including neural progenitor differentiation into neurons.
Collapse
Affiliation(s)
- Sophie Hawkins
- College of Medicine and Health, University of Exeter, Exeter, EX1 2LU, UK
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Alexandre Mondaini
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Seema C Namboori
- College of Medicine and Health, University of Exeter, Exeter, EX1 2LU, UK
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Grady G Nguyen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Center for RNA Technologies and Therapeutics, UC San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Center for RNA Technologies and Therapeutics, UC San Diego, La Jolla, CA, USA
| | - Asif Javed
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Akshay Bhinge
- College of Medicine and Health, University of Exeter, Exeter, EX1 2LU, UK.
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
33
|
Castelli L, Vasta R, Allen SP, Waller R, Chiò A, Traynor BJ, Kirby J. From use of omics to systems biology: Identifying therapeutic targets for amyotrophic lateral sclerosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:209-268. [PMID: 38802176 DOI: 10.1016/bs.irn.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a heterogeneous progressive neurodegenerative disorder with available treatments such as riluzole and edaravone extending survival by an average of 3-6 months. The lack of highly effective, widely available therapies reflects the complexity of ALS. Omics technologies, including genomics, transcriptomic and proteomics have contributed to the identification of biological pathways dysregulated and targeted by therapeutic strategies in preclinical and clinical trials. Integrating clinical, environmental and neuroimaging information with omics data and applying a systems biology approach can further improve our understanding of the disease with the potential to stratify patients and provide more personalised medicine. This chapter will review the omics technologies that contribute to a systems biology approach and how these components have assisted in identifying therapeutic targets. Current strategies, including the use of genetic screening and biosampling in clinical trials, as well as the future application of additional technological advances, will also be discussed.
Collapse
Affiliation(s)
- Lydia Castelli
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Rosario Vasta
- ALS Expert Center,'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Scott P Allen
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Rachel Waller
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Adriano Chiò
- ALS Expert Center,'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Turin, Turin, Italy
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States; RNA Therapeutics Laboratory, National Center for Advancing Translational Sciences, NIH, Rockville, MD, United States; National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, United States; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology,University College London, London, United Kingdom
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
34
|
Hayden AN, Brandel KL, Merlau PR, Vijayakumar P, Leptich EJ, Pietryk EW, Gaytan ES, Ni CW, Chao HT, Rosenfeld JA, Arey RN. Behavioral screening of conserved RNA-binding proteins reveals CEY-1/YBX RNA-binding protein dysfunction leads to impairments in memory and cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574402. [PMID: 38260399 PMCID: PMC10802296 DOI: 10.1101/2024.01.05.574402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
RNA-binding proteins (RBPs) regulate translation and plasticity which are required for memory. RBP dysfunction has been linked to a range of neurological disorders where cognitive impairments are a key symptom. However, of the 2,000 RBPs in the human genome, many are uncharacterized with regards to neurological phenotypes. To address this, we used the model organism C. elegans to assess the role of 20 conserved RBPs in memory. We identified eight previously uncharacterized memory regulators, three of which are in the C. elegans Y-Box (CEY) RBP family. Of these, we determined that cey-1 is the closest ortholog to the mammalian Y-Box (YBX) RBPs. We found that CEY-1 is both necessary in the nervous system for memory ability and sufficient to increase memory. Leveraging human datasets, we found both copy number variation losses and single nucleotide variants in YBX1 and YBX3 in individuals with neurological symptoms. We identified one predicted deleterious YBX3 variant of unknown significance, p.Asn127Tyr, in two individuals with neurological symptoms. Introducing this variant into endogenous cey-1 locus caused memory deficits in the worm. We further generated two humanized worm lines expressing human YBX3 or YBX1 at the cey-1 locus to test evolutionary conservation of YBXs in memory and the potential functional significance of the p.Asn127Tyr variant. Both YBX1/3 can functionally replace cey-1, and introduction of p.Asn127Tyr into the humanized YBX3 locus caused memory deficits. Our study highlights the worm as a model to reveal memory regulators and identifies YBX dysfunction as a potential new source of rare neurological disease.
Collapse
Affiliation(s)
- Ashley N Hayden
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
| | - Katie L Brandel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
| | - Paul R Merlau
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
| | | | - Emily J Leptich
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
| | - Edward W Pietryk
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030
| | - Elizabeth S Gaytan
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
- Postbaccalaureate Research Education Program, Baylor College of Medicine, Houston, TX, 77030
| | - Connie W Ni
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
- Department of Neuroscience, Rice University, Houston, TX 77005
| | - Hsiao-Tuan Chao
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, 77030
- Cain Pediatric Neurology Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, TX, 77030
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030
- Baylor Genetics Laboratories, Houston, TX 77021
| | - Rachel N Arey
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
| |
Collapse
|
35
|
Pfeifer GP. DNA Damage and Parkinson's Disease. Int J Mol Sci 2024; 25:4187. [PMID: 38673772 PMCID: PMC11050701 DOI: 10.3390/ijms25084187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/20/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
The etiology underlying most sporadic Parkinson's' disease (PD) cases is unknown. Environmental exposures have been suggested as putative causes of the disease. In cell models and in animal studies, certain chemicals can destroy dopaminergic neurons. However, the mechanisms of how these chemicals cause the death of neurons is not understood. Several of these agents are mitochondrial toxins that inhibit the mitochondrial complex I of the electron transport chain. Familial PD genes also encode proteins with important functions in mitochondria. Mitochondrial dysfunction of the respiratory chain, in combination with the presence of redox active dopamine molecules in these cells, will lead to the accumulation of reactive oxygen species (ROS) in dopaminergic neurons. Here, I propose a mechanism regarding how ROS may lead to cell killing with a specificity for neurons. One rarely considered hypothesis is that ROS produced by defective mitochondria will lead to the formation of oxidative DNA damage in nuclear DNA. Many genes that encode proteins with neuron-specific functions are extraordinary long, ranging in size from several hundred kilobases to well over a megabase. It is predictable that such long genes will contain large numbers of damaged DNA bases, for example in the form of 8-oxoguanine (8-oxoG), which is a major DNA damage type produced by ROS. These DNA lesions will slow down or stall the progression of RNA polymerase II, which is a term referred to as transcription stress. Furthermore, ROS-induced DNA damage may cause mutations, even in postmitotic cells such as neurons. I propose that the impaired transcription and mutagenesis of long, neuron-specific genes will lead to a loss of neuronal integrity, eventually leading to the death of these cells during a human lifetime.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
36
|
Wu R, Sun C, Chen X, Yang R, Luan Y, Zhao X, Yu P, Luo R, Hou Y, Tian R, Bian S, Li Y, Dong Y, Liu Q, Dai W, Fan Z, Yan R, Pan B, Feng S, Wu J, Chen F, Yang C, Wang H, Dai H, Shu M. NSUN5/TET2-directed chromatin-associated RNA modification of 5-methylcytosine to 5-hydroxymethylcytosine governs glioma immune evasion. Proc Natl Acad Sci U S A 2024; 121:e2321611121. [PMID: 38547058 PMCID: PMC10998593 DOI: 10.1073/pnas.2321611121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/28/2024] [Indexed: 04/02/2024] Open
Abstract
Malignant glioma exhibits immune evasion characterized by highly expressing the immune checkpoint CD47. RNA 5-methylcytosine(m5C) modification plays a pivotal role in tumor pathogenesis. However, the mechanism underlying m5C-modified RNA metabolism remains unclear, as does the contribution of m5C-modified RNA to the glioma immune microenvironment. In this study, we demonstrate that the canonical 28SrRNA methyltransferase NSUN5 down-regulates β-catenin by promoting the degradation of its mRNA, leading to enhanced phagocytosis of tumor-associated macrophages (TAMs). Specifically, the NSUN5-induced suppression of β-catenin relies on its methyltransferase activity mediated by cysteine 359 (C359) and is not influenced by its localization in the nucleolus. Intriguingly, NSUN5 directly interacts with and deposits m5C on CTNNB1 caRNA (chromatin-associated RNA). NSUN5-induced recruitment of TET2 to chromatin is independent of its methyltransferase activity. The m5C modification on caRNA is subsequently oxidized into 5-hydroxymethylcytosine (5hmC) by TET2, which is dependent on its binding affinity for Fe2+ and α-KG. Furthermore, NSUN5 enhances the chromatin recruitment of RBFOX2 which acts as a 5hmC-specific reader to recognize and facilitate the degradation of 5hmC caRNA. Notably, hmeRIP-seq analysis reveals numerous mRNA substrates of NSUN5 that potentially undergo this mode of metabolism. In addition, NSUN5 is epigenetically suppressed by DNA methylation and is negatively correlated with IDH1-R132H mutation in glioma patients. Importantly, pharmacological blockage of DNA methylation or IDH1-R132H mutant and CD47/SIRPα signaling synergistically enhances TAM-based phagocytosis and glioma elimination in vivo. Our findings unveil a general mechanism by which NSUN5/TET2/RBFOX2 signaling regulates RNA metabolism and highlight NSUN5 targeting as a potential strategy for glioma immune therapy.
Collapse
Affiliation(s)
- Ruixin Wu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai200040, China
| | - Chunming Sun
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
- Department of Neurology, Huashan hospital, Fudan University, Shanghai200040, China
| | - Xi Chen
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Runyue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai200032, China
| | - Yuxuan Luan
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
- Department of Microbiology, Key Laboratory of Medical Molecular Virology (Ministry of Education/ National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Xiang Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Panpan Yu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan hospital, Fudan University, Shanghai200032, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan hospital, Fudan University, Shanghai200032, China
| | - Ruotong Tian
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Shasha Bian
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
- Department of Microbiology, Key Laboratory of Medical Molecular Virology (Ministry of Education/ National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Yuli Li
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Yinghua Dong
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
- Department of Logistics, Dalian No.3 People’s hospital Affiliated to Dalian Medical University, Dalian116033, China
| | - Qian Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Weiwei Dai
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
- Department of Microbiology, Key Laboratory of Medical Molecular Virology (Ministry of Education/ National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Zhuoyang Fan
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Rucheng Yan
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Binyang Pan
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai200040, China
| | - Siheng Feng
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Jing Wu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai200040, China
| | - Fangzhen Chen
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai200040, China
| | - Changle Yang
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai200040, China
| | - Hanlin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Haochen Dai
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Minfeng Shu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
- Department of Microbiology, Key Laboratory of Medical Molecular Virology (Ministry of Education/ National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| |
Collapse
|
37
|
Carrick BH, Crittenden SL, Chen F, Linsley M, Woodworth J, Kroll-Conner P, Ferdous AS, Keleş S, Wickens M, Kimble J. PUF partner interactions at a conserved interface shape the RNA-binding landscape and cell fate in Caenorhabditis elegans. Dev Cell 2024; 59:661-675.e7. [PMID: 38290520 PMCID: PMC11253550 DOI: 10.1016/j.devcel.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/10/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
Protein-RNA regulatory networks underpin much of biology. C. elegans FBF-2, a PUF-RNA-binding protein, binds over 1,000 RNAs to govern stem cells and differentiation. FBF-2 interacts with multiple protein partners via a key tyrosine, Y479. Here, we investigate the in vivo significance of partnerships using a Y479A mutant. Occupancy of the Y479A mutant protein increases or decreases at specific sites across the transcriptome, varying with RNAs. Germline development also changes in a specific fashion: Y479A abolishes one FBF-2 function-the sperm-to-oocyte cell fate switch. Y479A's effects on the regulation of one mRNA, gld-1, are critical to this fate change, though other network changes are also important. FBF-2 switches from repression to activation of gld-1 RNA, likely by distinct FBF-2 partnerships. The role of RNA-binding protein partnerships in governing RNA regulatory networks will likely extend broadly, as such partnerships pervade RNA controls in virtually all metazoan tissues and species.
Collapse
Affiliation(s)
- Brian H Carrick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Sarah L Crittenden
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Fan Chen
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - MaryGrace Linsley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jennifer Woodworth
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Peggy Kroll-Conner
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ahlan S Ferdous
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sündüz Keleş
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
38
|
Kara H, Axer A, Muskett FW, Bueno-Alejo CJ, Paschalis V, Taladriz-Sender A, Tubasum S, Vega MS, Zhao Z, Clark AW, Hudson AJ, Eperon IC, Burley GA, Dominguez C. 2'- 19F labelling of ribose in RNAs: a tool to analyse RNA/protein interactions by NMR in physiological conditions. Front Mol Biosci 2024; 11:1325041. [PMID: 38419689 PMCID: PMC10899400 DOI: 10.3389/fmolb.2024.1325041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Protein-RNA interactions are central to numerous cellular processes. In this work, we present an easy and straightforward NMR-based approach to determine the RNA binding site of RNA binding proteins and to evaluate the binding of pairs of proteins to a single-stranded RNA (ssRNA) under physiological conditions, in this case in nuclear extracts. By incorporation of a 19F atom on the ribose of different nucleotides along the ssRNA sequence, we show that, upon addition of an RNA binding protein, the intensity of the 19F NMR signal changes when the 19F atom is located near the protein binding site. Furthermore, we show that the addition of pairs of proteins to a ssRNA containing two 19F atoms at two different locations informs on their concurrent binding or competition. We demonstrate that such studies can be done in a nuclear extract that mimics the physiological environment in which these protein-ssRNA interactions occur. Finally, we demonstrate that a trifluoromethoxy group (-OCF3) incorporated in the 2'ribose position of ssRNA sequences increases the sensitivity of the NMR signal, leading to decreased measurement times, and reduces the issue of RNA degradation in cellular extracts.
Collapse
Affiliation(s)
- Hesna Kara
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Alexander Axer
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Frederick W Muskett
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Carlos J Bueno-Alejo
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- School of Chemistry, University of Leicester, Leicester, United Kingdom
| | - Vasileios Paschalis
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Andrea Taladriz-Sender
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Sumera Tubasum
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Marina Santana Vega
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Zhengyun Zhao
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Alasdair W Clark
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Andrew J Hudson
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- School of Chemistry, University of Leicester, Leicester, United Kingdom
| | - Ian C Eperon
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Glenn A Burley
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Cyril Dominguez
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
39
|
Zhang C, Ni X, Tao C, Zhou Z, Wang F, Gu F, Cui X, Jiang S, Li Q, Lu H, Li D, Wu Z, Zhang R. Targeting PUF60 prevents tumor progression by retarding mRNA decay of oxidative phosphorylation in ovarian cancer. Cell Oncol (Dordr) 2024; 47:157-174. [PMID: 37632669 PMCID: PMC10899302 DOI: 10.1007/s13402-023-00859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 08/28/2023] Open
Abstract
PURPOSE Ovarian cancer (OC) is the leading cause of death from gynecological malignancies, and its etiology and pathogenesis are currently unclear. Recent studies have found that PUF60 overexpressed in various cancers. However, the exact function of PUF60 in global RNA processing and its role in OC has been unclear. METHODS The expression of PUF60 and its relationship with clinical characteristics were analyzed by multiple database analysis and immunohistochemistry. Phenotypic effects of PUF60 on ovarian cancer cell proliferation and metastasis were examined by in vitro cell proliferation assay, migration assay, and in vivo xenograft models and lung metastasis models. RNA immunoprecipitation, seahorse analyses, RNA stability assay were used to study the effect of PUF60 on the stability of oxidative phosphorylation (OXPHOS)-related genes in OC. RESULTS We report PUF60 is highly expressed in OC with frequent amplification of up to 33.9% and its upregulation predicts a poor prognosis. PUF60 promotes the proliferation and migration of OC cells both in vitro and in vivo. Mechanistically, we demonstrated that silencing of PUF60 enhanced the stability of mRNA transcripts involved in OXPHOS and decreased the formation of processing bodies (P-bodies), ultimately elevating the OXPHOS level. CONCLUSION Our study unveils a novel function of PUF60 in OC energy metabolism. Thus, PUF60 may serve as a novel target for the treatment of patients with OC.
Collapse
Affiliation(s)
- Cancan Zhang
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xiaoge Ni
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Chunlin Tao
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Ziyang Zhou
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Fengmian Wang
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Fei Gu
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Xiaoxiao Cui
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Shuheng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huan Lu
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Dongxue Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Zhiyong Wu
- Gynecology Department, Shanghai Obstetrics and Gynecology Hospital of Fudan University, No. 419 Fangxie Road, Shanghai, 200011, China.
| | - Rong Zhang
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China.
- Shanghai Geriatric Medical Center, Shanghai, China.
| |
Collapse
|
40
|
Rosa E Silva I, Smetana JHC, de Oliveira JF. A comprehensive review on DDX3X liquid phase condensation in health and neurodevelopmental disorders. Int J Biol Macromol 2024; 259:129330. [PMID: 38218270 DOI: 10.1016/j.ijbiomac.2024.129330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
DEAD-box helicases are global regulators of liquid-liquid phase separation (LLPS), a process that assembles membraneless organelles inside cells. An outstanding member of the DEAD-box family is DDX3X, a multi-functional protein that plays critical roles in RNA metabolism, including RNA transcription, splicing, nucleocytoplasmic export, and translation. The diverse functions of DDX3X result from its ability to bind and remodel RNA in an ATP-dependent manner. This capacity enables the protein to act as an RNA chaperone and an RNA helicase, regulating ribonucleoprotein complex assembly. DDX3X and its orthologs from mouse, yeast (Ded1), and C. elegans (LAF-1) can undergo LLPS, driving the formation of neuronal granules, stress granules, processing bodies or P-granules. DDX3X has been related to several human conditions, including neurodevelopmental disorders, such as intellectual disability and autism spectrum disorder. Although the research into the pathogenesis of aberrant biomolecular condensation in neurodegenerative diseases is increasing rapidly, the role of LLPS in neurodevelopmental disorders is underexplored. This review summarizes current findings relevant for DDX3X phase separation in neurodevelopment and examines how disturbances in the LLPS process can be related to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivan Rosa E Silva
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, SP, Brazil
| | | | | |
Collapse
|
41
|
Wang J, Jia Q, Jiang S, Lu W, Ning H. POU6F1 promotes ferroptosis by increasing lncRNA-CASC2 transcription to regulate SOCS2/SLC7A11 signaling in gastric cancer. Cell Biol Toxicol 2024; 40:3. [PMID: 38267746 PMCID: PMC10808632 DOI: 10.1007/s10565-024-09843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/22/2023] [Indexed: 01/26/2024]
Abstract
OBJECTIVE This study investigated the effect and mechanism of POU6F1 and lncRNA-CASC2 on ferroptosis of gastric cancer (GC) cells. METHODS GC cells treated with erastin and RSL3 were detected for ferroptosis, reactive oxygen species (ROS) level, and cell viability. The expression levels of POU6F1, lncRNA-CASC2, SOCS2, and ferroptosis-related molecules (GPX4 and SLC7A11) were also measured. The regulations among POU6F1, lncRNA-CASC2, FMR1, SOCS2, and SLC7A11 were determined. Subcutaneous tumor models were established, in which the expressions of Ki-67, SOCS2, and GPX4 were detected by immunohistochemistry. RESULTS GC patients with decreased expressions of POU6F1 and lncRNA-CASC2 had lower survival rate. Overexpression of POU6F1 or lncRNA-CASC2 decreased cell proliferation and GSH levels in GC cells, in addition to increasing total iron, Fe2+, MDA, and ROS levels. POU6F1 directly binds to the lncRNA-CASC2 promoter to promote its transcription. LncRNA-CASC2 can target FMR1 and increase SOCS2 mRNA stability to promote SLC7A11 ubiquitination degradation and activate ferroptosis signaling. Knockdown of SOCS2 inhibited the ferroptosis sensitivity of GC cells and reversed the effects of POU6F1 and lncRNA-CASC2 overexpression on ferroptosis in GC cells. CONCLUSION Transcription factor POU6F1 binds directly to the lncRNA-CASC2 promoter to promote its expression, while upregulated lncRNA-CASC2 increases SOCS2 stability and expression by targeting FMR1, thereby inhibiting SLC7A11 signaling to promote ferroptosis in GC cells and inhibit GC progression.
Collapse
Affiliation(s)
- Jingyun Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan, 450000, People's Republic of China
| | - Qiaoyu Jia
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan, 450000, People's Republic of China
| | - Shuqin Jiang
- Department of Child Development and Behavior, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, People's Republic of China
| | - Wenquan Lu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, No.2 JingBa Road, Jinshui District, Zhengzhou, Henan, 450014, People's Republic of China
| | - Hanbing Ning
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan, 450000, People's Republic of China.
| |
Collapse
|
42
|
Xu K, Ren Y, Fan L, Zhao S, Feng J, Zhong Q, Tu D, Wu W, Chen J, Xie P. TCF4 and RBFOX1 as peripheral biomarkers for the differential diagnosis and treatment of major depressive disorder. J Affect Disord 2024; 345:252-261. [PMID: 37890537 DOI: 10.1016/j.jad.2023.10.129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Recent genome-wide association studies on major depressive disorder (MDD) have indicated the involvement of LRFN5 and OLFM4; however, the expression levels and roles of these molecules in MDD remain unclear. The present study aimed to determine the serum levels of TCF4 and RBFOX1 in patients with MDD and to investigate whether these molecules could be used as biomarkers for MDD diagnosis. METHODS The study included 99 drug-naïve MDD patients, 90 drug-treated MDD patients, and 81 healthy controls (HCs). Serum TCF4 and RBFOX1 levels were measured by ELISA. Pearson's correlation analysis was conducted to determine the association between TCF4/RBFOX1 and clinical variables. Linear support vector machine classifier was used to evaluate the diagnostic capabilities of TCF4 and RBFOX1. RESULTS Serum TCF4 and RBFOX1 levels were substantially higher in MDD patients than in HCs and significantly lower in drug-treated MDD patients than in drug-naïve MDD patients. Moreover, serum TCF4 and RBFOX1 levels were associated with the Hamilton Depression Scale score, duration of illness, serum lipids levels, and hepatic function. Thus, both these molecules showed potential as biomarkers for MDD. TCF4 and RBFOX1 combination exhibited a higher diagnostic performance, with the mean area under the curve values of 0.9861 and 0.9936 in the training and testing sets, respectively. LIMITATIONS Small sample size and investigation of only the peripheral nervous system. CONCLUSIONS TCF4 and RBFOX1 may be involved in the pathogenesis of MDD, and their combination may serve as a diagnostic biomarker panel for MDD.
Collapse
Affiliation(s)
- Ke Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yi Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Fan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shuang Zhao
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing 400016, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qi Zhong
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Dianji Tu
- Department of Clinical Laboratory, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Wentao Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
43
|
Sun N, Teyssier N, Wang B, Drake S, Seyler M, Zaltsman Y, Everitt A, Teerikorpi N, Willsey HR, Goodarzi H, Tian R, Kampmann M, Willsey AJ. Autism genes converge on microtubule biology and RNA-binding proteins during excitatory neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.573108. [PMID: 38187634 PMCID: PMC10769323 DOI: 10.1101/2023.12.22.573108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Recent studies have identified over one hundred high-confidence (hc) autism spectrum disorder (ASD) genes. Systems biological and functional analyses on smaller subsets of these genes have consistently implicated excitatory neurogenesis. However, the extent to which the broader set of hcASD genes are involved in this process has not been explored systematically nor have the biological pathways underlying this convergence been identified. Here, we leveraged CROP-Seq to repress 87 hcASD genes in a human in vitro model of cortical neurogenesis. We identified 17 hcASD genes whose repression significantly alters developmental trajectory and results in a common cellular state characterized by disruptions in proliferation, differentiation, cell cycle, microtubule biology, and RNA-binding proteins (RBPs). We also characterized over 3,000 differentially expressed genes, 286 of which had expression profiles correlated with changes in developmental trajectory. Overall, we uncovered transcriptional disruptions downstream of hcASD gene perturbations, correlated these disruptions with distinct differentiation phenotypes, and reinforced neurogenesis, microtubule biology, and RBPs as convergent points of disruption in ASD.
Collapse
|
44
|
He L, Guo H, Wang H, Zhu K, Li D, Zhang C, Ai Y, Yang JJ. Rbfox1 regulates alternative splicing of Nrcam in primary sensory neurons to mediate peripheral nerve injury-induced neuropathic pain. Neurotherapeutics 2024; 21:e00309. [PMID: 38241164 PMCID: PMC10903086 DOI: 10.1016/j.neurot.2023.e00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/21/2024] Open
Abstract
The primary sensory neurons of the dorsal root ganglia (DRG) are subject to transcriptional alterations following peripheral nerve injury. These alterations are believed to play a pivotal role in the genesis of neuropathic pain. Alternative RNA splicing is a process that generates multiple transcript variants from a single gene, significantly contributing to the complexity of the transcriptome. However, little is known about the functional significance and control of alternative RNA splicing in injured DRG after spinal nerve ligation (SNL). In our study, we conducted a comprehensive transcriptome profiling and bioinformatic analysis to approach and identified a neuron-specific isoform of an RNA splicing regulator, RNA-binding Fox1 (Rbfox1, also known as A2BP1), as a crucial regulator of alternative RNA splicing in injured DRG after SNL. Notably, Rbfox1 expression is markedly reduced in injured DRG following peripheral nerve injury. Restoring this reduction effectively mitigates nociceptive hypersensitivity. Conversely, mimicking the downregulation of Rbfox1 expression generates neuropathic pain symptoms. Mechanistically, we uncovered that Rbfox1 may be a key factor influencing alternative RNA splicing of neuron-glial related cell adhesion molecule (NrCAM), a key neuronal cell adhesion molecule. In injured DRG after SNL, the downregulation of Rbfox1amplifies the insertion of exon 10 in Nrcam transcripts, leading to an increase in long Nrcam variants (L-Nrcam) and a corresponding decrease in short Nrcam variants (S-Nrcam) within injured DRG. In summary, our study supports the essential role of Rbfox1 in neuropathic pain within DRG, probably via the regulation of Nrcam splicing. These findings suggest that Rbfox1 could be a potential target for neuropathic pain therapy.
Collapse
Affiliation(s)
- Long He
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Haoyu Guo
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China; Department of Laboratory Animal Resources, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Hongwei Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Kuicheng Zhu
- Department of Laboratory Animal Resources, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Da Li
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Chaofan Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Yanqiu Ai
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
45
|
Mir FA, Amanullah A, Jain BP, Hyderi Z, Gautam A. Neuroepigenetics of ageing and neurodegeneration-associated dementia: An updated review. Ageing Res Rev 2023; 91:102067. [PMID: 37689143 DOI: 10.1016/j.arr.2023.102067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Gene expression is tremendously altered in the brain during memory acquisition, recall, and forgetfulness. However, non-genetic factors, including environmental elements, epigenetic changes, and lifestyle, have grabbed significant attention in recent years regarding the etiology of neurodegenerative diseases (NDD) and age-associated dementia. Epigenetic modifications are essential in regulating gene expression in all living organisms in a DNA sequence-independent manner. The genes implicated in ageing and NDD-related memory disorders are epigenetically regulated by processes such as DNA methylation, histone acetylation as well as messenger RNA editing machinery. The physiological and optimal state of the epigenome, especially within the CNS of humans, plays an intricate role in helping us adjust to the changing environment, and alterations in it cause many brain disorders, but the mechanisms behind it still need to be well understood. When fully understood, these epigenetic landscapes could act as vital targets for pharmacogenetic rescue strategies for treating several diseases, including neurodegeneration- and age-induced dementia. Keeping this objective in mind, this updated review summarises the epigenetic changes associated with age and neurodegeneration-associated dementia.
Collapse
Affiliation(s)
- Fayaz Ahmad Mir
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Zeeshan Hyderi
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
46
|
Mulligan MR, Bicknell LS. The molecular genetics of nELAVL in brain development and disease. Eur J Hum Genet 2023; 31:1209-1217. [PMID: 37697079 PMCID: PMC10620143 DOI: 10.1038/s41431-023-01456-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Embryonic development requires tight control of gene expression levels, activity, and localisation. This control is coordinated by multiple levels of regulation on DNA, RNA and protein. RNA-binding proteins (RBPs) are recognised as key regulators of post-transcriptional gene regulation, where their binding controls splicing, polyadenylation, nuclear export, mRNA stability, translation rate and decay. In brain development, the ELAVL family of RNA binding proteins undertake essential functions across spatiotemporal windows to help regulate and specify transcriptomic programmes for cell specialisation. Despite their recognised importance in neural tissues, their molecular roles and connections to pathology are less explored. Here we provide an overview of the neuronal ELAVL family, noting commonalities and differences amongst different species, their molecular characteristics, and roles in the cell. We bring together the available molecular genetics evidence to link different ELAVL proteins to phenotypes and disease, in both the brain and beyond, including ELAVL2, which is the least studied ELAVL family member. We find that ELAVL-related pathology shares a common neurological theme, but different ELAVL proteins are more strongly connected to different phenotypes, reflecting their specialised expression across time and space.
Collapse
Affiliation(s)
- Meghan R Mulligan
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Louise S Bicknell
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
47
|
Zhang L, Li X, Xu F, Gao L, Wang Z, Wang X, Li X, Liu M, Zhu J, Yao T, Ye J, Qi X, Wang Y, Zhao G, Wang C. Multidisciplinary molecular consultation increases the diagnosis of pediatric epileptic encephalopathy and neurodevelopmental disorders. Mol Genet Genomic Med 2023; 11:e2243. [PMID: 37489029 PMCID: PMC10655525 DOI: 10.1002/mgg3.2243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Epilepsy (EP) is a common neurological disease in which 70-80% are thought to have a genetic cause. In patients with epilepsy, neurodevelopmental delay (NDD) was prevalent. Next generation of sequencing has been widely used in diagnosing EP/NDD. However, the diagnostic yield remains to be 40%-50%. Many reanalysis pipelines and software have been developed for automated reanalysis and decision making for the diseases. Nevertheless, it is a highly challenging task for smaller genetic centers or a routine pediatric practice. To address the clinical and genetic "diagnostic odyssey," we organized a Multidisciplinary Molecular Consultation (MMC) team for molecular consultation for 202 children with EP/NDD patients referred by lower level hospitals. METHODS All the patients had undergone an aligned and sequential consultations and discussions by a "triple reanalysis" procedure by clinical, genetic specialists, and researchers. RESULTS Among the 202 cases for MMC, we totally identified 47 cases (23%) harboring causative variants in 24 genes and 15 chromosomal regions after the MMC. In the 15 cases with positive CNVs, 3 cases harbor the deletions or duplications in 16p11.2, and 2 cases for 1p36. The bioinformatical reanalysis revealed 47 positive cases, in which 12 (26%) were reported to be negative, VUS or incorrectly positive in pre-MMC reports. Additionally, among 87 cases with negative cases, 4 (5%) were reported to be positive in pre-MMC reports. CONCLUSION We established a workflow allowing for a "one-stop" collaborative assessments by experts of multiple fields and helps for correct the diagnosis of cases with falsenegative and -positive and VUS genetic reports and may have significant influences for intervention, prevention and genetic counseling of pediatric epilepsy and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Liping Zhang
- Department of PediatricsXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Xu‐Ying Li
- Department of Neurology and NeurobiologyXuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Fanxi Xu
- Department of Neurology and NeurobiologyXuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Lehong Gao
- Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Zhanjun Wang
- Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Xianling Wang
- Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Xian Li
- Department of Neurology and NeurobiologyXuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Mengyu Liu
- Department of Neurology and NeurobiologyXuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Junge Zhu
- Department of Neurology and NeurobiologyXuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Tingyan Yao
- Department of Neurology and NeurobiologyXuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Jing Ye
- Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Xiao‐Hong Qi
- Department of PediatricsXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yaqing Wang
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Guoguang Zhao
- Department of NeurosurgeryXuanwu Hospital of Capital Medical University, Clinical Research Center for Epilepsy Capital Medical UniversityBeijingChina
| | - Chaodong Wang
- Department of Neurology and NeurobiologyXuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric DiseasesBeijingChina
| | | |
Collapse
|
48
|
Liu HL, Lu XM, Wang HY, Hu KB, Wu QY, Liao P, Li S, Long ZY, Wang YT. The role of RNA splicing factor PTBP1 in neuronal development. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119506. [PMID: 37263298 DOI: 10.1016/j.bbamcr.2023.119506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023]
Abstract
Alternative pre-mRNA splicing, which produces various mRNA isoforms with distinct structures and functions from a single gene, is regulated by specific RNA-binding proteins and is an essential method for regulating gene expression in mammals. Recent studies have shown that abnormal change during neuronal development triggered by splicing mis-regulation is an important feature of various neurological diseases. Polypyrimidine tract binding protein 1 (PTBP1) is a kind of RNA-binding proteins with extensive biological functions. As a well-known splicing regulator, it affects the neuronal development process through its involvement in axon formation, synaptogenesis, and neuronal apoptosis, according to the most recent studies. Here, we summarized the mechanism of alternative splicing, structure and function of PTBP1, and the latest research progress on the role of alternative splicing events regulated by PTBP1 in axon formation, synaptogenesis and neuronal apoptosis, to reveal the mechanism of PTBP1-regulated changes in neuronal development process.
Collapse
Affiliation(s)
- Hui-Lin Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Kai-Bin Hu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Qing-Yun Wu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Ping Liao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Sen Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Zai-Yun Long
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Yong-Tang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China.
| |
Collapse
|
49
|
Vorobeva MA, Skvortsov DA, Pervouchine DD. Cooperation and Competition of RNA Secondary Structure and RNA-Protein Interactions in the Regulation of Alternative Splicing. Acta Naturae 2023; 15:23-31. [PMID: 38234601 PMCID: PMC10790352 DOI: 10.32607/actanaturae.26826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 01/19/2024] Open
Abstract
The regulation of alternative splicing in eukaryotic cells is carried out through the coordinated action of a large number of factors, including RNA-binding proteins and RNA structure. The RNA structure influences alternative splicing by blocking cis-regulatory elements, or bringing them closer or farther apart. In combination with RNA-binding proteins, it generates transcript conformations that help to achieve the necessary splicing outcome. However, the binding of regulatory proteins depends on RNA structure and, vice versa, the formation of RNA structure depends on the interaction with regulators. Therefore, RNA structure and RNA-binding proteins are inseparable components of common regulatory mechanisms. This review highlights examples of alternative splicing regulation by RNA-binding proteins, the regulation through local and long-range RNA structures, as well as how these elements work together, cooperate, and compete.
Collapse
Affiliation(s)
- M. A. Vorobeva
- M.V. Lomonosov Moscow State University, Moscow, 119192 Russian Federation
| | - D. A. Skvortsov
- M.V. Lomonosov Moscow State University, Moscow, 119192 Russian Federation
| | - D. D. Pervouchine
- Skolkovo Institute of Science and Technology, Moscow, 121205 Russian Federation
| |
Collapse
|
50
|
Brownmiller T, Caplen NJ. The HNRNPF/H RNA binding proteins and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1788. [PMID: 37042074 PMCID: PMC10523889 DOI: 10.1002/wrna.1788] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 04/13/2023]
Abstract
The members of the HNRNPF/H family of heterogeneous nuclear RNA proteins-HNRNPF, HNRNPH1, HNRNPH2, HNRNPH3, and GRSF1, are critical regulators of RNA maturation. Documented functions of these proteins include regulating splicing, particularly alternative splicing, 5' capping and 3' polyadenylation of RNAs, and RNA export. The assignment of these proteins to the HNRNPF/H protein family members relates to differences in the amino acid composition of their RNA recognition motifs, which differ from those of other RNA binding proteins (RBPs). HNRNPF/H proteins typically bind RNA sequences enriched with guanine (G) residues, including sequences that, in the presence of a cation, have the potential to form higher-order G-quadruplex structures. The need to further investigate members of the HNRNPF/H family of RBPs has intensified with the recent descriptions of their involvement in several disease states, including the pediatric tumor Ewing sarcoma and the hematological malignancy mantle cell lymphoma; newly described groups of developmental syndromes; and neuronal-related disorders, including addictive behavior. Here, to foster the study of the HNRNPF/H family of RBPs, we discuss features of the genes encoding these proteins, their structures and functions, and emerging contributions to disease. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Tayvia Brownmiller
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, Maryland, USA
| | - Natasha J Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, Maryland, USA
| |
Collapse
|