1
|
Koo J, Palli SR. Recent advances in understanding of the mechanisms of RNA interference in insects. INSECT MOLECULAR BIOLOGY 2024:10.1111/imb.12941. [PMID: 38957135 PMCID: PMC11695441 DOI: 10.1111/imb.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
We highlight the recent 5 years of research that contributed to our understanding of the mechanisms of RNA interference (RNAi) in insects. Since its first discovery, RNAi has contributed enormously as a reverse genetic tool for functional genomic studies. RNAi is also being used in therapeutics, as well as agricultural crop and livestock production and protection. Yet, for the wider application of RNAi, improvement of its potency and delivery technologies is needed. A mechanistic understanding of every step of RNAi, from cellular uptake of RNAi trigger molecules to targeted mRNA degradation, is key for developing an efficient strategy to improve RNAi technology. Insects provide an excellent model for studying the mechanism of RNAi due to species-specific variations in RNAi efficiency. This allows us to perform comparative studies in insect species with different RNAi sensitivity. Understanding the mechanisms of RNAi in different insects can lead to the development of better strategies to improve RNAi and its application to manage agriculturally and medically important insects.
Collapse
Affiliation(s)
- Jinmo Koo
- Department of Entomology, Gatton-Martin College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
- Current address: Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Subba Reddy Palli
- Department of Entomology, Gatton-Martin College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
2
|
Ortolá B, Urbaneja A, Eiras M, Pérez-Hedo M, Daròs JA. RNAi-mediated silencing of Mediterranean fruit fly (Ceratitis capitata) endogenous genes using orally-supplied double-stranded RNAs produced in Escherichia coli. PEST MANAGEMENT SCIENCE 2024; 80:1087-1098. [PMID: 37851867 DOI: 10.1002/ps.7839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 09/15/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND The Mediterranean fruit fly (medfly), Ceratitis capitata Wiedemann, is a major pest affecting fruit and vegetable production worldwide, whose control is mainly based on insecticides. Double-stranded RNA (dsRNA) able to down-regulate endogenous genes, thus affecting essential vital functions via RNA interference (RNAi) in pests and pathogens, is envisioned as a more specific and environmentally-friendly alternative to traditional insecticides. However, this strategy has not been explored in medfly yet. RESULTS Here, we screened seven candidate target genes by injecting in adult medflies gene-specific dsRNA hairpins transcribed in vitro. Several genes were significantly down-regulated, resulting in increased insect mortality compared to flies treated with a control dsRNA targeting the green fluorescent protein (GFP) complementary DNA (cDNA). Three of the dsRNAs, homologous to the beta subunit of adenosine triphosphate (ATP) synthase (ATPsynbeta), a vacuolar ATPase (V-ATPase), and the ribosomal protein S13 (RPS13), were able to halve the probability of survival in only 48 h after injection. We then produced new versions of these three dsRNAs and that of the GFP control as circular molecules in Escherichia coli using a two-self-splicing-intron-based expression system and tested them as orally-delivered insecticidal compounds against medfly adults. We observed a significant down-regulation of V-ATPase and RPS13 messenger RNAs (mRNAs) (approximately 30% and 90%, respectively) compared with the control medflies after 3 days of treatment. No significant mortality was recorded in medflies, but egg laying and hatching reduction was achieved by silencing V-ATPase and RPS13. CONCLUSION In sum, we report the potential of dsRNA molecules as oral insecticide in medfly. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Beltrán Ortolá
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
| | - Alberto Urbaneja
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Valencia, Spain
| | - Marcelo Eiras
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
- Laboratório de Fitovirologia e Fisiopatologia, Instituto Biológico, Sao Paulo, Brazil
| | - Meritxell Pérez-Hedo
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
| |
Collapse
|
3
|
Ortolá B, Daròs JA. RNA Interference in Insects: From a Natural Mechanism of Gene Expression Regulation to a Biotechnological Crop Protection Promise. BIOLOGY 2024; 13:137. [PMID: 38534407 DOI: 10.3390/biology13030137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
Insect pests rank among the major limiting factors in agricultural production worldwide. In addition to direct effect on crops, some phytophagous insects are efficient vectors for plant disease transmission. Large amounts of conventional insecticides are required to secure food production worldwide, with a high impact on the economy and environment, particularly when beneficial insects are also affected by chemicals that frequently lack the desired specificity. RNA interference (RNAi) is a natural mechanism gene expression regulation and protection against exogenous and endogenous genetic elements present in most eukaryotes, including insects. Molecules of double-stranded RNA (dsRNA) or highly structured RNA are the substrates of cellular enzymes to produce several types of small RNAs (sRNAs), which play a crucial role in targeting sequences for transcriptional or post-transcriptional gene silencing. The relatively simple rules that underlie RNAi regulation, mainly based in Watson-Crick complementarity, have facilitated biotechnological applications based on these cellular mechanisms. This includes the promise of using engineered dsRNA molecules, either endogenously produced in crop plants or exogenously synthesized and applied onto crops, as a new generation of highly specific, sustainable, and environmentally friendly insecticides. Fueled on this expectation, this article reviews current knowledge about the RNAi pathways in insects, and some other applied questions such as production and delivery of recombinant RNA, which are critical to establish RNAi as a reliable technology for insect control in crop plants.
Collapse
Affiliation(s)
- Beltrán Ortolá
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
4
|
Niu J, Chen R, Wang JJ. RNA interference in insects: the link between antiviral defense and pest control. INSECT SCIENCE 2024; 31:2-12. [PMID: 37162315 DOI: 10.1111/1744-7917.13208] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 05/11/2023]
Abstract
RNA interference (RNAi) is a form of gene silencing triggered by double-stranded RNA (dsRNA) that operates in all eukaryotic cells. RNAi has been widely investigated in insects to determine the underlying molecular mechanism, to investigate its role in systemic antiviral defense, and to develop strategies for pest control. When insect cells are infected by viruses, viral dsRNA signatures trigger a local RNAi response to block viral replication and generate virus-derived DNA that confers systemic immunity. RNAi-based insect pest control involves the application of exogenous dsRNA targeting genes essential for insect development or survival, but the efficacy of this approach has limited potency in many pests through a combination of rapid dsRNA degradation, inefficient dsRNA uptake/processing, and ineffective RNAi machinery. This could be addressed by dsRNA screening and evaluation, focusing on dsRNA design and off-target management, as well as dsRNA production and delivery. This review summarizes recent progress to determine the role of RNAi in antiviral defense and as a pest control strategy in insects, addressing gaps between our fundamental understanding of the RNAi mechanism and the exploitation of RNAi-based pest control strategies.
Collapse
Affiliation(s)
- Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Ruoyu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| |
Collapse
|
5
|
Wen Z, Li K, Xu W, Zhang Z, Liang N, Chen M, Guo L. Role of miR-276-3p in the cyantraniliprole resistance mechanism of Bemisia tabaci via CYP6CX3 targeting. Int J Biol Macromol 2024; 254:127830. [PMID: 37926315 DOI: 10.1016/j.ijbiomac.2023.127830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
The sweet potato whitefly, Bemisia tabaci, is an important insect pest that transmits over 200 different plant viruses and causes serious damage to the production of cotton and Solanaceae vegetables. Cyantraniliprole is the first diamide insecticide, showing toxicity against B. tabaci. However, B. tabaci has developed resistance to this insecticide by upregulating the expressions of cytochrome P450 genes such as CYP6CX3, while there is limited information on the regulatory mechanism mediated by miRNA. In the present study, ten miRNAs were predicted to target CYP6CX3, in which miR-276-3p showed an inverse expression pattern with CYP6CX3 in two cyantraniliprole resistant strains and under cyantraniliprole exposure. A luciferase assay demonstrated that miR-276-3p suppressed CYP6CX3 expression by pairing with residues 1445-1453. Overexpression or knockdown of miR-276-3p directly impacted B. tabaci resistance to cyantraniliprole. In addition, exposure to cyantraniliprole led to a significant reduction in the expressions of five genes (drosha, dicer1, dicer2, Ago1, and Ago2A) associated with miRNA biogenesis. Suppressing genes such as drosha, dicer1, and Ago2A reduced the expression of miR-276-3p, increased CYP6CX3 expression, and decreased B. tabaci resistance to cyantraniliprole. These results improve our understanding of the role of miRNAs in P450 regulation and cyantraniliprole resistance in B. tabaci.
Collapse
Affiliation(s)
- Zanrong Wen
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Kaixin Li
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Wei Xu
- Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Zhuang Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Ni Liang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Lei Guo
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
6
|
Xu W, Zhang M, Li Y, He W, Li S, Zhang J. Complete protection from Henosepilachna vigintioctopunctata by expressing long double-stranded RNAs in potato plastids. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1003-1011. [PMID: 36382860 DOI: 10.1111/jipb.13411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
RNA interference (RNAi) has emerged as a powerful technology for pest management. Previously, we have shown that plastid-mediated RNAi (PM-RNAi) can be utilized to control the Colorado potato beetle, an insect pest in the Chrysomelidae family; however, whether this technology is suitable for controlling pests in the Coccinellidae remained unknown. The coccinellid 28-spotted potato ladybird (Henosepilachna vigintioctopunctata; HV) is a serious pest of solanaceous crops. In this study, we identified three efficient target genes (β-Actin, SRP54, and SNAP) for RNAi using in vitro double-stranded RNAs (dsRNAs) fed to HV, and found that dsRNAs targeting β-Actin messenger RNA (dsACT) induced more potent RNAi than those targeting the other two genes. We next generated transplastomic and nuclear transgenic potato (Solanum tuberosum) plants expressing HV dsACT. Long dsACT stably accumulated to up to 0.7% of the total cellular RNA in the transplastomic plants, at least three orders of magnitude higher than in the nuclear transgenic plants. Notably, the transplastomic plants also exhibited a significantly stronger resistance to HV, killing all larvae within 6 d. Our data demonstrate the potential of PM-RNAi as an efficient pest control measure for HV, extending the application range of this technology to Coccinellidae pests.
Collapse
Affiliation(s)
- Wenbo Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Miao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yangcun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Wanwan He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| |
Collapse
|
7
|
Wu M, Zhang Q, Dong Y, Wang Z, Zhan W, Ke Z, Li S, He L, Ruf S, Bock R, Zhang J. Transplastomic tomatoes expressing double-stranded RNA against a conserved gene are efficiently protected from multiple spider mites. THE NEW PHYTOLOGIST 2023; 237:1363-1373. [PMID: 36328788 DOI: 10.1111/nph.18595] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Spider mites are serious pests and have evolved significant resistance to many chemical pesticides, thus making their control challenging. Several insect pests can be combated by plastid-mediated RNA interference (PM-RNAi), but whether PM-RNAi can be utilized to control noninsect pests is unknown. Here, we show that three species of spider mites (Tetranychus evansi, Tetranychus truncatus, and Tetranychus cinnabarinus) take up plastid RNA upon feeding. We generated transplastomic tomato plants expressing double-stranded RNA (dsRNA) targeted against a conserved region of the spider mite β-Actin mRNA. Transplastomic plants exhibited high levels of resistance to all three spider mite species, as evidenced by increased mortality and suppression of target gene expression. Notably, transplastomic plants induced a more robust RNAi response, caused higher mortality, and were overall better protected from spider mites than dsRNA-expressing nuclear transgenic plants. Our data demonstrate the potential of PM-RNAi as an efficient pest control measure for spider mites and extend the application range of the technology to noninsect pests.
Collapse
Affiliation(s)
- Mengting Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Qi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yi Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zican Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Wenqin Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zebin Ke
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Ralph Bock
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| |
Collapse
|
8
|
Finetti L, Benetti L, Leyria J, Civolani S, Bernacchia G. Topical delivery of dsRNA in two hemipteran species: Evaluation of RNAi specificity and non-target effects. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 189:105295. [PMID: 36549821 DOI: 10.1016/j.pestbp.2022.105295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Double-stranded (ds) RNA-based technologies could provide novel and potential tool for pest management with efficiency and specificity of action. However, before applying this technique in the field, it is necessary to identify effective delivery methods and evaluate the non-target effects that may occur. In this article, we evaluated the effectiveness of dsRNA by topical delivery on a species of great agricultural interest, Halyomorpha halys. The specificity of action of the dsRNA was also investigated in Rhodnius prolixus, an insect phylogenetically close to H. halys. Of the three investigated genes (putative ATPase N2B, ATPase, serine/threonine-protein phosphatase PP1-β catalytic subunit, PP1, and IAP repeat-containing protein 7-B-like, IAP), IAP and ATPase were able to induce higher mortality in H. halys nymphs compared to the control, with specific concentrations for each gene targeted. However, when the same RNAs were topically delivered to both R. prolixus 2nd and 3rd instar nymphs, no gene silencing and mortality were observed. For this reason, to assess dsRNA application-mediated non-target effects, we injected both H. halys and R. prolixus specific dsRNA in R. prolixus 5th instar nymphs. When the dsRNA targeting H. halys IAP was microinjected into R. prolixus 5th instar nymphs, no mortality was observed, suggesting a strong RNAi specificity. Together, these data suggest that the topical delivery could be suitable for the dsRNA to control H. halys population. Furthermore, its specificity of action would allow treatments towards single harmful species with limited non-target effects.
Collapse
Affiliation(s)
- Luca Finetti
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Lorenzo Benetti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Stefano Civolani
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Bernacchia
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
9
|
Lucena-Leandro VS, Abreu EFA, Vidal LA, Torres CR, Junqueira CICVF, Dantas J, Albuquerque ÉVS. Current Scenario of Exogenously Induced RNAi for Lepidopteran Agricultural Pest Control: From dsRNA Design to Topical Application. Int J Mol Sci 2022; 23:ijms232415836. [PMID: 36555476 PMCID: PMC9785151 DOI: 10.3390/ijms232415836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Invasive insects cost the global economy around USD 70 billion per year. Moreover, increasing agricultural insect pests raise concerns about global food security constraining and infestation rising after climate changes. Current agricultural pest management largely relies on plant breeding-with or without transgenes-and chemical pesticides. Both approaches face serious technological obsolescence in the field due to plant resistance breakdown or development of insecticide resistance. The need for new modes of action (MoA) for managing crop health is growing each year, driven by market demands to reduce economic losses and by consumer demand for phytosanitary measures. The disabling of pest genes through sequence-specific expression silencing is a promising tool in the development of environmentally-friendly and safe biopesticides. The specificity conferred by long dsRNA-base solutions helps minimize effects on off-target genes in the insect pest genome and the target gene in non-target organisms (NTOs). In this review, we summarize the status of gene silencing by RNA interference (RNAi) for agricultural control. More specifically, we focus on the engineering, development and application of gene silencing to control Lepidoptera through non-transforming dsRNA technologies. Despite some delivery and stability drawbacks of topical applications, we reviewed works showing convincing proof-of-concept results that point to innovative solutions. Considerations about the regulation of the ongoing research on dsRNA-based pesticides to produce commercialized products for exogenous application are discussed. Academic and industry initiatives have revealed a worthy effort to control Lepidoptera pests with this new mode of action, which provides more sustainable and reliable technologies for field management. New data on the genomics of this taxon may contribute to a future customized target gene portfolio. As a case study, we illustrate how dsRNA and associated methodologies could be applied to control an important lepidopteran coffee pest.
Collapse
Affiliation(s)
| | | | - Leonardo A. Vidal
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Cellular Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Caroline R. Torres
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Agronomy and Veterinary Medicine, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Camila I. C. V. F. Junqueira
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Agronomy and Veterinary Medicine, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Juliana Dantas
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
| | | |
Collapse
|
10
|
Ribeiro TP, Vasquez DDN, Macedo LLP, Lourenço-Tessutti IT, Valença DC, Oliveira-Neto OB, Paes-de-Melo B, Rodrigues-Silva PL, Firmino AAP, Basso MF, Lins CBJ, Neves MR, Moura SM, Tripode BMD, Miranda JE, Silva MCM, Grossi-de-Sa MF. Stabilized Double-Stranded RNA Strategy Improves Cotton Resistance to CBW ( Anthonomus grandis). Int J Mol Sci 2022; 23:13713. [PMID: 36430188 PMCID: PMC9691246 DOI: 10.3390/ijms232213713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/11/2022] Open
Abstract
Cotton is the most important crop for fiber production worldwide. However, the cotton boll weevil (CBW) is an insect pest that causes significant economic losses in infested areas. Current control methods are costly, inefficient, and environmentally hazardous. Herein, we generated transgenic cotton lines expressing double-stranded RNA (dsRNA) molecules to trigger RNA interference-mediated gene silencing in CBW. Thus, we targeted three essential genes coding for chitin synthase 2, vitellogenin, and ecdysis-triggering hormone receptor. The stability of expressed dsRNAs was improved by designing a structured RNA based on a viroid genome architecture. We transformed cotton embryos by inserting a promoter-driven expression cassette that overexpressed the dsRNA into flower buds. The transgenic cotton plants were characterized, and positive PCR transformed events were detected with an average heritability of 80%. Expression of dsRNAs was confirmed in floral buds by RT-qPCR, and the T1 cotton plant generation was challenged with fertilized CBW females. After 30 days, data showed high mortality (around 70%) in oviposited yolks. In adult insects fed on transgenic lines, chitin synthase II and vitellogenin showed reduced expression in larvae and adults, respectively. Developmental delays and abnormalities were also observed in these individuals. Our data remark on the potential of transgenic cotton based on a viroid-structured dsRNA to control CBW.
Collapse
Affiliation(s)
- Thuanne P. Ribeiro
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Biotechnology and Molecular Biology Department, Federal University of Brasilia (UnB), Brasilia 70910-900, DF, Brazil
| | - Daniel D. N. Vasquez
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Genetic and Molecular Biology Department, Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
| | - Leonardo L. P. Macedo
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - Isabela T. Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - David C. Valença
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
| | - Osmundo B. Oliveira-Neto
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
- Biochemistry and Molecular Biology Department, Integrated Faculties of the Educational Union of Planalto Central, Brasilia 70675-760, DF, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | | | - Alexandre A. P. Firmino
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Max Planck Institute Molecular Plant Physiol, 14476 Potsdam, Germany
| | - Marcos F. Basso
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - Camila B. J. Lins
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
| | - Maysa R. Neves
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
| | - Stefanie M. Moura
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | | | | | - Maria C. M. Silva
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - Maria F. Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Genetic and Molecular Biology Department, Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| |
Collapse
|
11
|
Schvartzman C, Fresia P, Murchio S, Mujica MV, Dalla-Rizza M. RNAi in Piezodorus guildinii (Hemiptera: Pentatomidae): Transcriptome Assembly for the Development of Pest Control Strategies. FRONTIERS IN PLANT SCIENCE 2022; 13:804839. [PMID: 35432425 PMCID: PMC9011191 DOI: 10.3389/fpls.2022.804839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Red-banded stink bug Piezodorus guildinii (P. guildinii) has been described as the most damaging stink bug regarding soybean crops, leading to seed injury, low germination percentages, and foliar retention, at low population densities. In recent years, RNA interference (RNAi), a conserved eukaryote silencing mechanism has been explored to develop species-selective pesticides. In this work, we evaluated RNAi in P. guildinii to develop new pest-control strategies. For this, we assembled and annotated a P. guildinii transcriptome from a pool of all developmental stages. Analysis of this transcriptome led to the identification of 56 genes related to the silencing process encompassing siRNA, miRNA, and piRNA pathways. To evaluate the functionality of RNAi machinery, P. guildinii adults were injected with 28 ng/mg of body weight of double stranded RNA (dsRNA) targeting vATPase A. A mortality of 35 and 51.6% was observed after 7 and 14 days, respectively, and a downregulation of vATPase A gene of 84% 72 h post-injection. In addition, Dicer-2 and Argonaute-2 genes, core RNAi proteins, were upregulated 1.8-fold 48 h after injection. These findings showed for the first time that RNAi is functional in P. guildinii and the silencing of essential genes has a significant effect in adult viability. Taken together, the work reported here shows that RNAi could be an interesting approach for the development of red-banded stink bug control strategies.
Collapse
Affiliation(s)
- Claudia Schvartzman
- Unidad de Biotecnología, Instituto Nacional de Investigación Agropecuaria, Canelones, Uruguay
| | - Pablo Fresia
- Unidad Mixta Pasteur + INIA (UMPI), Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Sara Murchio
- Unidad de Biotecnología, Instituto Nacional de Investigación Agropecuaria, Canelones, Uruguay
| | - María Valentina Mujica
- Unidad de Protección Vegetal, Instituto Nacional de Investigación Agropecuaria, Canelones, Uruguay
| | - Marco Dalla-Rizza
- Unidad de Biotecnología, Instituto Nacional de Investigación Agropecuaria, Canelones, Uruguay
| |
Collapse
|
12
|
Ripamonti M, Cerone L, Abbà S, Rossi M, Ottati S, Palmano S, Marzachì C, Galetto L. Silencing of ATP Synthase β Impairs Egg Development in the Leafhopper Scaphoideus titanus, Vector of the Phytoplasma Associated with Grapevine Flavescence Dorée. Int J Mol Sci 2022; 23:765. [PMID: 35054956 PMCID: PMC8775575 DOI: 10.3390/ijms23020765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 11/17/2022] Open
Abstract
Scaphoideus titanus (Hemiptera: Cicadellidae) is the natural vector of Flavescence dorée phytoplasma, a quarantine pest of grapevine with severe impact on European viticulture. RNA interference (RNAi) machinery components are present in S. titanus transcriptome and injection of ATP synthase β dsRNAs into adults caused gene silencing, starting three days post injection (dpi) up to 20 dpi, leading to decrease cognate protein. Silencing of this gene in the closely related leafhopper Euscelidiusvariegatus previously showed female sterility and lack of mature eggs in ovaries. Here, alteration of developing egg morphology in S. titanus ovaries as well as overexpression of hexamerin transcript (amino acid storage protein) and cathepsin L protein (lysosome proteinase) were observed in dsATP-injected females. To evaluate RNAi-specificity, E.variegatus was used as dsRNA-receiving model-species. Different doses of two sets of dsRNA-constructs targeting distinct portions of ATP synthase β gene of both species induced silencing, lack of egg development, and female sterility in E. variegatus, indicating that off-target effects must be evaluated case by case. The effectiveness of RNAi in S. titanus provides a powerful tool for functional genomics of this non-model species and paves the way toward RNAi-based strategies to limit vector population, despite several technical and regulatory constraints that still need to be overcome to allow open field application.
Collapse
Affiliation(s)
- Matteo Ripamonti
- Istituto per la Protezione Sostenibile Delle Piante, Consiglio Nazionale Delle Ricerche, IPSP-CNR, Strada delle Cacce 73, 10135 Torino, Italy; (M.R.); (L.C.); (S.A.); (M.R.); (S.O.); (S.P.); (C.M.)
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 41 Rue du Brill, 4422 Luxembourg, Luxembourg
| | - Luca Cerone
- Istituto per la Protezione Sostenibile Delle Piante, Consiglio Nazionale Delle Ricerche, IPSP-CNR, Strada delle Cacce 73, 10135 Torino, Italy; (M.R.); (L.C.); (S.A.); (M.R.); (S.O.); (S.P.); (C.M.)
- Dipartimento di Scienze Agrarie, Forestali ed Alimentari DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Simona Abbà
- Istituto per la Protezione Sostenibile Delle Piante, Consiglio Nazionale Delle Ricerche, IPSP-CNR, Strada delle Cacce 73, 10135 Torino, Italy; (M.R.); (L.C.); (S.A.); (M.R.); (S.O.); (S.P.); (C.M.)
| | - Marika Rossi
- Istituto per la Protezione Sostenibile Delle Piante, Consiglio Nazionale Delle Ricerche, IPSP-CNR, Strada delle Cacce 73, 10135 Torino, Italy; (M.R.); (L.C.); (S.A.); (M.R.); (S.O.); (S.P.); (C.M.)
| | - Sara Ottati
- Istituto per la Protezione Sostenibile Delle Piante, Consiglio Nazionale Delle Ricerche, IPSP-CNR, Strada delle Cacce 73, 10135 Torino, Italy; (M.R.); (L.C.); (S.A.); (M.R.); (S.O.); (S.P.); (C.M.)
- Dipartimento di Scienze Agrarie, Forestali ed Alimentari DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Sabrina Palmano
- Istituto per la Protezione Sostenibile Delle Piante, Consiglio Nazionale Delle Ricerche, IPSP-CNR, Strada delle Cacce 73, 10135 Torino, Italy; (M.R.); (L.C.); (S.A.); (M.R.); (S.O.); (S.P.); (C.M.)
| | - Cristina Marzachì
- Istituto per la Protezione Sostenibile Delle Piante, Consiglio Nazionale Delle Ricerche, IPSP-CNR, Strada delle Cacce 73, 10135 Torino, Italy; (M.R.); (L.C.); (S.A.); (M.R.); (S.O.); (S.P.); (C.M.)
| | - Luciana Galetto
- Istituto per la Protezione Sostenibile Delle Piante, Consiglio Nazionale Delle Ricerche, IPSP-CNR, Strada delle Cacce 73, 10135 Torino, Italy; (M.R.); (L.C.); (S.A.); (M.R.); (S.O.); (S.P.); (C.M.)
| |
Collapse
|
13
|
Giudice G, Moffa L, Varotto S, Cardone MF, Bergamini C, De Lorenzis G, Velasco R, Nerva L, Chitarra W. Novel and emerging biotechnological crop protection approaches. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1495-1510. [PMID: 33945200 PMCID: PMC8384607 DOI: 10.1111/pbi.13605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 05/05/2023]
Abstract
Traditional breeding or genetically modified organisms (GMOs) have for a long time been the sole approaches to effectively cope with biotic and abiotic stresses and implement the quality traits of crops. However, emerging diseases as well as unpredictable climate changes affecting agriculture over the entire globe force scientists to find alternative solutions required to quickly overcome seasonal crises. In this review, we first focus on cisgenesis and genome editing as challenging biotechnological approaches for breeding crops more tolerant to biotic and abiotic stresses. In addition, we take into consideration a toolbox of new techniques based on applications of RNA interference and epigenome modifications, which can be adopted for improving plant resilience. Recent advances in these biotechnological applications are mainly reported for non-model plants and woody crops in particular. Indeed, the characterization of RNAi machinery in plants is fundamental to transform available information into biologically or biotechnologically applicable knowledge. Finally, here we discuss how these innovative and environmentally friendly techniques combined with traditional breeding can sustain a modern agriculture and be of potential contribution to climate change mitigation.
Collapse
Affiliation(s)
- Gaetano Giudice
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)ConeglianoTVItaly
- Department of Agricultural and Environmental Sciences ‐ Production, Landscape, Agroenergy (DiSAA)University of MilanoMilanoItaly
| | - Loredana Moffa
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)ConeglianoTVItaly
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A)University of UdineUdineItaly
| | - Serena Varotto
- Department of Agronomy Animals Food Natural Resources and Environment (DAFNAE)University of PadovaLegnaroPDItaly
| | - Maria Francesca Cardone
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)TuriBAItaly
| | - Carlo Bergamini
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)TuriBAItaly
| | - Gabriella De Lorenzis
- Department of Agricultural and Environmental Sciences ‐ Production, Landscape, Agroenergy (DiSAA)University of MilanoMilanoItaly
| | - Riccardo Velasco
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)ConeglianoTVItaly
| | - Luca Nerva
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)ConeglianoTVItaly
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)TorinoItaly
| | - Walter Chitarra
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)ConeglianoTVItaly
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)TorinoItaly
| |
Collapse
|
14
|
Paturi S, Deshmukh MV. A Glimpse of "Dicer Biology" Through the Structural and Functional Perspective. Front Mol Biosci 2021; 8:643657. [PMID: 34026825 PMCID: PMC8138440 DOI: 10.3389/fmolb.2021.643657] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/07/2021] [Indexed: 01/05/2023] Open
Abstract
The RNA interference pathway (RNAi) is executed by two core enzymes, Dicer and Argonaute, for accomplishing a tailored transcriptional and post-transcriptional gene regulation. Dicer, an RNase III enzyme, initiates the RNAi pathway, plays a pivotal role in fighting infection against pathogens, and acts as a housekeeping enzyme for cellular homeostasis. Here, we review structure-based functional insights of Dicer and its domains present in a diverse group of organisms. Although Dicer and its domains are evolutionarily conserved from microsporidian parasites to humans, recent cryo-electron microscopy structures of Homo sapiens Dicer and Drosophila melanogaster Dicer-2 suggest characteristic variations in the mechanism of the dsRNA substrate recognition. Interestingly, the necessity for more than one functionally distinct Dicer paralogs in insects and plants compared with a single Dicer in other eukaryotic life forms implies Dicer’s role in the interplay of RNAi and other defense mechanisms. Based on the structural and mechanistic information obtained during the last decade, we aim to highlight the significance of key Dicer domains that are crucial to Dicer specific recognition and precise cleavage of dsRNA substrates. Further, the role of Dicer in the formation of Argonaute-based RNA-induced silencing complex (RISC) assembly formation, Dicer’s ability to regulate a complex protein interaction network, and its role in other cellular processes, as well as its therapeutic potentials, are emphasized.
Collapse
Affiliation(s)
- Sneha Paturi
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | - Mandar V Deshmukh
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| |
Collapse
|