1
|
Li J, Wang X. Functional roles of conserved lncRNAs and circRNAs in eukaryotes. Noncoding RNA Res 2024; 9:1271-1279. [PMID: 39036601 PMCID: PMC11260338 DOI: 10.1016/j.ncrna.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have emerged as critical regulators in essentially all biological processes across eukaryotes. They exert their functions through chromatin remodeling, transcriptional regulation, interacting with RNA-binding proteins (RBPs), serving as microRNA sponges, etc. Although non-coding RNAs are typically more species-specific than coding RNAs, a number of well-characterized lncRNA (such as XIST and NEAT1) and circRNA (such as CDR1as and ciRS-7) are evolutionarily conserved. The studies on conserved lncRNA and circRNAs across multiple species could facilitate a comprehensive understanding of their roles and mechanisms, thereby overcoming the limitations of single-species studies. In this review, we provide an overview of conserved lncRNAs and circRNAs, and summarize their conserved roles and mechanisms.
Collapse
Affiliation(s)
- Jingxin Li
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, The RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (UTSC), Hefei, 230027, Anhui, China
| | - Xiaolin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, The RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (UTSC), Hefei, 230027, Anhui, China
| |
Collapse
|
2
|
Niu X, Zhang J, Hu S, Dang W, Wang K, Bai M. lncRNA Oip5-as1 inhibits excessive mitochondrial fission in myocardial ischemia/reperfusion injury by modulating DRP1 phosphorylation. Cell Mol Biol Lett 2024; 29:72. [PMID: 38745296 PMCID: PMC11092055 DOI: 10.1186/s11658-024-00588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Aberrant mitochondrial fission, a critical pathological event underlying myocardial ischemia/reperfusion (MI/R) injury, has emerged as a potential therapeutic target. The long non-coding RNA (lncRNA) Oip5-as1 is increasingly recognized for its regulatory roles, particularly in MI/R injury. However, its precise mechanistic role in modulating mitochondrial dynamics remains elusive. This study aims to elucidate the mechanistic role of Oip5-as1 in regulating mitochondrial fission and evaluate its therapeutic potential against MI/R injury. METHODS To simulate in vitro MI/R injury, HL-1 cardiomyocytes were subjected to hypoxia/reoxygenation (H/R). Lentiviral vectors were employed to achieve overexpression or knockdown of Oip5-as1 in HL-1 cells by expressing Oip5-as1 or shRNA targeting Oip5-as1, respectively. The impact of Oip5-as1 on mitochondrial dynamics in HL-1 cells was assessed using CCK-8 assay, flow cytometry, immunofluorescence staining, and biochemical assays. MI/R injury was induced in mice by ligating the left anterior descending coronary artery. Conditional knockout mice for Oip5-as1 were generated using the CRISPR/Cas9 genome editing technology, while overexpression of Oip5-as1 in mice was achieved via intramyocardial administration of AAV9 vectors. In mice, the role of Oip5-as1 was evaluated through echocardiographic assessment, histopathological staining, and transmission electron microscopy. Furthermore, Western blotting, RNA pull-down, RNA immunoprecipitation, and co-immunoprecipitation assays were conducted to investigate Oip5-as1's underlying mechanisms. RESULTS The expression levels of Oip5-as1 are significantly decreased in MI/R-injured HL-1 cells and myocardium. In HL-1 cells undergoing H/R injury, overexpression of Oip5-as1 attenuated excessive mitochondrial fission, preserved mitochondrial functionality, and reduced cellular apoptosis, while knockdown of Oip5-as1 exhibited the opposite effects. Furthermore, in a mouse model of MI/R injury, overexpression of Oip5-as1 diminished mitochondrial fission, myocardial infarct size and improved cardiac function. However, knockout of Oip5-as1 exacerbated myocardial injury and cardiac dysfunction, which were significantly reversed by treatment with a mitochondrial division inhibitor-1 (Mdivi-1). Mechanistically, Oip5-as1 selectively interacts with AKAP1 and CaN proteins, inhibiting CaN activation and subsequent DRP1 dephosphorylation at Ser637, thereby constraining DRP1's translocation to the mitochondria and its involvement in mitochondrial fission. CONCLUSIONS Our study underscores the pivotal role of Oip5-as1 in mitigating excessive mitochondrial fission during MI/R injury. The findings not only enhance our comprehension of the molecular mechanisms underlying MI/R injury but also identify Oip5-as1 as a potential therapeutic target for ameliorating MI/R injury.
Collapse
Affiliation(s)
- Xiaowei Niu
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
- Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jingjing Zhang
- Medical Genetics Center, Gansu Provincial Central Hospital/Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu, 730000, China
- Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Lanzhou, Gansu, 730000, China
| | - Shuwen Hu
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
- Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wenhui Dang
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Kaiwen Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Ming Bai
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China.
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China.
- Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China.
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
3
|
Liu M, Zhang S, Zhou H, Hu X, Li J, Fu B, Wei M, Huang H, Wu H. The interplay between non-coding RNAs and alternative splicing: from regulatory mechanism to therapeutic implications in cancer. Theranostics 2023; 13:2616-2631. [PMID: 37215575 PMCID: PMC10196821 DOI: 10.7150/thno.83920] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Alternative splicing (AS) is a common and conserved process in eukaryotic gene regulation. It occurs in approximately 95% of multi-exon genes, greatly enriching the complexity and diversity of mRNAs and proteins. Recent studies have found that in addition to coding RNAs, non-coding RNAs (ncRNAs) are also inextricably linked with AS. Multiple different types of ncRNAs are generated by AS of precursor long non-coding (pre-lncRNAs) or precursor messenger RNAs (pre-mRNAs). Furthermore, ncRNAs, as a novel class of regulators, can participate in AS regulation by interacting with the cis-acting elements or trans-acting factors. Several studies have implicated abnormal expression of ncRNAs and ncRNA-related AS events in the initiation, progression, and therapy resistance in various types of cancers. Therefore, owing to their roles in mediating drug resistance, ncRNAs, AS-related factors and AS-related novel antigens may serve as promising therapeutic targets in cancer treatment. In this review, we summarize the interaction between ncRNAs and AS processes, emphasizing their great influences on cancer, especially on chemoresistance, and highlighting their potential values in clinical treatment.
Collapse
Affiliation(s)
- Min Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Subo Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Heng Zhou
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P. R. China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Jianing Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Boshi Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, Liaoning, P. R. China
| | - Huilin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| |
Collapse
|
4
|
Yang S, Wang X, Zhou X, Hou L, Wu J, Zhang W, Li H, Gao C, Sun C. ncRNA-mediated ceRNA regulatory network: Transcriptomic insights into breast cancer progression and treatment strategies. Biomed Pharmacother 2023; 162:114698. [PMID: 37060661 DOI: 10.1016/j.biopha.2023.114698] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023] Open
Abstract
With the rapid development of next-generation sequencing technology, several studies have shown that ncRNAs can act as competitive endogenous RNAs (ceRNAs) and are involved in various biological processes, such as proliferation, differentiation, apoptosis, and migration of breast cancer (BC) cells, and plays an important role in BC progression as a molecular target for its diagnosis, treatment, prognosis, and differentiation of subtypes and age groups of BC patients. Based on the description of ceRNA-related biological functions, this study screened and sorted the sequencing analysis and experimental verification conclusions of BC-related ceRNAs and found that the ncRNAs mediated ceRNA networks can promote the development of BC by promoting the expression of genes related to BC proliferation, drug resistance, and apoptosis, inducing the production of epithelial-mesenchymal transition (EMT) to promote metastasis and activating cancer-related signaling pathways.
Collapse
Affiliation(s)
- Shu Yang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Xiaomin Wang
- Special Medicine Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xintong Zhou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Hou
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfeng Zhang
- School of Traditional Chinese Medicine, Macau University of Science and Technology, Macao Special Administrative Region, China
| | - Huayao Li
- College of Chinese Medicine, Weifang Medical University, Weifang, China
| | - Chundi Gao
- College of Chinese Medicine, Weifang Medical University, Weifang, China
| | - Changgang Sun
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China; College of Chinese Medicine, Weifang Medical University, Weifang, China.
| |
Collapse
|
5
|
Mao C, Li X. Long noncoding RNA OIP5-AS1 promotes the stemness of lung cancer cells through enhancing Oct4 mRNA stability. ENVIRONMENTAL TOXICOLOGY 2022; 37:1104-1112. [PMID: 35044041 DOI: 10.1002/tox.23468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Long noncoding RNA (lncRNA) OIP5-AS1 was shown to facilitate drug resistance and metastasis in several tumors. As cancer stem cells (CSCs) have been elucidated as the origin of drug resistance and tumor progression, we speculate that lncRNA OIP5-AS1 holds critical roles in the CSC-like traits of lung cancer. Here, lncRNA OIP5-AS1 was found to be highly expressed in lung cancer cell spheres. Following experiments showed that OIP-AS1 knockdown reduced the CSC-like traits of lung cancer spheres, while overexpression of OIP-AS1 conferred the CSC-like traits in lung cancer cells by performing sphere-formation analysis, detecting stemness marker expression, and ALDH activity. Mechanistic studies revealed that lncRNA OIP5-AS1 could increase Oct4 expression by directly interacting with Oct4 mRNA and enhancing Oct4 mRNA stability. Finally, we found that the knockdown of Oct4 could rescue the promoting effects of OIP5-AS1 overexpression on the CSC-like traits of lung cancer. These results demonstrate that lncRNA OIP5-AS1 can confer lung cancer CSC-like traits by directly interacting with Oct4 mRNA and thus increasing Oct4 mRNA stability and expression.
Collapse
Affiliation(s)
- Chengye Mao
- Department of Respiratory Medicine, Sanming First Hospital, The Affiliated Hospital of Fujian Medical University, Sanming, China
| | - Xionghui Li
- Department of Respiratory Medicine, Sanming First Hospital, The Affiliated Hospital of Fujian Medical University, Sanming, China
| |
Collapse
|
6
|
Wang X, Hua J, Li J, Zhang J, Dzakah EE, Cao G, Lin W. Mechanisms of non-coding RNA-modulated alternative splicing in cancer. RNA Biol 2022; 19:541-547. [PMID: 35427215 PMCID: PMC9037454 DOI: 10.1080/15476286.2022.2062846] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Alternative splicing (AS) is a common and pivotal process for eukaryotic gene expression regulation, which enables a precursor RNA to produce multiple transcript variants with diverse cellular functions. Aberrant AS represents a hallmark of cancer, engaged in all stages of tumorigenesis from initiation to metastasis. Accumulating pieces of evidence have revealed the involvement of non-coding RNAs (ncRNAs) in regulating AS in human cancers. In this review, we overview the underlying mechanisms of non-coding RNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) modulated AS at diverse levels in human cancers, and summarize their regulatory functions in tumorigenesis.
Collapse
Affiliation(s)
- Xiaolin Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science (Hips), Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- University of Science and Technology of China, Hefei, Anhui, P. R. China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, HIPS, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui, P. R. China
| | - Jinghan Hua
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science (Hips), Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Jingxin Li
- University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Jiahui Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science (Hips), Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Emmanuel Enoch Dzakah
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Guozhen Cao
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science (Hips), Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Wenchu Lin
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science (Hips), Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, HIPS, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui, P. R. China
| |
Collapse
|
7
|
Jin X, Yu W, Ye P. MiR-125b enhances doxorubicin-induced cardiotoxicity by suppressing the nucleus-cytoplasmic translocation of YAP via targeting STARD13. ENVIRONMENTAL TOXICOLOGY 2022; 37:730-740. [PMID: 34921586 DOI: 10.1002/tox.23438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/09/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The clinical application of doxorubicin (Dox) is limited due to its cardiotoxicity, while the pathogenesis remains to be fully understood. Recent studies have suggested that microRNA (miRNA) plays an important role in Dox-induced cardiotoxicity. This work aims to investigate the effects of miR-125b in Dox-induced cardiotoxicity. Here, mice model combined with cell line analysis were used, and cell viability assay, detection of reactive oxygen species (ROS), malondialdehyde (MDA) activity, lactate dehydrogenase (LDH) activity, glutathione (GSH) level, glutathione peroxidase (GSH-Px) level, superoxide dismutase (SOD) activity, and histopathological changes were performed to characterize miR-125b effects; real-time quantitative polymerase chain reaction (PCR), luciferase reporter assay, RNA immunoprecipitation, and western blot analysis were subjected to reveal the underlying mechanisms. It was found that miR-125b level was upregulated in myocardial cell line H9C2 treated with Dox and miR-125b overexpression enhanced Dox-induced cytotoxicology of H9C2 cells, while miR-125b inhibition exhibited a protective effect by measuring ROS level and cell viability. In consistent, in vivo experiments with miR-125b agomir or antagomir obtained a consistent result through examining the activity of MDA, LDH, GSH, GSH-Px, SOD, and histopathological changes. Furthermore, we found that miR-125b could target STARD13 and thus suppressed the nucleus-cytoplasmic translocation of yes-associated protein (YAP). Additionally, this STARD13/YAP axis is necessary for miR-125b-mediated regulation on Dox-induced cytotoxicology of H9C2 cells. In conclusion, our study demonstrated that miR-125b could enhance Dox-induced cardiotoxicity through targeting the STARD13/YAP axis.
Collapse
Affiliation(s)
- Xiaoping Jin
- Department of Cardiology, Nanjing First Hospital, Nanjing, China
| | - Wande Yu
- Department of Cardiology, Nanjing First Hospital, Nanjing, China
| | - Peng Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing, China
| |
Collapse
|
8
|
Liu Y, Chen S, Cai K, Zheng D, Zhu C, Li L, Wang F, He Z, Yu C, Sun C. Hypoxia-induced long noncoding RNA NR2F1-AS1 maintains pancreatic cancer proliferation, migration, and invasion by activating the NR2F1/AKT/mTOR axis. Cell Death Dis 2022; 13:232. [PMID: 35283481 PMCID: PMC8918554 DOI: 10.1038/s41419-022-04669-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/02/2022] [Accepted: 02/16/2022] [Indexed: 01/07/2023]
Abstract
Accumulating evidence has demonstrated the essential role of long noncoding RNAs (lncRNAs) in various types of human cancer, including pancreatic cancer (PC). However, the functions and regulatory mechanisms of nuclear receptor subfamily 2 group F member 1 antisense RNA 1 (NR2F1-AS1) that are responsible for its role in the malignant progression of PC cells remains to be investigated. In this study, the biological effects of NR2F1-AS1 and NR2F1 in PC were investigated by in vitro and in vivo experiments. The mechanisms of NR2F1-AS1 were monitored by bioinformatic predictive analysis and confirmatory experiments. Our results indicated that NR2F1-AS1 was overexpressed and positively correlated with poor survival in PC. Depletion of NR2F1-AS1 restrained PC cell proliferation, migration, invasion, and suppressed xenograft tumor growth and metastasis in vitro and in vivo. Mechanistic experiments suggested that NR2F1-AS1 positively regulated the neighboring NR2F1 gene, which subsequently activated AKT/mTOR signaling, resulting in the upregulation of hypoxia-inducible factor-1α (HIF-1α). Further investigations elucidated that NR2F1-AS1 expression was transcriptionally regulated by HIF-1α under hypoxia. These findings demonstrated that hypoxia-induced NR2F1-AS1 expression directly increased NR2F1 levels to promote PC cell proliferation, migration, and invasion by activating AKT/mTOR signaling. Together, these findings suggest that NR2F1-AS1 could be a prospective therapeutic target for PC.
Collapse
Affiliation(s)
- Yanqing Liu
- College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Translational Medicine, College of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Shiyu Chen
- College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Translational Medicine, College of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, No. 9, Beijing Road, Guiyang, Guizhou Province, 550000, China
| | - Kun Cai
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, No. 9, Beijing Road, Guiyang, Guizhou Province, 550000, China
- College of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Dijie Zheng
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, No. 9, Beijing Road, Guiyang, Guizhou Province, 550000, China
- College of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Changhao Zhu
- College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Translational Medicine, College of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, No. 9, Beijing Road, Guiyang, Guizhou Province, 550000, China
| | - Lin Li
- College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Translational Medicine, College of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, No. 9, Beijing Road, Guiyang, Guizhou Province, 550000, China
| | - Feiqing Wang
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Zhiwei He
- College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, No. 9, Beijing Road, Guiyang, Guizhou Province, 550000, China
- College of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chao Yu
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, No. 9, Beijing Road, Guiyang, Guizhou Province, 550000, China
- College of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chengyi Sun
- College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.
- Department of Translational Medicine, College of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China.
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, No. 9, Beijing Road, Guiyang, Guizhou Province, 550000, China.
- College of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
9
|
Circulating Long Non-Coding RNAs as Novel Potential Biomarkers for Osteogenic Sarcoma. Cancers (Basel) 2021; 13:cancers13164214. [PMID: 34439367 PMCID: PMC8392488 DOI: 10.3390/cancers13164214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Circulating cell-free nucleic acids recently became attractive targets to develop non-invasive diagnostic tools for cancer detection. Along with DNA and mRNAs, transcripts lacking coding potential (non-coding RNAs, ncRNAs) directly involved in the process of tumor pathogenesis have been recently detected in liquid biopsies. Interestingly, circulating ncRNAs exhibit specific expression patterns associated with cancer and suggest their role as novel biomarkers. However, the potential of circulating long ncRNAs (c-lncRNAs) to be markers in osteosarcoma (OS) is still elusive. In this study we performed a systematic review to identify thirteen c-lncRNAs whose altered expression in blood associate with OS. We herein discuss the potential impact that these c-lncRNAs may have on clinical decision-making in the management of OS. Overall, we aimed to provide novel insights that can contribute to the development of future precision medicine in oncology.
Collapse
|
10
|
Cozzolino F, Iacobucci I, Monaco V, Monti M. Protein-DNA/RNA Interactions: An Overview of Investigation Methods in the -Omics Era. J Proteome Res 2021; 20:3018-3030. [PMID: 33961438 PMCID: PMC8280749 DOI: 10.1021/acs.jproteome.1c00074] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
The fields of application
of functional proteomics are not limited
to the study of protein–protein interactions; they also extend
to those involving protein complexes that bind DNA or RNA. These interactions
affect fundamental processes such as replication, transcription, and
repair in the case of DNA, as well as transport, translation, splicing,
and silencing in the case of RNA. Analytical or preparative experimental
approaches, both in vivo and in vitro, have been developed to isolate and identify DNA/RNA binding proteins
by exploiting the advantage of the affinity shown by these proteins
toward a specific oligonucleotide sequence. The present review proposes
an overview of the approaches most commonly employed in proteomics
applications for the identification of nucleic acid-binding proteins,
such as affinity purification (AP) protocols, EMSA, chromatin purification
methods, and CRISPR-based chromatin affinity purification, which are
generally associated with mass spectrometry methodologies for the
unbiased protein identification.
Collapse
Affiliation(s)
- Flora Cozzolino
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy.,CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy.,CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| | - Vittoria Monaco
- CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy.,Interuniversity Consortium National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d'Oro, 305-00136 Rome, Italy
| | - Maria Monti
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy.,CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| |
Collapse
|