1
|
Badilla Lobo A, Soutourina O, Peltier J. The current riboswitch landscape in Clostridioides difficile. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001508. [PMID: 39405103 PMCID: PMC11477304 DOI: 10.1099/mic.0.001508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Riboswitches are 5' RNA regulatory elements that are capable of binding to various ligands, such as small metabolites, ions and tRNAs, leading to conformational changes and affecting gene transcription or translation. They are widespread in bacteria and frequently control genes that are essential for the survival or virulence of major pathogens. As a result, they represent promising targets for the development of new antimicrobial treatments. Clostridioides difficile, a leading cause of antibiotic-associated nosocomial diarrhoea in adults, possesses numerous riboswitches in its genome. Accumulating knowledge of riboswitch-based regulatory mechanisms provides insights into the potential therapeutic targets for treating C. difficile infections. This review offers an in-depth examination of the current state of knowledge regarding riboswitch-mediated regulation in C. difficile, highlighting their importance in bacterial adaptability and pathogenicity. Particular attention is given to the ligand specificity and function of known riboswitches in this bacterium. The review also discusses the recent progress that has been made in the development of riboswitch-targeting compounds as potential treatments for C. difficile infections. Future research directions are proposed, emphasizing the need for detailed structural and functional analyses of riboswitches to fully harness their regulatory capabilities for developing new antimicrobial strategies.
Collapse
Affiliation(s)
- Adriana Badilla Lobo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Johann Peltier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
2
|
Zhang M, Li L, Li C, Ma A, Li J, Yang C, Chen X, Cao P, Li S, Zhang Y, Yuchi Z, Du X, Liu C, Wang X, Wang X, Xiang W. Natural product guvermectin inhibits guanosine 5'-monophosphate synthetase and confers broad-spectrum antibacterial activity. Int J Biol Macromol 2024; 267:131510. [PMID: 38608989 DOI: 10.1016/j.ijbiomac.2024.131510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Bacterial diseases caused substantial yield losses worldwide, with the rise of antibiotic resistance, there is a critical need for alternative antibacterial compounds. Natural products (NPs) from microorganisms have emerged as promising candidates due to their potential as cost-effective and environmentally friendly bactericides. However, the precise mechanisms underlying the antibacterial activity of many NPs, including Guvermectin (GV), remain poorly understood. Here, we sought to explore how GV interacts with Guanosine 5'-monophosphate synthetase (GMPs), an enzyme crucial in bacterial guanine synthesis. We employed a combination of biochemical and genetic approaches, enzyme activity assays, site-directed mutagenesis, bio-layer interferometry, and molecular docking assays to assess GV's antibacterial activity and its mechanism targeting GMPs. The results showed that GV effectively inhibits GMPs, disrupting bacterial guanine synthesis. This was confirmed through drug-resistant assays and direct enzyme inhibition studies. Bio-layer interferometry assays demonstrated specific binding of GV to GMPs, with dependency on Xanthosine 5'-monophosphate. Site-directed mutagenesis identified key residues crucial for the GV-GMP interaction. This study elucidates the antibacterial mechanism of GV, highlighting its potential as a biocontrol agent in agriculture. These findings contribute to the development of novel antibacterial agents and underscore the importance of exploring natural products for agricultural disease management.
Collapse
Affiliation(s)
- Manman Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, Plant Pathology Department, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Lei Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Cheng Li
- College of Agriculture, Key Laboratory of Agricultural Microbiology of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Aifang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Junzhou Li
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chenyu Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xujun Chen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, Plant Pathology Department, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Peng Cao
- Key Laboratory of Drug Targets and Drug Leads for Degenerative Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xiangge Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, Plant Pathology Department, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Chongxi Liu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Xiaodan Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, Plant Pathology Department, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Li C, Yin L, He X, Jin Y, Zhu X, Wu R. Competition-cooperation mechanism between Escherichia coli and Staphylococcus aureus based on systems mapping. Front Microbiol 2023; 14:1192574. [PMID: 38029174 PMCID: PMC10657823 DOI: 10.3389/fmicb.2023.1192574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Interspecies interactions are a crucial driving force of species evolution. The genes of each coexisting species play a pivotal role in shaping the structure and function within the community, but how to identify them at the genome-wide level has always been challenging. Methods In this study, we embed the Lotka-Volterra ordinary differential equations in the theory of community ecology into the systems mapping model, so that this model can not only describe how the quantitative trait loci (QTL) of a species directly affects its own phenotype, but also describe the QTL of the species how to indirectly affect the phenotype of its interacting species, and how QTL from different species affects community behavior through epistatic interactions. Results By designing and implementing a co-culture experiment for 100 pairs of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), we mapped 244 significant QTL combinations in the interaction process of the two bacteria using this model, including 69 QTLs from E. coli and 59 QTLs from S. aureus, respectively. Through gene annotation, we obtained 57 genes in E. coli, among which the genes with higher frequency were ypdC, nrfC, yphH, acrE, dcuS, rpnE, and ptsA, while we obtained 43 genes in S. aureus, among which the genes with higher frequency were ebh, SAOUHSC_00172, capF, gdpP, orfX, bsaA, and phnE1. Discussion By dividing the overall growth into independent growth and interactive growth, we could estimate how QTLs modulate interspecific competition and cooperation. Based on the quantitative genetic model, we can obtain the direct genetic effect, indirect genetic effect, and genome-genome epistatic effect related to interspecific interaction genes, and then further mine the hub genes in the QTL networks, which will be particularly useful for inferring and predicting the genetic mechanisms of community dynamics and evolution. Systems mapping can provide a tool for studying the mechanism of competition and cooperation among bacteria in co-culture, and this framework can lay the foundation for a more comprehensive and systematic study of species interactions.
Collapse
Affiliation(s)
- Caifeng Li
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Lixin Yin
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiaoqing He
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology, Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Yi Jin
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology, Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Xuli Zhu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology, Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology, Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
4
|
Ballut L, Violot S, Kumar S, Aghajari N, Balaram H. GMP Synthetase: Allostery, Structure, and Function. Biomolecules 2023; 13:1379. [PMID: 37759779 PMCID: PMC10526850 DOI: 10.3390/biom13091379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Glutamine amidotransferases (GATs) catalyze the hydrolysis of glutamine and transfer the generated ammonia to diverse metabolites. The two catalytic activities, glutaminolysis and the subsequent amination of the acceptor substrate, happen in two distinct catalytic pockets connected by a channel that facilitates the movement of ammonia. The de novo pathway for the synthesis of guanosine monophosphate (GMP) from xanthosine monophosphate (XMP) is enabled by the GAT GMP synthetase (GMPS). In most available crystal structures of GATs, the ammonia channel is evident in their native state or upon ligand binding, providing molecular details of the conduit. In addition, conformational changes that enable the coordination of the two catalytic chemistries are also informed by the available structures. In contrast, despite the first structure of a GMPS being published in 1996, the understanding of catalysis in the acceptor domain and inter-domain crosstalk became possible only after the structure of a glutamine-bound mutant of Plasmodium falciparum GMPS was determined. In this review, we present the current status of our understanding of the molecular basis of catalysis in GMPS, becoming the first comprehensive assessment of the biochemical function of this intriguing enzyme.
Collapse
Affiliation(s)
- Lionel Ballut
- Molecular Microbiology and Structural Biochemistry, CNRS, University of Lyon1, UMR5086, 7 Passage du Vercors, CEDEX 07, F-69367 Lyon, France; (L.B.); (S.V.)
| | - Sébastien Violot
- Molecular Microbiology and Structural Biochemistry, CNRS, University of Lyon1, UMR5086, 7 Passage du Vercors, CEDEX 07, F-69367 Lyon, France; (L.B.); (S.V.)
| | - Sanjeev Kumar
- Trivedi School of Biosciences, Ashoka University, Rajiv Gandhi Education City, Sonipat 131029, Haryana, India;
| | - Nushin Aghajari
- Molecular Microbiology and Structural Biochemistry, CNRS, University of Lyon1, UMR5086, 7 Passage du Vercors, CEDEX 07, F-69367 Lyon, France; (L.B.); (S.V.)
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur 560064, Bangalore, India
| |
Collapse
|
5
|
Huang H, He J, Gao X, Lei J, Zhang Y, Wang Y, Liu X, Hao J. Mechanism of acid and alkali electrolyzed water on the elimination of Listeria monocytogenes biofilm based on proteomic analysis. J Proteomics 2023; 286:104952. [PMID: 37390895 DOI: 10.1016/j.jprot.2023.104952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 07/02/2023]
Abstract
Acidic electrolyzed water is a relatively mature bactericide, which has a certain inhibitory effect on a variety of microorganisms, and is widely used in the field of food processing for cleaning, sterilization and disinfection. This study investigated the deactivation mechanisms of Listeria monocytogenes by Tandem Mass Tags quantitative proteomics analysis. Samples were treated through A1S4 (Alkaline electrolytic water treatment for 1 min and Acid electrolytic water treatment for 4 min), S3A1S1 (Acid electrolyzed water treatment 3 min, Alkaline electrolyzed water treatment 1 min and Acid electrolyzed water treatment 1 min), S5 (Acid electrolytic water treatment for 5 min). Proteomic analysis showed that the mechanism of acid alkaline electrolyzed water treatment to eliminate the inactivation of the biofilm of L. monocytogenes was related to protein transcription and extension, RNA processing and synthesis, gene regulation, sugar and amino acid transport and metabolism, signal transduction and ATP binding. The study on the influence mechanism and action mechanism of the combination of acidic and alkaline electrolyzed water to remove L. monocytogenes biofilm is helpful to understand the development of the process of removing biofilm by electrolyzed water, and provides theoretical support for the treatment of other microbial contamination problems in food processing by electrolyzed water.
Collapse
Affiliation(s)
- Hanbing Huang
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, Hebei 050018, China
| | - Jialin He
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, Hebei 050018, China
| | - Xiangyu Gao
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, Hebei 050018, China
| | - Jun Lei
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, Hebei 050018, China
| | - Yuxi Zhang
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, Hebei 050018, China
| | - Yan Wang
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, Hebei 050018, China
| | - Xueqiang Liu
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, Hebei 050018, China.
| | - Jianxiong Hao
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, Hebei 050018, China.
| |
Collapse
|
6
|
Costa VG, Costa SM, Saramago M, Cunha MV, Arraiano CM, Viegas SC, Matos RG. Developing New Tools to Fight Human Pathogens: A Journey through the Advances in RNA Technologies. Microorganisms 2022; 10:2303. [PMID: 36422373 PMCID: PMC9697208 DOI: 10.3390/microorganisms10112303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 09/18/2024] Open
Abstract
A long scientific journey has led to prominent technological advances in the RNA field, and several new types of molecules have been discovered, from non-coding RNAs (ncRNAs) to riboswitches, small interfering RNAs (siRNAs) and CRISPR systems. Such findings, together with the recognition of the advantages of RNA in terms of its functional performance, have attracted the attention of synthetic biologists to create potent RNA-based tools for biotechnological and medical applications. In this review, we have gathered the knowledge on the connection between RNA metabolism and pathogenesis in Gram-positive and Gram-negative bacteria. We further discuss how RNA techniques have contributed to the building of this knowledge and the development of new tools in synthetic biology for the diagnosis and treatment of diseases caused by pathogenic microorganisms. Infectious diseases are still a world-leading cause of death and morbidity, and RNA-based therapeutics have arisen as an alternative way to achieve success. There are still obstacles to overcome in its application, but much progress has been made in a fast and effective manner, paving the way for the solid establishment of RNA-based therapies in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Sandra C. Viegas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (V.G.C.); (S.M.C.); (M.S.); (M.V.C.); (C.M.A.)
| | - Rute G. Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (V.G.C.); (S.M.C.); (M.S.); (M.V.C.); (C.M.A.)
| |
Collapse
|
7
|
Tertiary and Quaternary Structure Organization in GMP Synthetases: Implications for Catalysis. Biomolecules 2022; 12:biom12070871. [PMID: 35883427 PMCID: PMC9312489 DOI: 10.3390/biom12070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Glutamine amidotransferases, enzymes that transfer nitrogen from Gln to various cellular metabolites, are modular, with the amidotransferase (GATase) domain hydrolyzing Gln, generating ammonia and the acceptor domain catalyzing the addition of nitrogen onto its cognate substrate. GMP synthetase (GMPS), an enzyme in the de novo purine nucleotide biosynthetic pathway, is a glutamine amidotransferase that catalyzes the synthesis of GMP from XMP. The reaction involves activation of XMP though adenylation by ATP in the ATP pyrophosphatase (ATPPase) active site, followed by channeling and attack of NH3 generated in the GATase pocket. This complex chemistry entails co-ordination of activity across the active sites, allosteric activation of the GATase domain to modulate Gln hydrolysis and channeling of ammonia from the GATase to the acceptor active site. Functional GMPS dimers associate through the dimerization domain. The crystal structure of the Gln-bound complex of Plasmodium falciparum GMPS (PfGMPS) for the first time revealed large-scale domain rotation to be associated with catalysis and leading to the juxtaposition of two otherwise spatially distal cysteinyl (C113/C337) residues. In this manuscript, we report on an unusual structural variation in the crystal structure of the C89A/C113A PfGMPS double mutant, wherein a larger degree of domain rotation has led to the dissociation of the dimeric structure. Furthermore, we report a hitherto overlooked signature motif tightly related to catalysis.
Collapse
|