1
|
Liang YF, You QX, Chen SY, Ni L, Meng XL, Gao JX, Ren YB, Song HJ, Su JL, Teng Y, Gu QY, Lv C, Yuan BY, Wang X, Zheng YT, Zhang DD. The Impact of Hydrogen Sulfide in the Paraventricular Nucleus on the MAPK Pathway in High Salt-Induced Hypertension. J Cardiovasc Pharmacol 2024; 84:468-478. [PMID: 39115898 PMCID: PMC11446517 DOI: 10.1097/fjc.0000000000001622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 08/01/2024] [Indexed: 10/04/2024]
Abstract
ABSTRACT The hypothalamic paraventricular nucleus (PVN) plays a central role in regulating cardiovascular activity and blood pressure. We administered hydroxylamine hydrochloride (HA), a cystathionine-β-synthase inhibitor, into the PVN to suppress endogenous hydrogen sulfide and investigate its effects on the mitogen-activated protein kinase (MAPK) pathway in high salt (HS)-induced hypertension. We randomly divided 40 male Dahl salt-sensitive rats into 4 groups: the normal salt (NS) + PVN vehicle group, the NS + PVN HA group, the HS + PVN vehicle group, and the HS + PVN HA group, with 10 rats in each group. The rats in the NS groups were fed a NS diet containing 0.3% NaCl, while the HS groups were fed a HS diet containing 8% NaCl. The mean arterial pressure was calculated after noninvasive measurement using an automatic sphygmomanometer to occlude the tail cuff once a week. HA or vehicle was infused into the bilateral PVN using Alzet osmotic mini pumps for 6 weeks after the hypertension model was successfully established. We measured the levels of H 2 S in the PVN and plasma norepinephrine using enzyme linked immunosorbent assay. In addition, we assessed the parameters of the MAPK pathway, inflammation, and oxidative stress through western blotting, immunohistochemical analysis, or real-time polymerase chain reaction. In this study, we discovered that decreased levels of endogenous hydrogen sulfide in the PVN contributed to the onset of HS-induced hypertension. This was linked to the activation of the MAPK signaling pathway, proinflammatory cytokines, and oxidative stress in the PVN, as well as the activation of the sympathetic nervous system.
Collapse
Affiliation(s)
- Yan-Feng Liang
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Qing-Xin You
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Shu-Yue Chen
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Lei Ni
- First Affiliated Hospital, Jiamusi University, Jiamusi, China
| | - Xiang-Lian Meng
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Jian-Xiang Gao
- Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, China; and
| | - Yong-Bo Ren
- First Affiliated Hospital, Jiamusi University, Jiamusi, China
| | - Han-Jun Song
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Jia-Lu Su
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Yang Teng
- School of Pharmacy, Jiamusi University, Jiamusi, China
| | - Qing-Yun Gu
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Chao Lv
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Bo-Yang Yuan
- First Affiliated Hospital, Jiamusi University, Jiamusi, China
| | - Xuan Wang
- First Affiliated Hospital, Jiamusi University, Jiamusi, China
| | - Yong-Tai Zheng
- First Affiliated Hospital, Jiamusi University, Jiamusi, China
| | - Dong-Dong Zhang
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| |
Collapse
|
2
|
Xu Y, Liu W, Ren L. Role of m6A RNA Methylation in Ischemic Stroke. Mol Neurobiol 2024; 61:6997-7008. [PMID: 38363537 DOI: 10.1007/s12035-024-04029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Ischemic stroke is a prominent contributor to global morbidity and mortality rates. The intricate and diverse mechanisms underlying ischemia-reperfusion injury remain poorly comprehended. RNA methylation, an emerging epigenetic modification, plays a crucial role in regulating numerous biological processes, including immunity, DNA damage response, tumorigenesis, metastasis, stem cell renewal, adipocyte differentiation, circadian rhythms, cellular development and differentiation, and cell division. Among the various RNA modifications, N6-methyladenosine (m6A) modification stands as the most prevalent in mammalian mRNA. Recent studies have demonstrated the crucial involvement of m6A modification in the pathophysiological progression of ischemic stroke. This review aims to elucidate the advancements in ischemic stroke-specific investigations pertaining to m6A modification, consolidate the underlying mechanisms implicated in the participation of m6A modification during the onset of ischemic stroke, and deliberate on the potential of m6A modification as a viable therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Yayun Xu
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Wenqiang Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230000, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230000, China
| | - Lijie Ren
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| |
Collapse
|
3
|
Tong Y, Wang DD, Zhang YL, He S, Chen D, Wu YX, Pang QF. MiR-196a-5p hinders vascular smooth muscle cell proliferation and vascular remodeling via repressing BACH1 expression. Sci Rep 2024; 14:16904. [PMID: 39043832 PMCID: PMC11266626 DOI: 10.1038/s41598-024-68122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024] Open
Abstract
Hyperproliferation of vascular smooth muscle cells (VSMCs) is a driver of hypertensive vascular remodeling. This study aimed to uncover the mechanism of BTB and CNC homology 1 (BACH1) and microRNAs (miRNAs) in VSMC growth and hypertensive vascular remodeling. With the help of TargetScan, miRWalk, miRDB, and miRTarBase online database, we identified that BACH1 might be targeted by miR-196a-5p, and overexpressed in VSMCs and aortic tissues from spontaneously hypertensive rats (SHRs). Gain- and loss-of-function experiments demonstrated that miR-196a-5p suppressed VSMC proliferation, oxidative stress and hypertensive vascular remodeling. Double luciferase reporter gene assay and functional verification showed that miR-196a-5p cracked down the transcription and translation of BACH1 in both Wistar Kyoto rats (WKYs) and SHRs. Silencing BACH1 mimicked the actions of miR-196a-5p overexpression on attenuating the proliferation and oxidative damage of VSMCs derived from SHRs. Importantly, miR-196a-5p overexpression and BACH1 knockdown cooperatively inhibited VSMC proliferation and oxidative stress in SHRs. Furthermore, miR-196a-5p, if knocked down in SHRs, aggravated hypertension, upregulated BACH1 and promoted VSMC proliferation, all contributing to vascular remodeling. Taken together, targeting miR-196a-5p to downregulate BACH1 may be a promising strategy for retarding VSMC proliferation and hypertensive vascular remodeling.
Collapse
Affiliation(s)
- Ying Tong
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Dan-Dan Wang
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Yan-Li Zhang
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Shuai He
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Dan Chen
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Ya-Xian Wu
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Qing-Feng Pang
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
4
|
Gutschner T. RNA therapeutics. RNA Biol 2024; 21:1-2. [PMID: 36629444 DOI: 10.1080/15476286.2022.2161704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Tony Gutschner
- Junior Research Group 'RNA Biology and Pathogenesis', Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
5
|
Zhang L, Kang Q, Kang M, Jiang S, Yang F, Gong J, Ou G, Wang S. Regulation of main ncRNAs by polyphenols: A novel anticancer therapeutic approach. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155072. [PMID: 37714063 DOI: 10.1016/j.phymed.2023.155072] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Plant polyphenols have shown promising applications in oncotherapy. Increasing evidence reveals that polyphenols possess the antitumor potential for multiple cancers. Non-coding RNAs (ncRNAs), mainly including small ncRNAs (microRNA) and long ncRNAs (lncRNAs), play critical roles in cancer initiation and progression. PURPOSE To establish the modulation of ncRNAs by polyphenols as a novel and promising approach in anticancer treatment. STUDY DESIGN The present research employed ncRNA, miRNA, lncRNA, and regulatory mechanism as keywords to retrieve the literature from PubMed, Web of Science, Science direct, and Google Scholar, in a 20-year period from 2003 to 2023. This study critically reviewed the current literature and presented the regulation of prominent ncRNAs by polyphenols. A comprehensive total of 169 papers were retrieved on polyphenols and their related ncRNAs in cancers. RESULTS NcRNAs, mainly including miRNA and lncRNA, play critical roles in cancer initiation and progression, which are potential modulatory targets of bioactive polyphenols, such as resveratrol, genistein, curcumin, EGCG, quercetin, in cancer management. The mechanism involved in polyphenol-mediated ncRNA regulation includes epigenetic and transcriptional modification, and post-transcriptional processing. CONCLUSION Regulatory ncRNAs are potential therapeutic targets of bioactive polyphenols, and these phytochemicals could modulate the level of these ncRNAs directly and indirectly. A better comprehension of the ncRNA regulation by polyphenols in cancers, their functional outcomes on tumor pathophysiology and regulatory molecular mechanisms, may be helpful to develop effective strategies to fight the devastating disease.
Collapse
Affiliation(s)
- Liang Zhang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan 430079, China
| | - Qingzheng Kang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518061, China
| | | | - Suwei Jiang
- School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Feng Yang
- BGI-Shenzhen, Shenzhen 518103, China
| | - Jun Gong
- Central Laboratory, Yunfu People's Hospital, Yunfu 527399, China
| | - Gaozhi Ou
- School of Physical Education, China University of Geosciences, Wuhan 430074, China
| | - Song Wang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
6
|
Qaed E, Almoiliqy M, Al-Hamyari B, Qaid A, Alademy H, Al-Maamari A, Alyafeai E, Geng Z, Tang Z, Ma X. Procyanidins: A promising anti-diabetic agent with potential benefits on glucose metabolism and diabetes complications. Wound Repair Regen 2023; 31:688-699. [PMID: 37553788 DOI: 10.1111/wrr.13115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Diabetes mellitus (DM) is a complex disease with alarming worldwide health implications and high mortality rates, largely due to its complications such as cardiovascular disease, nephropathy, neuropathy, and retinopathy. Recent research has shown that procyanidins (PC), a type of flavonoid, have strong antioxidant and free radical elimination effects, and may be useful in improving glucose metabolism, enhancing pancreatic islet cell activity, and decreasing the prevalence of DM complications. This review article presents a systematic search for peer-reviewed articles on the use of PC in the treatment of DM, without any language restrictions. The article also discusses the potential for PC to sensitise DM medications and improve their efficacy. Recent in vivo and in vitro studies have demonstrated promising results in improving the biological activity and bioavailability of PC for the treatment of DM. The article concludes by highlighting the potential for novel materials and targeted drug delivery methods to enhance the pharmacokinetics and bioactivity of PC, leading to the creation of safer and more effective anti-DM medications in the future.
Collapse
Affiliation(s)
- Eskandar Qaed
- Chemistry and Chemical Engineering Department, Lanzhou University, Gansu, China
| | - Marwan Almoiliqy
- Department of Pharmacy, Faculty of Medicine and Health Sciences, University of Science and Technology, Aden, Yemen
| | - Bandar Al-Hamyari
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, People's Republic of China
| | - Abdullah Qaid
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Haneen Alademy
- Taiz University Faculty of Medicine and Health Science, Taizz, Yemen
| | - Ahmed Al-Maamari
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Eman Alyafeai
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Zhaohong Geng
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zeyao Tang
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Xiaodong Ma
- Department of Pharmacology, Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Gai Y, He ZJ, Wang SG, Wang N, Ge ZJ, Huang G, Shen W, Yin S, Zhao M. Epigallocatechin gallate improves meiosis maturation against Diazinon exposure in porcine oocytes. Theriogenology 2023; 196:1-9. [PMID: 36371914 DOI: 10.1016/j.theriogenology.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022]
Abstract
Diazinon (DZN) is a refractory organophosphorus pesticide (OP) in the surrounding environment due to its overuse in agriculture. The antioxidant activity of Epigallocatechin gallate (EGCG) from green tea is at least 100 times greater than that of vitamin C. This study aimed to study the effects of DZN on the meiotic maturation of porcine oocytes, as well as the protective roles of EGCG. Firstly, the effects of DZN and EGCG on meiotic nuclear maturation of porcine oocytes were detected, and then embryonic development was investigated by chemical parthenogenetic activation. Next, the spindle assembly, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), DNA damage, and finally the early apoptosis of oocytes were examined by immunofluorescence staining. The results revealed that DZN exposure significantly reduced the quality of porcine oocytes, such as failure of nuclear and cytoplasmic maturation, evidenced by abnormal spindle assembly, disordered chromosome alignment, low MMP, observably increased ROS, severe DNA damage, and early apoptosis. Appropriate EGCG could significantly reduce all these defects caused by DZN. In conclusion, EGCG can help prevent the harm that DZN exposure can do. These findings offer convincing support for enhancing the oocyte quality from EGCG through daily ordinary beverages.
Collapse
Affiliation(s)
- Yang Gai
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhao-Jie He
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shao-Ge Wang
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Wang
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhao-Jia Ge
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guian Huang
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shen Yin
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Minghui Zhao
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
8
|
Ilieva M, Uchida S. Potential Involvement of LncRNAs in Cardiometabolic Diseases. Genes (Basel) 2023; 14:213. [PMID: 36672953 PMCID: PMC9858747 DOI: 10.3390/genes14010213] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Characterized by cardiovascular disease and diabetes, cardiometabolic diseases are a major cause of mortality around the world. As such, there is an urgent need to understand the pathogenesis of cardiometabolic diseases. Increasing evidence suggests that most of the mammalian genome are transcribed as RNA, but only a few percent of them encode for proteins. All of the RNAs that do not encode for proteins are collectively called non-protein-coding RNAs (ncRNAs). Among these ncRNAs, long ncRNAs (lncRNAs) are considered as missing keys to understand the pathogeneses of various diseases, including cardiometabolic diseases. Given the increased interest in lncRNAs, in this study, we will summarize the latest trend in the lncRNA research from the perspective of cardiometabolism and disease by focusing on the major risk factors of cardiometabolic diseases: obesity, cholesterol, diabetes, and hypertension. Because genetic inheritance is unavoidable in cardiometabolic diseases, we paid special attention to the genetic factors of lncRNAs that may influence cardiometabolic diseases.
Collapse
Affiliation(s)
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark or
| |
Collapse
|
9
|
Ngum JA, Tatang FJ, Toumeni MH, Nguengo SN, Simo USF, Mezajou CF, Kameni C, Ngongang NN, Tchinda MF, Dongho Dongmo FF, Akami M, Ngane Ngono AR, Tamgue O. An overview of natural products that modulate the expression of non-coding RNAs involved in oxidative stress and inflammation-associated disorders. Front Pharmacol 2023; 14:1144836. [PMID: 37168992 PMCID: PMC10165025 DOI: 10.3389/fphar.2023.1144836] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Oxidative stress is a state in which oxidants are produced in excess in the body's tissues and cells, resulting in a biological imbalance amid the generation of reactive oxygen and nitrogen species (RONS) from redox reactions. In case of insufficient antioxidants to balance, the immune system triggers signaling cascades to mount inflammatory responses. Oxidative stress can have deleterious effects on major macromolecules such as lipids, proteins, and nucleic acids, hence, Oxidative stress and inflammation are among the multiple factors contributing to the etiology of several disorders such as diabetes, cancers, and cardiovascular diseases. Non-coding RNAs (ncRNAs) which were once referred to as dark matter have been found to function as key regulators of gene expression through different mechanisms. They have dynamic roles in the onset and development of inflammatory and oxidative stress-related diseases, therefore, are potential targets for the control of those diseases. One way of controlling those diseases is through the use of natural products, a rich source of antioxidants that have drawn attention with several studies showing their involvement in combating chronic diseases given their enormous gains, low side effects, and toxicity. In this review, we highlighted the natural products that have been reported to target ncRNAs as mediators of their biological effects on oxidative stress and several inflammation-associated disorders. Those natural products include Baicalein, Tanshinone IIA, Geniposide, Carvacrol/Thymol, Triptolide, Oleacein, Curcumin, Resveratrol, Solarmargine, Allicin, aqueous extract or pulp of Açai, Quercetin, and Genistein. We also draw attention to some other compounds including Zanthoxylum bungeanum, Canna genus rhizome, Fuzi-ganjiang herb pair, Aronia melanocarpa, Peppermint, and Gingerol that are effective against oxidative stress and inflammation-related disorders, however, have no known effect on ncRNAs. Lastly, we touched on the many ncRNAs that were found to play a role in oxidative stress and inflammation-related disorders but have not yet been investigated as targets of a natural product. Shedding more light into these two last points of shadow will be of great interest in the valorization of natural compounds in the control and therapy of oxidative stress- and inflammation-associated disorders.
Collapse
|
10
|
Capozzi A, Saucier C, Bisbal C, Lambert K. Grape Polyphenols in the Treatment of Human Skeletal Muscle Damage Due to Inflammation and Oxidative Stress during Obesity and Aging: Early Outcomes and Promises. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196594. [PMID: 36235130 PMCID: PMC9573747 DOI: 10.3390/molecules27196594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
Abstract
Today, inactivity and high-calorie diets contribute to the development of obesity and premature aging. In addition, the population of elderly people is growing due to improvements in healthcare management. Obesity and aging are together key risk factors for non-communicable diseases associated with several co-morbidities and increased mortality, with a major impact on skeletal muscle defect and/or poor muscle mass quality. Skeletal muscles contribute to multiple body functions and play a vital role throughout the day, in all our activities. In our society, limiting skeletal muscle deterioration, frailty and dependence is not only a major public health challenge but also a major socio-economic issue. Specific diet supplementation with natural chemical compounds such as grape polyphenols had shown to play a relevant and direct role in regulating metabolic and molecular pathways involved in the prevention and treatment of obesity and aging and their related muscle comorbidities in cell culture and animal studies. However, clinical studies aiming to restore skeletal muscle mass and function with nutritional grape polyphenols supplementation are still very scarce. There is an urgent need for clinical studies to validate the very encouraging results observed in animal models.
Collapse
Affiliation(s)
- Adriana Capozzi
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CEDEX 5, 34295 Montpellier, France
- SPO, INRAE, Institute Agro, University of Montpellier, 34000 Montpellier, France
| | - Cédric Saucier
- SPO, INRAE, Institute Agro, University of Montpellier, 34000 Montpellier, France
| | - Catherine Bisbal
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CEDEX 5, 34295 Montpellier, France
- Correspondence: (C.B.); (K.L.); Tel.: +33-(0)4-1175-9891 (C.B. & K.L.)
| | - Karen Lambert
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CEDEX 5, 34295 Montpellier, France
- Correspondence: (C.B.); (K.L.); Tel.: +33-(0)4-1175-9891 (C.B. & K.L.)
| |
Collapse
|
11
|
Combining virtual screening and in vitro evaluation for the discovery of potential CYP11B2 inhibitors. Future Med Chem 2022; 14:1239-1250. [PMID: 35912798 DOI: 10.4155/fmc-2022-0119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: To search for highly bioactive hits for CYP11B2 inhibitors by virtual screening and in vitro evaluation. Materials & methods: Virtual screening of potential CYP11B2 inhibitors was performed by molecular docking and molecular dynamics simulation. Compound activity was determined by in vitro evaluation using MTT and ELISA assays. Results & conclusion: Based on the results of molecular docking and molecular dynamics simulation, nine lead hits were selected for in vitro biochemical testing. All hits in in vitro experiments had lower inhibitory effects on cell proliferation and certain inhibitory effects on aldosterone secretion. These hits may be excellent candidates for CYP11B2 inhibitors.
Collapse
|