1
|
Kuo YA, Chen YI, Wang Y, Korkmaz Z, Yonas S, He Y, Nguyen TD, Hong S, Nguyen AT, Kim S, Seifi S, Fan PH, Wu Y, Yang Z, Liu HW, Lu Y, Ren P, Yeh HC. Fluorogenic Aptamer Optimizations on a Massively Parallel Sequencing Platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.07.602435. [PMID: 39026723 PMCID: PMC11257435 DOI: 10.1101/2024.07.07.602435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
F luorogenic ap tamers (FAPs) have become an increasingly important tool in cellular sensing and pathogen diagnostics. However, fine-tuning FAPs for enhanced performance remains challenging even with the structural details provided by X-ray crystallography. Here we present a novel approach to optimize a DNA-based FAP (D-FAP), Lettuce, on repurposed Illumina next-generation sequencing (NGS) chips. When substituting its cognate chromophore, DFHBI-1T, with TO1-biotin, Lettuce not only shows a red-shifted emission peak by 53 nm (from 505 to 558 nm), but also a 4-fold bulk fluorescence enhancement. After screening 8,821 Lettuce variants complexed with TO1-biotin, the C14T mutation is found to exhibit an improved apparent dissociated constant ( vs. 0.82 µM), an increased quantum yield (QY: 0.62 vs. 0.59) and an elongated fluorescence lifetime (τ: 6.00 vs. 5.77 ns), giving 45% more ensemble fluorescence than the canonical Lettuce/TO1-biotin complex. Molecular dynamic simulations further indicate that the π-π stacking interaction is key to determining the coordination structure of TO1-biotin in Lettuce. Our screening-and-simulation pipeline can effectively optimize FAPs without any prior structural knowledge of the canonical FAP/chromophore complexes, providing not only improved molecular probes for fluorescence sensing but also insights into aptamer-chromophore interactions.
Collapse
|
2
|
Zacco E, Broglia L, Kurihara M, Monti M, Gustincich S, Pastore A, Plath K, Nagakawa S, Cerase A, Sanchez de Groot N, Tartaglia GG. RNA: The Unsuspected Conductor in the Orchestra of Macromolecular Crowding. Chem Rev 2024; 124:4734-4777. [PMID: 38579177 PMCID: PMC11046439 DOI: 10.1021/acs.chemrev.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 04/07/2024]
Abstract
This comprehensive Review delves into the chemical principles governing RNA-mediated crowding events, commonly referred to as granules or biological condensates. We explore the pivotal role played by RNA sequence, structure, and chemical modifications in these processes, uncovering their correlation with crowding phenomena under physiological conditions. Additionally, we investigate instances where crowding deviates from its intended function, leading to pathological consequences. By deepening our understanding of the delicate balance that governs molecular crowding driven by RNA and its implications for cellular homeostasis, we aim to shed light on this intriguing area of research. Our exploration extends to the methodologies employed to decipher the composition and structural intricacies of RNA granules, offering a comprehensive overview of the techniques used to characterize them, including relevant computational approaches. Through two detailed examples highlighting the significance of noncoding RNAs, NEAT1 and XIST, in the formation of phase-separated assemblies and their influence on the cellular landscape, we emphasize their crucial role in cellular organization and function. By elucidating the chemical underpinnings of RNA-mediated molecular crowding, investigating the role of modifications, structures, and composition of RNA granules, and exploring both physiological and aberrant phase separation phenomena, this Review provides a multifaceted understanding of the intriguing world of RNA-mediated biological condensates.
Collapse
Affiliation(s)
- Elsa Zacco
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Laura Broglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Misuzu Kurihara
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Michele Monti
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Stefano Gustincich
- Central
RNA Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Annalisa Pastore
- UK
Dementia Research Institute at the Maurice Wohl Institute of King’s
College London, London SE5 9RT, U.K.
| | - Kathrin Plath
- Department
of Biological Chemistry, David Geffen School
of Medicine at the University of California Los Angeles, Los Angeles, California 90095, United States
| | - Shinichi Nagakawa
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Andrea Cerase
- Blizard
Institute,
Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, U.K.
- Unit
of Cell and developmental Biology, Department of Biology, Università di Pisa, 56123 Pisa, Italy
| | - Natalia Sanchez de Groot
- Unitat
de Bioquímica, Departament de Bioquímica i Biologia
Molecular, Universitat Autònoma de
Barcelona, 08193 Barcelona, Spain
| | - Gian Gaetano Tartaglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
- Catalan
Institution for Research and Advanced Studies, ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
3
|
Mumbleau M, Chevance F, Hughes K, Hammond MC. Investigating the Effect of RNA Scaffolds on the Multicolor Fluorogenic Aptamer Pepper in Different Bacterial Species. ACS Synth Biol 2024; 13:1093-1099. [PMID: 38593047 PMCID: PMC11037261 DOI: 10.1021/acssynbio.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
RNA synthetic biology tools have primarily been applied in E. coli; however, many other bacteria are of industrial and clinical significance. Thus, the multicolor fluorogenic aptamer Pepper was evaluated in both Gram-positive and Gram-negative bacteria. Suitable HBC-Pepper dye pairs were identified that give blue, green, or red fluorescence signals in the E. coli, Bacillus subtilis, and Salmonella enterica serovar Typhimurium (S. Typhimurium). Furthermore, we found that different RNA scaffolds have a drastic effect on in vivo fluorescence, which did not correlate with the in vitro folding efficiency. One such scaffold termed DF30-tRNA displays 199-fold greater fluorescence than the Pepper aptamer alone and permits simultaneous dual color imaging in live cells.
Collapse
Affiliation(s)
- Madeline
M. Mumbleau
- Department
of Chemistry and Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112, United States
| | - Fabienne Chevance
- School
of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Kelly Hughes
- School
of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ming C. Hammond
- Department
of Chemistry and Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
4
|
Suess B. Synthetic RNA biology. RNA Biol 2024; 21:1-2. [PMID: 38616320 PMCID: PMC11018018 DOI: 10.1080/15476286.2024.2335746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Affiliation(s)
- Beatrix Suess
- Department of Biology, Synthetic RNA Biology, TU Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, TU Darmstadt, Darmstadt, Germany
| |
Collapse
|
5
|
Aggarwal T, Wang L, Gutierrez B, Guven H, Erguven H, Izgu EC. A Small-Molecule Approach to Bypass In Vitro Selection of New Aptamers: Designer Pre-Ligands Turn Baby Spinach into Sensors for Reactive Inorganic Targets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.29.551132. [PMID: 38168427 PMCID: PMC10760011 DOI: 10.1101/2023.07.29.551132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Fluorescent light-up aptamer (FLAP) systems are promising biosensing platforms that can be genetically encoded. Here, we describe how a single FLAP that works with specific organic ligands can detect multiple, structurally unique, non-fluorogenic, and reactive inorganic targets. We developed 4-O-functionalized benzylidene imidazolinones as pre-ligands with suppressed fluorescent binding interactions with the RNA aptamer Baby Spinach. Inorganic targets, hydrogen sulfide (H2S) or hydrogen peroxide (H2O2), can specifically convert these pre-ligands into the native benzylidene imidazolinones, and thus be detected with Baby Spinach. Adaptation of this approach to live cells opened a new opportunity for top-down construction of whole-cell sensors: Escherichia coli transformed with a Baby Spinach-encoding plasmid and incubated with pre-ligands generated fluorescence in response to exogenous H2S or H2O2. Our approach eliminates the requirement of in vitro selection of a new aptamer sequence for molecular target detection, allows for the detection of short-lived targets, thereby advancing FLAP systems beyond their current capabilities. Leveraging the functional group reactivity of small molecules can lead to cell-based sensors for inorganic molecular targets, exploiting a new synergism between synthetic organic chemistry and synthetic biology.
Collapse
Affiliation(s)
- Tushar Aggarwal
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Liming Wang
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Bryan Gutierrez
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Hakan Guven
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Huseyin Erguven
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Enver Cagri Izgu
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
- Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
6
|
Chen Z, Chen W, Reheman Z, Jiang H, Wu J, Li X. Genetically encoded RNA-based sensors with Pepper fluorogenic aptamer. Nucleic Acids Res 2023; 51:8322-8336. [PMID: 37486780 PMCID: PMC10484673 DOI: 10.1093/nar/gkad620] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023] Open
Abstract
Sensors to measure the abundance and signaling of intracellular molecules are crucial for understanding their physiological functions. Although conventional fluorescent protein-based sensors have been designed, RNA-based sensors are promising imaging tools. Numerous RNA-based sensors have been developed. These sensors typically contain RNA G-quadruplex (RG4) motifs and thus may be suboptimal in living cells. Here we describe RNA-based sensors based on Pepper, a fluorogenic RNA without an RG4 motif. With Pepper, we engineered various sensors for metabolites, synthetic compounds, proteins and metal ions in vitro and in living cells. In addition, these sensors show high activation and selectivity, demonstrating their universality and robustness. In the case of sensors responding to S-adenosylmethionine (SAM), a metabolite produced by methionine adenosyltransferase (MATase), we showed that our sensors exhibited positively correlated fluorescence responding to different SAM levels. Importantly, we revealed the SAM biosynthesis pathway and monitored MATase activity and gene expression spatiotemporally in living individual human cells. Additionally, we constructed a ratiometric SAM sensor to determine the inhibition efficacy of a MATase inhibitor in living cells. Together, these sensors comprising Pepper provide a useful platform for imaging diverse cellular targets and their signaling pathway.
Collapse
Affiliation(s)
- Zhenyin Chen
- Beijing Institute of Life Sciences, Chinese Academy of Sciences, Beijing 100101, China
- Department of Pulmonary and Critical Care Medicine, Department of Inflammation and Clinical Allergology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Chen
- Beijing Institute of Life Sciences, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Cytology and Genetics, the Hengyang Key Laboratory of Cellular Stress Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhayila Reheman
- Beijing Institute of Life Sciences, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Science, Hebei University, Baoding, Hebei 071000, China
| | - Haodong Jiang
- Beijing Institute of Life Sciences, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahui Wu
- Department of Chemistry, University of Massachusetts, Amherst, MA01003, USA
| | - Xing Li
- Beijing Institute of Life Sciences, Chinese Academy of Sciences, Beijing 100101, China
- Department of Pulmonary and Critical Care Medicine, Department of Inflammation and Clinical Allergology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|