1
|
Nguyen T, Chen X, Ma L, Feng Y. Mycotoxin Biodegradation by Bacillus Bacteria-A Review. Toxins (Basel) 2024; 16:478. [PMID: 39591233 PMCID: PMC11598562 DOI: 10.3390/toxins16110478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Mycotoxins are toxic secondary metabolites produced by various types of fungi that are known to contaminate various food products; their presence in the food chain poses significant risks to human and animal health and leads to enormous economic losses in the food and feed industry worldwide. Ensuring food safety and quality by detoxifying mycotoxin is therefore of paramount importance. Several procedures to control fungal toxins have been extensively investigated, such as preventive measures, physical and chemical methods, and biological strategies. In recent years, microbial degradation of mycotoxins has attracted much attention due to its reliability, efficiency, and cost-effectiveness. Notably, bacterial species from the Bacillus genus have emerged as promising candidates for mycotoxin decontamination owing to their diverse metabolic capabilities and resilience in harsh environmental conditions. This review manuscript aims to provide a summary of recent studies on the biodegradation of fungal toxins by Bacillus bacteria, thereby illustrating their potential applications in the development of mycotoxin-degrading products.
Collapse
Affiliation(s)
- Thanh Nguyen
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (T.N.); (L.M.)
| | - Xiaojing Chen
- Bioproton Pty Ltd., Acacia Ridge, Brisbane, QLD 4110, Australia;
| | - Linlin Ma
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (T.N.); (L.M.)
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Yunjiang Feng
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (T.N.); (L.M.)
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| |
Collapse
|
2
|
Lai X, Fan P, Deng H, Jia G, Zuo Z, Hu Y, Wang Y, Cai D, Gou L, Wen Y, Yu S, Cao S, Shen L, Deng J, Ren Z. Effects of isochlorogenic acid A on mitochondrial dynamics imbalance and RLR damage in PAM cells induced by combined mycotoxins. Toxicology 2024; 508:153920. [PMID: 39137830 DOI: 10.1016/j.tox.2024.153920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Mycotoxins have strong immunotoxicity and can induce oxidative stress and mitochondrial dynamics imbalance. Mitochondrial antiviral signaling protein (MAVS) in the RIG-I like receptor (RLR) pathway of innate immunity is located on mitochondria, and whether it is affected by mycotoxins has not been reported yet. This experiment used porcine alveolar macrophages (PAM) to evaluate the antagonism of three isomers of chlorogenic acid (chlorogenic acid, isochlorogenic acid A, and neochlorogenic acid) against combined mycotoxins (Aflatoxin B1, Deoxynivalenol, and Ochratoxin A) induced mitochondrial damage and their effects on the RLR pathway, providing assistance for further elucidating the mechanism of mycotoxin immunotoxicity. Western blotting, enzyme linked immunosorbent assay (ELISA), and flow cytometry were used to detect relevant indicators. All three types of chlorogenic acid treatment can antagonize the cytotoxicity induced by combined mycotoxins, especially isochlorogenic acid A, which can protect cells from mycotoxins damage by maintaining mitochondrial dynamic homeostasis and improving innate immune function related to the RLR pathway.
Collapse
Affiliation(s)
- Xinuo Lai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Peng Fan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Huidan Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Guilin Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shumin Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Suizhong Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liuhong Shen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
3
|
Zuo N, Wang RT, Bian WM, Liu X, Han BQ, Wang JJ, Shen W, Li L. Vigor King mitigates spermatogenic disorders caused by environmental estrogen zearalenone exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116757. [PMID: 39047363 DOI: 10.1016/j.ecoenv.2024.116757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Zearalenone (ZEN) has been shown to cause reproductive damage by inducing oxidative stress. Astaxanthin and L-carnitine are widely used to alleviate oxidative stress and promote sperm maturation. However, it remains uncertain whether they are effective in mitigating spermatogenesis disorders induced by ZEN. This study aimed to investigate the therapeutic efficacy and potential mechanisms of Vigor King (Vig), a compound preparation primarily consisting of astaxanthin and L-carnitine, in alleviating ZEN-induced spermatogenesis disorders. In the experiment, mice received continuous oral gavage of ZEN (80 μg/kg) for 35 days, accompanied by a rescue strategy with Vig (200 mg/kg). The results showed that Vig effectively reduced the negative impact on semen quality and improved the structural and functional abnormalities of the seminiferous epithelium caused by ZEN. Additionally, the accumulation of reactive oxygen species (ROS), DNA double-strand breaks, apoptosis, and autophagy abnormalities were all significantly ameliorated. Intriguingly, the GSK3β-dependent BTRC-NRF2 signaling pathway was found to play an important role in this process. Furthermore, testing of offspring indicated that Vig could extend its protective effects to the next generation, effectively combating the transgenerational toxic effects of ZEN. In summary, our research suggests that Vig supplementation holds considerable promise in alleviating spermatogenesis disorders induced by zearalenone.
Collapse
Affiliation(s)
- Ning Zuo
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Rui Ting Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Wen Meng Bian
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Xuan Liu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Bao Quan Han
- Department of Urology, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Jun Jie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
4
|
Lee JY, Kim JH, Choi JM, Noh BW, Kim HY, Cho EJ. Anti-Inflammatory Effects of Artemisia argyi H. Fermented by Lactobacillus plantarum in the LPS-Induced RAW 264.7 Cells and DSS-Induced Colitis Model. Foods 2024; 13:998. [PMID: 38611304 PMCID: PMC11011819 DOI: 10.3390/foods13070998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Ulcerative colitis is a chronic inflammatory disease caused by abnormal immune responses in the intestinal mucosa and gut microorganisms. Unlike other mugworts, Artemisia argyi H. (A. argyi H.) enhances antioxidant, anti-inflammatory, and anticancer effects, but the improvement effects against gut inflammation have not yet been reported. Therefore, this study aimed to confirm the alleviation of the inflammatory state in the gut by A. argyi H. fermented with Lactobacillus plantarum (FAA), using lipopolysaccharide (LPS)-induced RAW 264.7 cells and dextran sulfate sodium (DSS)-induced colitis models. In vitro, FAA (10, 50, 100, and 200 μg/mL) was pretreated into RAW 264.7 cells, followed with LPS (100 ng/mL), which induced the cell damage. Meanwhile, in vivo, FAA (100, 200 mg/kg/day) was orally administered into 6-week-old C57BL/6N mice for 3 weeks. During the last week of FAA administration, 2.5% DSS was used to induce colitis. The results showed that FAA reduced the production of nitric oxide (p < 0.0001), tumor necrosis factor (TNF)-α, interleukin (IL)-6 (p < 0.0001), and IL-1β (p < 0.0001) in the LPS-induced RAW 264.7 cells. Moreover, in the DSS-induced colitis model, FAA alleviated clinical symptoms (p < 0.001), inhibited the inflammatory state by reducing the production of TNF-α (p < 0.0001) and interferon-γ in intestinal immune cells (p < 0.0001), and strengthened the intestinal barrier by increasing the number of goblet cells (p < 0.0001). Furthermore, the anti-inflammatory effects were confirmed by the alleviation of histological damage (p < 0.001) and down-regulation of the expression of inflammatory proteins (TLR4, p < 0.0001; MyD88, p < 0.0001; Cox-2, p < 0.0001). These results suggest the potential of FAA as a dietary ingredient for preventing inflammation in the gut.
Collapse
Affiliation(s)
- Ji Yun Lee
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea; (J.Y.L.); (J.-H.K.); (B.W.N.)
| | - Ji-Hyun Kim
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea; (J.Y.L.); (J.-H.K.); (B.W.N.)
| | - Ji Myung Choi
- Department of Food and Nutrition, Kyungsung University, Busan 48434, Republic of Korea;
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Byeong Wook Noh
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea; (J.Y.L.); (J.-H.K.); (B.W.N.)
| | - Hyun Young Kim
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea; (J.Y.L.); (J.-H.K.); (B.W.N.)
| |
Collapse
|
5
|
Pierron A, Kleber A, Mayer E, Gerner W. Effect of DON and ZEN and their metabolites DOM-1 and HZEN on B cell proliferation and antibody production. Front Immunol 2024; 15:1338937. [PMID: 38449861 PMCID: PMC10915041 DOI: 10.3389/fimmu.2024.1338937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/24/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction The mycotoxins deoxynivalenol (DON) and zearalenone (ZEN), produced by Fusarium fungi, are frequently found in the cereal-rich diet of pigs and can modulate the immune system. Some enzymes or bacteria present in the digestive tract can de-epoxydize DON to deepoxy-deoxynivalenol (DOM-1) and biotransform ZEN into hydrolyzed ZEN (HZEN). The effects of these metabolites on immune cells, particularly with respect to the vaccine responses, are poorly documented. The aim of this study was to address the impact of DON and ZEN and their respective derivatives, on proliferation, and antibody production of porcine B cells in vitro. Methods Peripheral blood mononuclear cells (PBMCs), isolated from healthy pigs, were stimulated with the Toll-like receptor (TLR) 7/8-agonist Resiquimod (R848) or the TLR/1/2-agonist Pam3Cys-SKKKK in combination with DON [0.1-1.6 µM] or DOM-1 [1.6 µM and 16 µM] and ZEN [2.5-40 µM] or HZEN [40 µM]. Results A strong decrease in B-cell proliferation was observed at DON concentrations equal to or exceeding 0.8 µM and at ZEN concentrations equal to or exceeding 20 µM. Treatment with 1.6 µM DON or 40 µM ZEN led to almost a complete loss of live CD79α+ B cells. Moreover, CD21 expression of proliferating IgG+ and IgM+ B-cell subsets was decreased at DON concentrations equal to and exceeding 0.4 µM and at ZEN concentrations equal to or exceeding 10 µM. ELISpot assays revealed a decrease of IgG-secreting B cells at concentrations of and exceeding 0.4 µM and at ZEN concentrations equal to and exceeding 10 µM. ELISA assays showed a decrease of IgM, IgG, and IgA secretion at concentrations equal to or exceeding 0.4 µM DON. ZEN reduced IgM secretion at 20-40 µM (both R848 and Pam3Cys-SKKKK), IgG secretion at 40 µM (both R848 and Pam3Cys-SKKKK) and IgA secretion at 20-40 µM. Discussion Our in vitro experiments show that while DON and ZEN impair immunoglobulin production and B-cell proliferation, this effect is abrogated by HZEN and DOM-1.
Collapse
Affiliation(s)
- Alix Pierron
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| | - Alexandra Kleber
- dsm-firmenich, Animal Nutrition and Health R&D Center, Tulln, Austria
| | - Elisabeth Mayer
- dsm-firmenich, Animal Nutrition and Health R&D Center, Tulln, Austria
| | - Wilhelm Gerner
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
6
|
Cai P, Liu S, Tu Y, Shan T. Toxicity, biodegradation, and nutritional intervention mechanism of zearalenone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168648. [PMID: 37992844 DOI: 10.1016/j.scitotenv.2023.168648] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Zearalenone (ZEA), a global mycotoxin commonly found in a variety of grain products and animal feed, causes damage to the gastrointestinal tract, immune organs, liver and reproductive system. Many treatments, including physical, chemical and biological methods, have been reported for the degradation of ZEA. Each degradation method has different degradation efficacies and distinct mechanisms. In this article, the global pollution status, hazard and toxicity of ZEA are summarized. We also review the biological detoxification methods and nutritional regulation strategies for alleviating the toxicity of ZEA. Moreover, we discuss the molecular detoxification mechanism of ZEA to help explore more efficient detoxification methods to better reduce the global pollution and hazard of ZEA.
Collapse
Affiliation(s)
- Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
7
|
Sun H, Chen J, Xiong D, Long M. Detoxification of Selenium Yeast on Mycotoxins and Heavy Metals: a Review. Biol Trace Elem Res 2023; 201:5441-5454. [PMID: 36662349 PMCID: PMC9854417 DOI: 10.1007/s12011-023-03576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Mycotoxins are secondary metabolites produced by specific fungi. More than 400 different mycotoxins are known in the world, and the concentration of these toxins in food and feed often exceeds the acceptable limit, thus causing serious harm to animals and human body. At the same time, modern industrial agriculture will also bring a lot of environmental pollution in the development process, including the increase of heavy metal content, and often the clinical symptoms of low/medium level chronic heavy metal poisoning are not obvious, thus delaying the best treatment opportunity. However, the traditional ways of detoxification cannot completely eliminate the adverse effects of these toxins on the body, and sometimes bring some side effects, so it is essential to find a new type of safe antidote. Trace element selenium is among the essential mineral nutrient elements of human and animal bodies, which can effectively remove excessive free radicals and reactive oxygen species in the body, and has the effects of antioxidant, resisting stress, and improving body immunity. Selenium is common in nature in inorganic selenium and organic selenium. In previous studies, it was found that the use of inorganic selenium (sodium selenite) can play a certain protective role against mycotoxins and heavy metal poisoning. However, while it plays the role of antioxidant, it will also have adverse effects on the body. Therefore, it was found in the latest study that selenium yeast could not only replace the protective effect of sodium selenite on mycotoxins and heavy metal poisoning, but also improve the immunity of the body. Selenium yeast is an organic selenium source with high activity and low toxicity, which is produced by selenium relying on the cell protein structure of growing yeast. It not only has high absorption rate, but also can be stored in the body after meeting the physiological needs of the body for selenium, so as to avoid selenium deficiency again in the short term. However, few of these studies can clearly reveal the protective mechanism of yeast selenium. In this paper, the detoxification mechanism of selenium yeast on mycotoxins and heavy metal poisoning was reviewed, which provided some theoretical support for further understanding of the biological function of selenium yeast and its replacement for inorganic selenium. The conclusions suggest that selenium yeast can effectively alleviate the oxidative damage by regulating different signaling pathways, improving the activity of antioxidant enzymes, reversing the content of inflammatory factors, regulating the protein expression of apoptosis-related genes, and reducing the accumulation of mycotoxins and heavy metals in the body.
Collapse
Affiliation(s)
- Huiying Sun
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Dongwei Xiong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| |
Collapse
|
8
|
Li F, Zhao X, Jiao Y, Duan X, Yu L, Zheng F, Wang X, Wang L, Wang JS, Zhao X, Zhang T, Li W, Zhou J. Exposure assessment of aflatoxins and zearalenone in edible vegetable oils in Shandong, China: health risks posed by mycotoxin immunotoxicity and reproductive toxicity in children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3743-3758. [PMID: 35953745 DOI: 10.1007/s11356-022-22385-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Human exposure to aflatoxins (AFs) and zearalenone (ZEA) has not been sufficiently investigated. Here, we analyzed the exposure level and health risks posed by AFs (B1, B2, G1, G2) and ZEA through cooking oil consumption in Shandong, China. The individual daily consumption of cooking oil was calculated through 2745 questionnaires during 2017-2019. The average contamination levels of mycotoxins were estimated by examining 60 cooking oil samples. For the peanut oil, AFs ranged from <0.2 to 274 μg/kg, with a positive rate of 66.6% (20/30). Average levels of 36.62 μg/kg AFB1 and 44.43 μg/kg total AFs were found. Over-the-limit level (20 μg/kg) of AFB1 was detected in 8/30 samples. Estimated daily intake (EDI) and margin of exposure (MOE) for age-stratified population groups showed that children are facing highest adverse health risk with AFB1 (MOE 5.88-6.39). The liver cancer incidences attributable to AFB1 exposure are non-negligible as 0.896, 0.825, and 0.767 cases per 100,000 for 6-14 age group, 15-17 age group, and adult labor-intensive workers. Over-the-limit level (60 μg/kg) ZEA contamination was detected in 25/30 corn oil samples with a 50th percentile value of 97.95 μg/kg. Our health risk assessment suggested significant health risks of enterohepatic (inflammation and cancer), reproductive, and endocrine systems posed by AFs and ZEA. However, the health risk of immunotoxicity is unclear because currently animal study data are not available for the immunotoxicity induced after long-term exposure. In general, the health risks posed by mycotoxins are non-negligible and long-term mycotoxin surveillance is necessary.
Collapse
Affiliation(s)
- Fenghua Li
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
| | - Xianqi Zhao
- School of Public Health, Cheeloo College of Medicine, Shandong University, Room 9307, Wenhuaxi Road 44, Lixia District, Jinan, 250012, China
| | - Yanni Jiao
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
| | - Xinglan Duan
- School of Public Health, Cheeloo College of Medicine, Shandong University, Room 9307, Wenhuaxi Road 44, Lixia District, Jinan, 250012, China
| | - Lianlong Yu
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
| | - Fengjia Zheng
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
| | - Xiaolin Wang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
| | - Lin Wang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
| | - Jia-Sheng Wang
- Interdisciplinary Toxicology Program and Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Shandong University, Jinan, 250012, China
| | - Tianliang Zhang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
| | - Wei Li
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
| | - Jun Zhou
- School of Public Health, Cheeloo College of Medicine, Shandong University, Room 9307, Wenhuaxi Road 44, Lixia District, Jinan, 250012, China.
| |
Collapse
|
9
|
Wang S, Fu W, Zhao X, Chang X, Liu H, Zhou L, Li J, Cheng R, Wu X, Li X, Sun C. Zearalenone disturbs the reproductive-immune axis in pigs: the role of gut microbial metabolites. MICROBIOME 2022; 10:234. [PMID: 36536466 PMCID: PMC9762105 DOI: 10.1186/s40168-022-01397-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/20/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND Exposure to zearalenone (ZEN, a widespread Fusarium mycotoxin) causes reproductive toxicity and immunotoxicity in farm animals, and it then poses potential threats to human health through the food chain. A systematic understanding of underlying mechanisms on mycotoxin-induced toxicity is necessary for overcoming potential threats to farm animals and humans. The gastrointestinal tract is a first-line defense against harmful mycotoxins; however, it remains unknown whether mycotoxin (e.g., ZEN)-induced toxicity on the reproductive-immune axis is linked to altered gut microbial metabolites. In this study, using pigs (during the three phases) as an important large animal model, we investigated whether ZEN-induced toxicity on immune defense in the reproductive-immune axis was involved in altered gut microbial-derived metabolites. Moreover, we observed whether the regulation of gut microbial-derived metabolites through engineering ZEN-degrading enzymes counteracted ZEN-induced toxicity on the gut-reproductive-immune axis. RESULTS Here, we showed ZEN exposure impaired immune defense in the reproductive-immune axis of pigs during phase 1/2. This impairment was accompanied by altered gut microbial-derived metabolites [e.g., decreased butyrate production, and increased lipopolysaccharides (LPS) production]. Reduction of butyrate production impaired the intestinal barrier via a GPR109A-dependent manner, and together with increased LPS in plasma then aggravated the systemic inflammation, thus directly and/or indirectly disturbing immune defense in the reproductive-immune axis. To validate these findings, we further generated recombinant Bacillus subtilis 168-expressing ZEN-degrading enzyme ZLHY-6 (the Bs-Z6 strain) as a tool to test the feasibility of enzymatic removal of ZEN from mycotoxin-contaminated food. Notably, modified gut microbial metabolites (e.g., butyrate, LPS) through the recombinant Bs-Z6 strain counteracted ZEN-induced toxicity on the intestinal barrier, thus enhancing immune defense in the reproductive-immune axis of pigs during phase-3. Also, butyrate supplementation restored ZEN-induced abnormalities in the porcine small intestinal epithelial cell. CONCLUSIONS Altogether, these results highlight the role of gut microbial-derived metabolites in ZEN-induced toxicity on the gut-reproductive-immune axis. Importantly, targeting these gut microbial-derived metabolites opens a new window for novel preventative strategies or therapeutic interventions for mycotoxicosis associated to ZEN.
Collapse
Affiliation(s)
- Shujin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400032, The People's Republic of China.
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, The People's Republic of China.
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610000, The People's Republic of China
| | - Xueya Zhao
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400032, The People's Republic of China
| | - Xiaojiao Chang
- Academy of National Food and Strategic Reserves Administration, Beijing, 100037, The People's Republic of China
| | - Hujun Liu
- Academy of National Food and Strategic Reserves Administration, Beijing, 100037, The People's Republic of China
| | - Lin Zhou
- Shenzhen Premix INVE Nutrition, Co., LTD., Shenzhen, 518100, The People's Republic of China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610000, The People's Republic of China
| | - Rui Cheng
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400032, The People's Republic of China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, The People's Republic of China.
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, The People's Republic of China.
| | - Xi Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400032, The People's Republic of China.
| | - Changpo Sun
- Academy of National Food and Strategic Reserves Administration, Beijing, 100037, The People's Republic of China.
- Standards and Quality Center of National Food and Strategic Reserves Administration, Beijing, 100037, The People's Republic of China.
| |
Collapse
|
10
|
Gheraibia S, Belattar N, Diab KA, Hassan ME, El-Nekeety AA, Abdel-Aziem SH, Hassan NS, Abdel-Wahhab MA. Costus speciosus extract protects against the oxidative damage of zearalenone via modulation of inflammatory cytokines, Nrf2 and iNOS gene expression in rats. Toxicon 2022; 214:62-73. [PMID: 35597521 DOI: 10.1016/j.toxicon.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
Abstract
Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin that induces severe health disturbances in humans and animals. This study aimed to determine the bioactive compounds in Costus speciosus extract (CSE) using GC-MS and evaluate its protective capability against ZEN-induced oxidative damage, genotoxicity, and cytotoxicity in rats. Six groups of male Sprague Dawley rats were treated orally for 15 days including the control group, CSE-treated groups at low (200 mg/kg b. w) or high (400 mg/kg b. w) dose, ZEN-treated group (40 μg/kg b. w), and the groups treated with ZEN plus the low or the high dose of CSE. Blood and tissue samples were collected for different assays and pathological analyses. The results of GC-MS indicated the identification of 6 compounds and Azulene was the major. Animals that received ZEN showed severe disturbances in serum biochemical, cytokines, oxidative stress indicators, mRNA expression of iNOS, Nrf2, and inflammatory-related genes. ZEN also increased micronucleated polychromatic erythrocytes (MNPCEs) and comet tail formation in bone marrow cells along with the disturbances in the histological architecture of the liver and kidney. Co-administration of CSE plus ZEN could normalize the majority of the tested parameters and the histological picture at a dose as low as 200 mg/kg b. w. Therefore, CSE protects against ZEN toxicity via its antioxidant activity, modulation of iNOS, inflammatory-related genes, and the Nrf2 pathway and it could be used in the endemic regions.
Collapse
Affiliation(s)
- Sara Gheraibia
- Laboratory of Applied Biochemistry, Faculty of Sciences of Nature and Life, Ferhat Abbes University, Setif, 1, Algeria
| | - Noureddine Belattar
- Laboratory of Applied Biochemistry, Faculty of Sciences of Nature and Life, Ferhat Abbes University, Setif, 1, Algeria
| | - Kawthar A Diab
- Genetics and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | - Marwa E Hassan
- Toxicology Dept., Research Institute of Medical Entomology, Giza, Egypt
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | | | - Nabila S Hassan
- Pathology Department, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
11
|
Adverse Effects of Fusarium Toxins in Ruminants: A Review of In Vivo and In Vitro Studies. DAIRY 2022. [DOI: 10.3390/dairy3030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
With an increased knowledge of the mechanism of action of Fusarium mycotoxins, the concept that these substances are deleterious only for monogastric species is obsolete. Indeed, most mycotoxins can be converted into less toxic compounds by the rumen microflora from healthy animals. However, mycotoxin absorption and its conversion to more toxic metabolites, as well as their impact on the immune response and subsequently animal welfare, reproductive function, and milk quality during chronic exposure should not be neglected. Among the Fusarium mycotoxins, the most studied are deoxynivalenol (DON), zearalenone (ZEN), and fumonisins from the B class (FBs). It is remarkable that there is a paucity of in vivo research, with a low number of studies on nutrient digestibility and rumen function. Most of the in vitro studies are related to the reproductive function or are restricted to rumen incubation. When evaluating the production performance, milk yield is used as an evaluated parameter, but its quality for cheese production is often overlooked. In the present review, we summarize the most recent findings regarding the adverse effects of these mycotoxins with special attention to dairy cattle.
Collapse
|
12
|
Bai J, Zhou Y, Luo X, Hai J, Si X, Li J, Fu H, Dai Z, Yang Y, Wu Z. Roles of stress response-related signaling and its contribution to the toxicity of zearalenone in mammals. Compr Rev Food Sci Food Saf 2022; 21:3326-3345. [PMID: 35751400 DOI: 10.1111/1541-4337.12974] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
Zearalenone (ZEA) is a mycotoxin frequently found in cereal crops and cereal-derived foodstuffs worldwide. It affects plant productivity, and is also a serious hazard to humans and animals if being exposed to food/feed contaminated by ZEA. Studies over the last decade have shown that the toxicity of ZEA in animals is mainly mediated by the various stress responses, such as endoplasmic reticulum (ER) stress, oxidative stress, and others. Accumulating evidence shows that oxidative stress and ER stress signaling are actively implicated in and contributes to the pathophysiology of various diseases. Biochemically, the deleterious effects of ZEA are associated with apoptosis, DNA damage, and lipid peroxidation by regulating the expression of genes implicated in these biological processes. Despite these findings, the underlying mechanisms responsible for these alterations remain unclear. This review summarized the characteristics, metabolism, toxicity and the deleterious effects of ZEA exposure in various tissues of animals. Stress response signaling implicated in the toxicity as well as potential therapeutic options with the ability to reduce the deleterious effects of ZEA in animals were highlighted and discussed.
Collapse
Affiliation(s)
- Jun Bai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Yusong Zhou
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Xin Luo
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jia Hai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Xuemeng Si
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jun Li
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China.,Beijing Jingwa Agricultural Science and Technology Innovation Center, #1, Yuda Road, Pinggu, Beijing, P. R. China
| |
Collapse
|
13
|
Malvandi AM, Shahba S, Mehrzad J, Lombardi G. Metabolic Disruption by Naturally Occurring Mycotoxins in Circulation: A Focus on Vascular and Bone Homeostasis Dysfunction. Front Nutr 2022; 9:915681. [PMID: 35811967 PMCID: PMC9263741 DOI: 10.3389/fnut.2022.915681] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 12/22/2022] Open
Abstract
Naturally occurring food/feed contaminants have become a significant global issue due to animal and human health implications. Despite risk assessments and legislation setpoints on the mycotoxins' levels, exposure to lower amounts occurs, and it might affect cell homeostasis. However, the inflammatory consequences of this possible everyday exposure to toxins on the vascular microenvironment and arterial dysfunction are unexplored in detail. Circulation is the most accessible path for food-borne toxins, and the consequent metabolic and immune shifts affect systemic health, both on vascular apparatus and bone homeostasis. Their oxidative nature makes mycotoxins a plausible underlying source of low-level toxicity in the bone marrow microenvironment and arterial dysfunction. Mycotoxins could also influence the function of cardiomyocytes with possible injury to the heart. Co-occurrence of mycotoxins can modulate the metabolic pathways favoring osteoblast dysfunction and bone health losses. This review provides a novel insight into understanding the complex events of coexposure to mixed (low levels) mycotoxicosis and subsequent metabolic/immune disruptions contributing to chronic alterations in circulation.
Collapse
Affiliation(s)
- Amir Mohammad Malvandi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- *Correspondence: Amir Mohammad Malvandi ; orcid.org/0000-0003-1243-2372
| | - Sara Shahba
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
14
|
Research Progress of Safety of Zearalenone: A Review. Toxins (Basel) 2022; 14:toxins14060386. [PMID: 35737047 PMCID: PMC9230539 DOI: 10.3390/toxins14060386] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022] Open
Abstract
Zearalenone, a mycotoxin produced by fungi of the genus Fusarium, widely exists in animal feed and human food. The structure of zearalenone is similar to estrogen, so it mainly has estrogenic effects on various organisms. Products contaminated with zearalenone can pose risks to animals and humans. Therefore, it is imperative to carry out toxicological research on zearalenone and evaluate its risk to human health. This paper briefly introduces the production, physical, and chemical properties of zearalenone and the research progress of its toxicity kinetics, focusing on its genetic toxicity, reproductive toxicity, hepatotoxicity, immunotoxicity, carcinogenicity, endocrine interference, and its impact on intestinal health. Finally, the progress of the risk assessment of human exposure is summarized to provide a reference for the follow-up study of zearalenone.
Collapse
|
15
|
Sun Y, Huang K, Long M, Yang S, Zhang Y. An update on immunotoxicity and mechanisms of action of six environmental mycotoxins. Food Chem Toxicol 2022; 163:112895. [PMID: 35219766 DOI: 10.1016/j.fct.2022.112895] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 01/19/2023]
Abstract
Paradoxically, aflatoxin B1 (AFB1), ochratoxin A (OTA), deoxynivalenol (DON), T-2 toxin (T-2), fumonisin B1 (FB1), and zearalenone (ZEA) have both immunosuppressive and immunostimulatory effects. The immunotoxicity of six mycotoxins exhibits immune suppression or stimulation, which depends on multiple factors. Low doses of mycotoxins can induce an inflammatory response, but elevated levels of ones can induce immunosuppression; long-term instead of short-term mycotoxin exposure is immunosuppressive. These six mycotoxins play anti-inflammatory roles when the immunologic stimulants are present but pro-inflammatory roles when the immunologic stimulants are absent. Pigs are most sensitive animals to mycotoxins, followed by humans and poultry, rodent, and marine organism, and ruminants are the least susceptible. Female animals are more susceptible to mycotoxins than male ones. The immunosuppresion mechanism of mycotoxins are mainly in, oxidative stress, apoptosis and autophagy of immune cells, as well as inhibits the immunity-related signal pathways; and AFB1, OTA, DON, and T-2 induce immunostimulation via directly activating the TLRs/NF-κB pathway and other crossing pathways including cyclooxygenase-2 (COX-2) and mitogen-activated protein kinase (MAPK). This review strongly dispels the viewpoint that "immunotoxicity is equivalent to immunosuppression", clearly demonstrates the mechanistic pathway and how it contributes to immunosuppression or immunostimulation, thereby providing reliable references for future studies.
Collapse
Affiliation(s)
- Yuhang Sun
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Miao Long
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Shuhua Yang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Ying Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
16
|
Belgacem H, Venditti M, Ben Salah-Abbès J, Minucci S, Abbès S. Potential protective effect of lactic acid bacteria against zearalenone causing reprotoxicity in male mice. Toxicon 2022; 209:56-65. [PMID: 35181403 DOI: 10.1016/j.toxicon.2022.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 02/07/2023]
Abstract
Zearalenone (ZEN) is a worldwide fusarotoxin that poses a threat to the consumer due to its chronic toxicity. Herein we examined the effects of ZEN on adult mouse testis, focusing on oxidative stress, biochemical and morphological parameters. In addition, since cytoskeletal remodeling is a key event for the production of good quality gametes, the expression and localization of two proteins, Dishevelled-associated activator of morphogenesis 1 (DAAM1) and Prolyl endopeptidase (PREP), involved in cytoskeletal dynamics during spermatogenesis were evaluated. To ameliorate the testicular dysfunction induced by ZEN we tested the eventual protective effects of lactic bacteria Lactobacillus plantarum MON03 (LP) on its reprotoxicity. Adult male mice were then treated daily for 2 wks by oral gavage with ZEN and/or LP. The results confirmed that ZEN altered sperm parameters, generated oxidative stress and provoked structural alteration, evidenced by the increased number of abnormal seminiferous tubules and of apoptotic cells, particularly Leydig cells. Interestingly, at molecular level we evaluated, for the first time, the ability of ZEN to alter DAAM1 and PREP protein level and localization. Moreover, the co-treatment with LP, thanks to its capacity to reduce ZEN bioavailability in the gastrointestinal tract, ameliorated all the considered parameters. These results suggest the use of this probiotic as food supplement to prevent/counteract ZEN-induced reprotoxicity.
Collapse
Affiliation(s)
- Hela Belgacem
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Massimo Venditti
- Department of Experimental Medicine, University Degli Studi Della Campania Luigi Vanvitelli, Napoli, Italy
| | - Jalila Ben Salah-Abbès
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Sergio Minucci
- Department of Experimental Medicine, University Degli Studi Della Campania Luigi Vanvitelli, Napoli, Italy
| | - Samir Abbès
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia; Higher Institute of Biotechnology of Béja, University of Jendouba, Jendouba, Tunisia.
| |
Collapse
|
17
|
Gao F, Fang Z, Lu W. Regulation divergences of Lactobacillus fermentum PCC and Lactobacillus paracasei 431 on penicillin-induced upper respiratory tract microbial dysbiosis in BALB/c mice. Food Funct 2021; 12:11913-11925. [PMID: 34739535 DOI: 10.1039/d0fo02981e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibiotic-induced host health imbalance during upper respiratory tract infection (URTI) treatment is an emerging issue. Studies have confirmed that Lactobacillus casei 431 and Lactobacillus fermentum PCC alleviate gut microbiome dysbiosis and improve immune response. However, their effect on the upper respiratory tract (URT) microbial structure and the correlation between the URT microbiota and immunological indicators remain unclear. To evaluate the effects of Lactobacillus strains on restoring penicillin-induced imbalance in the URT microbiome and on immune response, Lactobacillus fermentum PCC and Lactobacillus casei 431 were individually administered to penicillin-pretreated mice, and their effects were assessed. The results revealed that L. casei 431 and L. fermentum PCC could regulate the systemic immune response imbalance, but the regulation direction of L. fermentum PCC was closer to that of the control group. Moreover, the Lactobacillus strains could restore penicillin-induced URT dysbacteriosis in the microbial community structure, but no significant change in alpha diversity was observed. The key bacterial taxa modulated by L. casei 431 were Faecalibaculum, Lactococcus, and Ralstonia. L. fermentum PCC enhanced biofilms and facultatively anaerobic bacteria. Different regulation pathways were observed in the two strains, and RDA revealed that both L. casei 431 and L. fermentum PCC groups were correlated with IL-17 and IL-1α, while the L. casei 431 group was also correlated with IL-6. In conclusion, L. casei 431 and L. fermentum PCC could beneficially and differentially ameliorate penicillin-induced imbalance in the URT microbial composition structure and functional metabolic pathways and modulate immune response, reflecting strain-specific regulation.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhifeng Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| |
Collapse
|
18
|
Efficacy of lactic acid bacteria supplementation against Fusarium graminearum growth in vitro and inhibition of Zearalenone causing inflammation and oxidative stress in vivo. Toxicon 2021; 202:115-122. [PMID: 34562499 DOI: 10.1016/j.toxicon.2021.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022]
Abstract
Fusarium graminearum invasion and Zearalenone (ZEN)-mycotoxin contamination are considered the most global threat to food and feed. This study investigates the effect Lactobacillus plantarum MON03 viable cells (LPVC) and LP free cells supernatant (LPFCS) against Fusarium graminearum growth and ZEN production in vitro and evaluates if treatment with LP viable cells can counteract the negative effect of ZEN on inflammation and oxidative stress in mesenteric lymph nodes and serum biochemical parameters in mice. For the in vitro study, 7 days of LPVC, LPFCS and F. graminearum co-incubation at different concentrations was done in order to determine the antifungal activity and ZEN- production inhibition. Regarding the in vivo study, Balb/c mice were treated as following: Control, ZEN group, LP group and ZEN + LP group for 30 days. In vitro, LPVC showed an excellent antifungal activity after 7 days of co-incubation (103 CFU/ml). LPVC was succeeded also to inhibit ZEN production by the fungi. In vivo, ZEN has shown an important oxidative damage. As a result of the exposure to ZEN, an increase cytokines, as effectors of an inflammatory response, were observed in the mesenteric lymph nodes (MLN) of intoxicated mice. In parallel, a serum biochemical change was also observed. LPVC induced a reduction of ZEN-induced oxidative stress and counteracts also the biochemical parameters damage and the inflammatory markers increased by ZEN. LPVC can be valorized as an anti-cating agent in the vitro and in the gastro-intestinal tract to decrease ZEN-toxic effects.
Collapse
|
19
|
Kong L, Zhao AH, Wang QW, Feng YQ, Yan ZH, Li MH, Zhang FL, Wang H, Shen KY, Liu Y, Sun YJ, Shen W, Li L. Maternal Zearalenone exposure impacted ovarian follicle formation and development of suckled offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147792. [PMID: 34134368 DOI: 10.1016/j.scitotenv.2021.147792] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 05/10/2023]
Abstract
Zearalenone (ZEN) is a secondary metabolite, which is mainly produced by Fusarium fungi and exists in various feeds and agricultural products. Recently, an increasing amount of data has shown that ZEN, as an estrogen-like hormone, can have harmful effects on the female reproductive system, especially on oogenesis and folliculogenesis. Breast milk is considered to be the ideal form of nutrition for infants; however, there are some records of contaminants in food, such as mycotoxins, which may be transferred from maternal blood to milk. In this study, we investigated the toxic effects of breast milk on folliculogenesis in offspring following maternal ZEN exposure. Our results showed that maternal ZEN exposure significantly inhibited the process of primordial follicle (PF) assembly and reduced the number of PFs in suckled offspring's ovaries. In addition, RNA-seq analysis showed that RIG-I-like receptor (RLRs) signaling pathways were activated after exposed to ZEN, which increased the expression levels of DNA damage (γ-H2AX, RAD51, and PARP1) and apoptosis related protein (BAX/BCL2 and Caspase-3). Finally, ZEN exposure interfered with follicular development, as evidenced by the reduced percentages of oocyte maturation and embryonic development when the offspring grew to adolescence. It is worth noting that maternal ZEN exposure disrupted the tri-methylation levels of H3K4, H3K9, and H3K27 in the offspring's oocytes. Our results indicated that maternal ZEN exposure affected ovarian development in offspring through the breast milk, which may be detrimental to their reproductive capability in adult life.
Collapse
Affiliation(s)
- Li Kong
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Ai-Hong Zhao
- Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Qian-Wen Wang
- Central Laboratory, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan-Qin Feng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Zi-Hui Yan
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Ming-Hao Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Fa-Li Zhang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Han Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Kai-Yu Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Ying Liu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu-Jiang Sun
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao 266109, China; Dongying Vocational Institute, Dongying 257091, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
20
|
Cai G, Xia S, Zhong F, Liu S, Gu J, Yuan Y, Zhu G, Zou H, Liu Z, Bian J. Zearalenone and deoxynivalenol reduced Th1-mediated cellular immune response after Listeria monocytogenes infection by inhibiting CD4 + T cell activation and differentiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117514. [PMID: 34261220 DOI: 10.1016/j.envpol.2021.117514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/09/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Based on the fact that mycotoxins and the food-borne bacteria coexist in the natural environment and pose a significant health hazard to humans and animals, it is important to investigate the immunosuppressive mechanism of ZEA (zearalenone), DON (deoxynivalenol), and their combination in bacterial infections. In this study, we established a mouse model of mycotoxin low-dose exposure combined with Listeria monocytogenes infection and investigated the effects of ZEA, DON and their combination on Th1-mediated anti-intracellular bacterial infection based on CD4+ T cell activation and differentiation using both in vitro and in vivo analyses. The present study showed that both ZEA and DON aggravated Listeria monocytogenes infection in mice and affected the activation of CD4+ T cells and Th1 differentiation, including the effects on costimulatory molecules CD28 and CD152 and on cross-linking of IL-12 and IL-12R, by inhibiting T cell receptor (TCR) signaling. When compared with ZEA, DON was found to have a greater impact on many related indicators. Surprisingly, the combined effects of ZEA and DON did not appear to enhance toxicity compared to treatment with the individual mycotoxins. Our findings more clearly revealed that exposure to low-dose ZEA and DON caused immunosuppression in the body by mechanisms including inhibition of CD4+ T cells activation and reduction of Th1 cell differentiation, thus exacerbating infection of animals by Listeria monocytogenes.
Collapse
Affiliation(s)
- Guodong Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Sugan Xia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Fang Zhong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Shuangshuang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
21
|
Mycotoxin Zearalenone Attenuates Innate Immune Responses and Suppresses NLRP3 Inflammasome Activation in LPS-Activated Macrophages. Toxins (Basel) 2021; 13:toxins13090593. [PMID: 34564598 PMCID: PMC8473227 DOI: 10.3390/toxins13090593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 01/07/2023] Open
Abstract
Zearalenone (ZEA) is a mycotoxin that has several adverse effects on most mammalian species. However, the effects of ZEA on macrophage-mediated innate immunity during infection have not been examined. In the present study, bacterial lipopolysaccharides (LPS) were used to induce the activation of macrophages and evaluate the effects of ZEA on the inflammatory responses and inflammation-associated signaling pathways. The experimental results indicated that ZEA suppressed LPS-activated inflammatory responses by macrophages including attenuating the production of proinflammatory mediators (nitric oxide (NO) and prostaglandin E2 (PGE2)), decreased the secretion of proinflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6), inhibited the activation of c-Jun amino-terminal kinase (JNK), p38 and nuclear factor-κB (NF-κB) signaling pathways, and repressed the nucleotide-binding and oligomerization domain (NOD)-, leucine-rich repeat (LRR)- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation. These results indicated that mycotoxin ZEA attenuates macrophage-mediated innate immunity upon LPS stimulation, suggesting that the intake of mycotoxin ZEA-contaminated food might result in decreasing innate immunity, which has a higher risk of adverse effects during infection.
Collapse
|
22
|
Microbiological Safety and Presence of Major Mycotoxins in Animal Feed for Laboratory Animals in a Developing Country: The Case of Costa Rica. Animals (Basel) 2021; 11:ani11082389. [PMID: 34438847 PMCID: PMC8388699 DOI: 10.3390/ani11082389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary The microbiological safety and quality of commercial animal feed for laboratory animals, produced in Costa Rica, was assessed. Analysis of the animal feed included general microbial markers (total coliforms and molds) and the behavior over time of two specific feed contaminants (Salmonella spp. and mycotoxins). Results from the study suggest that there is a low risk of contamination from viable microorganisms but the product contains important levels of mycotoxins. Current preventive measures (UV light disinfection) are not effective and additional handling protocols should be considered. Abstract Safety and quality of compound feed for experimental animals in Costa Rica is unknown. Some contaminants, such as Salmonella spp. and mycotoxins, could elicit confounding effects in laboratory animals used for biomedical research. In this study, different batches of extruded animal feed, intended for laboratory rodents in Costa Rica, were analyzed to determine mycotoxin and microbiological contamination (i.e., Salmonella spp., Escherichia coli, total coliform bacteria, and total yeast and molds enumeration). Two methods for Salmonella decontamination (UV light and thermal treatment) were assessed. Only n = 2 of the samples were negative (representing 12.50%) for the 26 mycotoxins tested. Enniatins and fumonisins were among the most frequent toxins found (with n = 4+ hits), but the level of contamination and the type of mycotoxins depended on the supplier. None of the indicator microorganisms, nor Salmonella, were found in any of the tested batches, and no mold contamination, nor Salmonella growth, occurs during storage (i.e., 2–6 months under laboratory conditions). However, mycotoxins, such as enniatins and fumonisins tend to decrease after the fourth month of storage, and Salmonella exhibited a lifespan of 64 days at 17 °C even in the presence of UV light. The D-values for Salmonella were between 65.58 ± 2.95 (65 °C) and 6.21 ± 0.11 (80 °C) min, and the thermal destruction time (z-value) was calculated at 15.62 °C. Results from this study suggest that laboratory rodents may be at risk of contamination from animal feed that could significantly affect the outcomes of biomedical experiments. Thus, improved quality controls and handling protocols for the product are suggested.
Collapse
|
23
|
Shahba S, Mehrzad J, Malvandi AM. Neuroimmune disruptions from naturally occurring levels of mycotoxins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-14146-4. [PMID: 33932215 DOI: 10.1007/s11356-021-14146-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Substantial pieces of evidence support the potential of exogenous toxins in disrupting neuroimmune homeostasis. It appears that mycotoxins are one of the noticeable sources of naturally occurring substances dysregulating the immune system, which involves the physiology of many organs, such as the central nervous system (CNS). The induction of inflammatory responses in microglial cells and astrocytes, the CNS resident cells with immunological characteristics, could interrupt the hemostasis upon even with low-level exposure to mycotoxins. The inevitable widespread occurrence of a low level of mycotoxins in foods and feed is likely increasing worldwide, predisposing individuals to potential neuroimmunological dysregulations. This paper reviews the current understanding of mycotoxins' neuro-immunotoxic features under low-dose exposure and the possible ways for detoxification and clearance as a perspective.
Collapse
Affiliation(s)
- Sara Shahba
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Amir Mohammad Malvandi
- Science and Technology Pole, IRCCS Multimedica, Via Gaudenzio Fantoli, 16/15, 20138, Milan, Italy.
| |
Collapse
|
24
|
Zearalenone and the Immune Response. Toxins (Basel) 2021; 13:toxins13040248. [PMID: 33807171 PMCID: PMC8066068 DOI: 10.3390/toxins13040248] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Accepted: 03/27/2021] [Indexed: 12/12/2022] Open
Abstract
Zearalenone (ZEA) is an estrogenic fusariotoxin, being classified as a phytoestrogen, or as a mycoestrogen. ZEA and its metabolites are able to bind to estrogen receptors, 17β-estradiol specific receptors, leading to reproductive disorders which include low fertility, abnormal fetal development, reduced litter size and modification at the level of reproductive hormones especially in female pigs. ZEA has also significant effects on immune response with immunostimulatory or immunosuppressive results. This review presents the effects of ZEA and its derivatives on all levels of the immune response such as innate immunity with its principal component inflammatory response as well as the acquired immunity with two components, humoral and cellular immune response. The mechanisms involved by ZEA in triggering its effects are addressed. The review cited more than 150 publications and discuss the results obtained from in vitro and in vivo experiments exploring the immunotoxicity produced by ZEA on different type of immune cells (phagocytes related to innate immunity and lymphocytes related to acquired immunity) as well as on immune organs. The review indicates that despite the increasing number of studies analyzing the mechanisms used by ZEA to modulate the immune response the available data are unsubstantial and needs further works.
Collapse
|
25
|
Mahato DK, Devi S, Pandhi S, Sharma B, Maurya KK, Mishra S, Dhawan K, Selvakumar R, Kamle M, Mishra AK, Kumar P. Occurrence, Impact on Agriculture, Human Health, and Management Strategies of Zearalenone in Food and Feed: A Review. Toxins (Basel) 2021; 13:92. [PMID: 33530606 PMCID: PMC7912641 DOI: 10.3390/toxins13020092] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/22/2022] Open
Abstract
Mycotoxins represent an assorted range of secondary fungal metabolites that extensively occur in numerous food and feed ingredients at any stage during pre- and post-harvest conditions. Zearalenone (ZEN), a mycotoxin categorized as a xenoestrogen poses structural similarity with natural estrogens that enables its binding to the estrogen receptors leading to hormonal misbalance and numerous reproductive diseases. ZEN is mainly found in crops belonging to temperate regions, primarily in maize and other cereal crops that form an important part of various food and feed. Because of the significant adverse effects of ZEN on both human and animal, there is an alarming need for effective detection, mitigation, and management strategies to assure food and feed safety and security. The present review tends to provide an updated overview of the different sources, occurrence and biosynthetic mechanisms of ZEN in various food and feed. It also provides insight to its harmful effects on human health and agriculture along with its effective detection, management, and control strategies.
Collapse
Affiliation(s)
- Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia;
| | - Sheetal Devi
- National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana 131028, India;
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Bharti Sharma
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Kamlesh Kumar Maurya
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Sadhna Mishra
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Kajal Dhawan
- Department of Food Technology and Nutrition, School of Agriculture Lovely Professional University, Phagwara 144411, India;
| | - Raman Selvakumar
- Centre for Protected Cultivation Technology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India;
| | - Madhu Kamle
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India;
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
| | - Pradeep Kumar
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India;
| |
Collapse
|
26
|
Pickova D, Ostry V, Toman J, Malir F. Presence of Mycotoxins in Milk Thistle ( Silybum marianum) Food Supplements: A Review. Toxins (Basel) 2020; 12:E782. [PMID: 33302488 PMCID: PMC7763672 DOI: 10.3390/toxins12120782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/29/2022] Open
Abstract
The consumption of herbal-based supplements, which are believed to have beneficial effects on human health with no side effects, has become popular around the world and this trend is still increasing. Silybum marianum (L.) Gaertn, commonly known as milk thistle (MT), is the most commonly studied herb associated with the treatment of liver diseases. The hepatoprotective effects of active substances in silymarin, with silybin being the main compound, have been demonstrated in many studies. However, MT can be affected by toxigenic micro-fungi and contaminated by mycotoxins with adverse effects. The beneficial effect of silymarin can thus be reduced or totally antagonized by mycotoxins. MT has proven to be affected by micro-fungi of the Fusarium and Alternaria genera, in particular, and their mycotoxins. Alternariol-methyl-ether (AME), alternariol (AOH), beauvericin (BEA), deoxynivalenol (DON), enniatin A (ENNA), enniatin A1 (ENNA1), enniatin B (ENNB), enniatin B1 (ENNB1), HT-2 toxin (HT-2), T-2 toxin (T-2), tentoxin (TEN), and zearalenone (ZEA) seem to be most significant in MT-based dietary supplements. This review focuses on summarizing cases of mycotoxins in MT to emphasize the need for strict monitoring and regulation, as mycotoxins in relation with MT-based dietary supplements are not covered by European Union legislation.
Collapse
Affiliation(s)
- Darina Pickova
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| | - Vladimir Ostry
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
- Center for Health, National Institute of Public Health in Prague, Nutrition and Food in Brno, Palackeho 3a, CZ-61242 Brno, Czech Republic
| | - Jakub Toman
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| | - Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| |
Collapse
|
27
|
Karaman E, Ariman I, Ozden S. Responses of oxidative stress and inflammatory cytokines after zearalenone exposure in human kidney cells. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Zearalenone is a mycotoxin widely found worldwide that is produced by several fungal species. Due to its similarity to estradiol, it has been shown to have toxic effects on the reproductive system. Although various animal studies have been conducted to investigate the toxic effects of zearalenone, the mechanisms of toxicity have not been fully elucidated. The aim of the study was to investigate the dose-dependent toxic effects of zearalenone exposure in human kidney cells. The half-maximal inhibitory concentration values of zearalenone in HK-2 cells were found to be 133.42 and 101.74 µM in MTT- and NRU-tests, respectively. Zearalenone exposure at concentrations of 1, 10 and 50 µM decreased cell proliferation by 2.1, 11.07 and 24.34%, respectively. Reactive oxygen species levels increased significantly in a dose-dependent manner. A significant increase was observed in the expressions of MGMT, α-GST, Hsp70 and HO-1 genes, which are associated with oxidative damage, while a significant decrease in L-Fabp gene expression was observed. Moreover, zearalenone increased gene expression of inflammatory cytokines, such as IL-6, IL-8, TNFα and MAPK8. Significant increases were observed at the level of global DNA methylation and expression of DNMT1 in all exposure groups. These results indicate that changes in DNA methylation and oxidative damage may play an important role in the toxicity of zearalenone.
Collapse
Affiliation(s)
- E.F. Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, 34010-Topkapi, Istanbul, Turkey
| | - I. Ariman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey
| | - S. Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey
| |
Collapse
|
28
|
Karaman EF, Zeybel M, Ozden S. Evaluation of the epigenetic alterations and gene expression levels of HepG2 cells exposed to zearalenone and α-zearalenol. Toxicol Lett 2020; 326:52-60. [PMID: 32119988 DOI: 10.1016/j.toxlet.2020.02.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 01/30/2023]
Abstract
Zearalenone, produced by various Fusarium species, is a non-steroidal estrogenic mycotoxin that contaminates cereals, resulting in adverse effects on human health. We investigated the effects of zearalenone and its metabolite alpha zearalenol on epigenetic modifications and its relationship with metabolic pathways in human hepatocellular carcinoma cells following 24 h of exposure. Zearalenone and alpha zearalenol at the concentrations of 1, 10 and 50 μM significantly increased global levels of DNA methylation and global histone modifications (H3K27me3, H3K9me3, H3K9ac). Expression levels of the chromatin modifying enzymes EHMT2, ESCO1, HAT1, KAT2B, PRMT6 and SETD8 were upregulated by 50 μM of zearalenone exposure using PCR arrays, consistent with the results of global histone modifications. Zearalenone and alpha zearalenol also changed expression levels of the AhR, LXRα, PPARα, PPARɣ, L-fabp, LDLR, Glut2, Akt1 and HK2 genes, which are related to nuclear receptors and metabolic pathways. PPARɣ, a key regulator of lipid metabolism, was selected from among these genes for further analysis. The PPARɣ promoter reduced methylation significantly following zearalenone exposure. Taken together, the epigenetic mechanisms of DNA methylation and histone modifications may be key mechanisms in zearalenone toxicity. Furthermore, effects of zearalenone in metabolic pathways could be mediated by epigenetic modifications.
Collapse
Affiliation(s)
- Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey
| | - Müjdat Zeybel
- Department of Gastroenterology and Hepatology, School of Medicine, Koç University, 34010, Topkapi, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey.
| |
Collapse
|
29
|
Rai A, Das M, Tripathi A. Occurrence and toxicity of a fusarium mycotoxin, zearalenone. Crit Rev Food Sci Nutr 2019; 60:2710-2729. [DOI: 10.1080/10408398.2019.1655388] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ankita Rai
- Food, Drugs and Chemical Toxicology Group, CSIR- Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-IITR campus, Lucknow, India
| | - Mukul Das
- Food, Drugs and Chemical Toxicology Group, CSIR- Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-IITR campus, Lucknow, India
| | - Anurag Tripathi
- Food, Drugs and Chemical Toxicology Group, CSIR- Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-IITR campus, Lucknow, India
| |
Collapse
|
30
|
Karaman EF, Ozden S. Alterations in global DNA methylation and metabolism-related genes caused by zearalenone in MCF7 and MCF10F cells. Mycotoxin Res 2019; 35:309-320. [PMID: 30953299 DOI: 10.1007/s12550-019-00358-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/18/2022]
Abstract
Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by Fusarium fungi. ZEN has endocrine disruptor effects and could impair the hormonal balance. Here, we aimed at investigating possible effects of ZEN on metabolism-related pathways and its relation to epigenetic mechanisms in breast adenocarcinoma (MCF7) and breast epithelial (MCF10F) cells. Using the MTT and neutral red uptake (NRU) cell viability tests, IC50 values of ZEN after 24 h were found to be 191 μmol/L and 92.6 μmol/L in MCF7 cells and 67.4 μmol/L and 79.5 μmol/L in MCF10F cells. A significant increase on global levels of 5-methylcytosine (5-mC%) was observed for MCF7 cells, correlating with the increased expression of DNA methyltransferases. No alterations were observed on levels of 5-mC% and expression of DNA methyltransferases for MCF10F cells. Further, at least threefold upregulation compared to control was observed for several genes related to nuclear receptors and metabolism in MCF7 cells, while some of these genes were downregulated in MCF10F cells. The most notably altered genes were IGF1, HK2, PXR, and PPARγ. We suggested that ZEN could alter levels of global DNA methylation and impair metabolism-related pathways.
Collapse
Affiliation(s)
- Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey.
| |
Collapse
|
31
|
Belgacem H, Ben Salah-Abbès J, Ezzdini K, A Abdel-Wahhab M, Zinedine A, Abbès S. Lactobacillus plantarum MON03 counteracts zearalenone génotoxicty in mice: Chromosome aberrations, micronuclei, DNA fragmentation and apoptotique gene expression. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 840:11-19. [PMID: 30857728 DOI: 10.1016/j.mrgentox.2018.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022]
Abstract
Zearalenone (ZEN) is a potent estrogenic metabolite produced by some Fusarium species. No treatment has been successfully employed to get rid against ZEN contained in foods and/or mitigates its genotoxicity. This study was conducted to evaluate the ability of lactic acid bacteria, isolated from Tunisia traditional butter, Lactobacillus plantarum MON03 (LP) to protect mice against cytotoxicity and genotoxicity induced by ZEN. Two doses of LP (2 × 109 CFU/L, ∼2 mg/kg and 4 × 109 CFU/L, ∼4 mg/kg) was added alone or in combination with a toxic intragastric ZEN (40 mg/kg representing 8% of LD50) dose daily for 2 wk by oral gavage. The control group received distilled water. The positive control groups received Colchicin (4 mg/kg bw) for the micronucleus assay and mitomycin C (1 mg/kg bw) for the chromosome aberrations assay. 48 h after treatment, the small intestines, femur and tibia are dissected out. Small intestines were collected for the determination of DNA fragmentation, genes expression and target proteins content. The results show that ZEN was cytotoxic and genotoxic to mice as indicated by the increase in frequencies of polychromatic erythrocytes micronucleated (PCEMN) and chromosomal aberrations in bone marrow cells. In the small intestine ZEN was increased DNA fragmentation, down regulated the expressions of caspase-3, caspase-9, and Bax as well as up-regulated the expression of Bcl-2 and their target proteins. The simultaneous intragastric administration of LP with ZEN resulted in a decrease of PCEMN number and chromosomal aberrations frequency and in an increase of polychromatic erythrocytes (PCE) in bone marrow cells compared with the group treated with ZEN alone. In addition, LP succeeded to alleviate the disturbances in DNA fragmentation and the expression of these genes and their target proteins. It could be concluded that the use of LP induced protective effects against genotoxicity of ZEN in part through adhesion and so likely diminished its bio-availability in gastro-intestinal tract.
Collapse
Affiliation(s)
- Hela Belgacem
- Laboratory of Genetic, Biodiversity and Bio-Ressources Valorization, University of Monastir, Monastir, Tunisia
| | - Jalila Ben Salah-Abbès
- Laboratory of Genetic, Biodiversity and Bio-Ressources Valorization, University of Monastir, Monastir, Tunisia
| | - Khawla Ezzdini
- Laboratory of Genetic, Biodiversity and Bio-Ressources Valorization, University of Monastir, Monastir, Tunisia
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Abdellah Zinedine
- Team of Applied Microbiology and Biotechnologies, Laboratory of Marine Biotechnologies and Environment (BIOMARE), Faculty of Sciences, Chouaïb Doukkali University, El Jadida 24000, Morocco
| | - Samir Abbès
- Laboratory of Genetic, Biodiversity and Bio-Ressources Valorization, University of Monastir, Monastir, Tunisia; Higher Institute of Biotechnology of Béja, University of Jendouba, Jendouba, Tunisia.
| |
Collapse
|
32
|
Toxicological effects of fumonisin B1 in combination with other Fusarium toxins. Food Chem Toxicol 2018; 121:483-494. [DOI: 10.1016/j.fct.2018.09.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/29/2022]
|