1
|
Roux CG, Mason S, du Toit LDV, Nel JG, Rossouw TM, Steel HC. Comparative Effects of Efavirenz and Dolutegravir on Metabolomic and Inflammatory Profiles, and Platelet Activation of People Living with HIV: A Pilot Study. Viruses 2024; 16:1462. [PMID: 39339938 PMCID: PMC11437493 DOI: 10.3390/v16091462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Antiretroviral therapy (ART) has reduced the mortality and morbidity associated with HIV. However, irrespective of treatment, people living with HIV remain at a higher risk of developing non-AIDS-associated diseases. In 2019, the World Health Organization recommended the transition from efavirenz (EFV)- to dolutegravir (DTG)-based ART. Data on the impact of this transition are still limited. The current study therefore investigated the metabolic profiles, cytokine inflammatory responses, and platelet activation before and after the treatment transition. Plasma samples from nine virally suppressed adults living with HIV and sixteen healthy, HIV-uninfected individuals residing in Gauteng, South Africa were compared. Metabolite and cytokine profiles, and markers associated with platelet activation, were investigated with untargeted proton magnetic resonance metabolomics, multiplex suspension bead array immunoassays, and sandwich enzyme-linked immunosorbent assays, respectively. In those individuals with normal C-reactive protein levels, the transition to a DTG-based ART regimen resulted in decreased concentrations of acetoacetic acid, creatinine, adenosine monophosphate, 1,7-dimethylxanthine, glycolic acid, 3-hydroxybutyric acid, urea, and lysine. Moreover, increased levels of formic acid, glucose, lactic acid, myo-inositol, valine, glycolic acid, and 3-hydroxybutyric acid were observed. Notably, levels of interleukin-6, platelet-derived growth factor-BB, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-alpha, soluble cluster of differentiation 40 ligand, as well as regulated on activation, normal T-cell expressed and secreted (RANTES) reached levels close to those observed in the healthy control participants. The elevated concentration of macrophage inflammatory protein-1 alpha was the only marker indicative of elevated levels of inflammation associated with DTG-based treatment. The transition from EFV- to DTG-based regimens therefore appears to be of potential benefit with metabolic and inflammatory markers, as well as those associated with cardiovascular disease and other chronic non-AIDS-related diseases, reaching levels similar to those observed in individuals not living with HIV.
Collapse
Affiliation(s)
- Crystal G. Roux
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (L.D.V.d.T.); (T.M.R.); (H.C.S.)
| | - Shayne Mason
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa;
| | - Louise D. V. du Toit
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (L.D.V.d.T.); (T.M.R.); (H.C.S.)
| | - Jan-Gert Nel
- Department of Haematology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Theresa M. Rossouw
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (L.D.V.d.T.); (T.M.R.); (H.C.S.)
| | - Helen C. Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (L.D.V.d.T.); (T.M.R.); (H.C.S.)
| |
Collapse
|
2
|
Neyrinck-Leglantier D, Tamagne M, Ben Rayana R, Many S, Vingert P, LeGagneux J, Delorme AS, Andrieu M, Boilard E, Cognasse F, Hamzeh-Cognasse H, Perez-Patrigeon S, Lelievre JD, Pirenne F, Gallien S, Vingert B. Immunoregulatory molecule expression on extracellular microvesicles in people living with HIV. Front Immunol 2024; 15:1354065. [PMID: 38500878 PMCID: PMC10944887 DOI: 10.3389/fimmu.2024.1354065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction People living with HIV (PLWH) now benefit from combined antiviral treatments that durably control viral replication. These antiretroviral treatments decrease mortality and improve quality of life in PLWH, but do not completely control the excessive non-specific activation of the immune system in PLWH. This chronic immune activation is a key element of HIV immunopathology that contributes to the pathophysiology of inflammatory comorbid conditions, such as cardiovascular disorders, cancer and autoimmune diseases. Circulating non-exosomal extracellular vesicles, also known as microparticles (MPs) are detected in these diseases and have been linked to immune activation. The objective of this study was to characterize the MPs present in PLWH and to assess their association with chronic immune activation. Methods We performed flow cytometry for the complete phenotypic characterization of MPs from fresh plasma from PLWH and from people without HIV as the control group. The absolute number, size and cellular origin of MPs were evaluated. The immunoregulatory profile was determined by cell origin, for MPs derived from platelets (PMPs), monocytes (MMPs) and T lymphocytes (LMPs). Results PLWH had significantly more circulating MPs than controls, for MPs of all sizes originating from T lymphocytes, red blood cells, neutrophils, dendritic cells, B lymphocytes and endothelial cells. PMPs and MMPs were not more numerous in PLWH, but the immunoregulatory phenotypes of these MPs differed between PLWH and controls. These differences in immunoregulatory molecule expression profile were also observed for LMPs. PDL1, ICOSL, CCR5, TGFβ1, MHC classes I and II, TRAIL, CXCR4, OX40, DC-SIGN, CTLA4 and PDL2 were more strongly expressed on the surface of MPs from PLWH than on those from controls. Conclusion MPs are an important element in intercellular communication, making it possible to transfer phenotypes and functions to immune cells. The significantly higher numbers of MPs expressing diverse immunomodulatory molecules in PLWH may make a major contribution to the maintenance and/or the development of immune-cell activation in these individuals.
Collapse
Affiliation(s)
- Deborah Neyrinck-Leglantier
- Univ Paris Est-Creteil (UPEC), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Mondor de la Recherche Biomédicale (IMRB), Creteil, France
- Etablissement Français du Sang (EFS), Ivry-sur-Seine, France
- Laboratory of Excellence, Biogénèse et Pathologies du Globule Rouge (GR-Ex), Paris, France
| | - Marie Tamagne
- Univ Paris Est-Creteil (UPEC), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Mondor de la Recherche Biomédicale (IMRB), Creteil, France
- Etablissement Français du Sang (EFS), Ivry-sur-Seine, France
- Laboratory of Excellence, Biogénèse et Pathologies du Globule Rouge (GR-Ex), Paris, France
| | - Raida Ben Rayana
- Service de Maladies Infectieuses et Immunologie Clinique, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Souganya Many
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique (CNRS) UMR8104, Université Paris-Cité, Paris, France
| | - Paul Vingert
- Univ Paris Est-Creteil (UPEC), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Mondor de la Recherche Biomédicale (IMRB), Creteil, France
- Etablissement Français du Sang (EFS), Ivry-sur-Seine, France
- Laboratory of Excellence, Biogénèse et Pathologies du Globule Rouge (GR-Ex), Paris, France
| | - Julie LeGagneux
- Univ Paris Est-Creteil (UPEC), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Mondor de la Recherche Biomédicale (IMRB), Creteil, France
- Etablissement Français du Sang (EFS), Ivry-sur-Seine, France
- Laboratory of Excellence, Biogénèse et Pathologies du Globule Rouge (GR-Ex), Paris, France
| | - Adèle Silane Delorme
- Univ Paris Est-Creteil (UPEC), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Mondor de la Recherche Biomédicale (IMRB), Creteil, France
- Etablissement Français du Sang (EFS), Ivry-sur-Seine, France
- Laboratory of Excellence, Biogénèse et Pathologies du Globule Rouge (GR-Ex), Paris, France
| | - Muriel Andrieu
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique (CNRS) UMR8104, Université Paris-Cité, Paris, France
| | - Eric Boilard
- Faculté de Médecine and Centre de Recherche ARThrite, Université Laval, Québec, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC, Canada
| | - Fabrice Cognasse
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France
| | | | | | - Jean-Daniel Lelievre
- Service de Maladies Infectieuses et Immunologie Clinique, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - France Pirenne
- Univ Paris Est-Creteil (UPEC), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Mondor de la Recherche Biomédicale (IMRB), Creteil, France
- Etablissement Français du Sang (EFS), Ivry-sur-Seine, France
- Laboratory of Excellence, Biogénèse et Pathologies du Globule Rouge (GR-Ex), Paris, France
| | - Sébastien Gallien
- Service de Maladies Infectieuses et Immunologie Clinique, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Benoît Vingert
- Univ Paris Est-Creteil (UPEC), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Mondor de la Recherche Biomédicale (IMRB), Creteil, France
- Etablissement Français du Sang (EFS), Ivry-sur-Seine, France
- Laboratory of Excellence, Biogénèse et Pathologies du Globule Rouge (GR-Ex), Paris, France
| |
Collapse
|
3
|
Theron AJ, Anderson R, Madzime M, Rossouw TM, Steel HC, Meyer PWA, Cholo MC, Kwofie LLI, Feldman C, Tintinger GR. Pro-Inflammatory Interactions of Dolutegravir with Human Neutrophils in an In Vitro Study. Molecules 2022; 27:molecules27249057. [PMID: 36558190 PMCID: PMC9780875 DOI: 10.3390/molecules27249057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
There is increasing awareness of an association between the uptake of the HIV integrase inhibitor, dolutegravir, in first-line antiretroviral regimens with unusual weight gain and development of the metabolic syndrome, particularly in African women. Although seemingly unexplored, the development of systemic inflammation linked to the putative pro-inflammatory activity of dolutegravir represents a plausible pathophysiological mechanism of this unusual weight gain. This possibility was explored in the current study undertaken to investigate the effects of dolutegravir (2.5−20 μg/mL) on several pro-inflammatory activities of neutrophils isolated from the blood of healthy, adult humans. These activities included the generation of reactive oxygen species (ROS), degranulation (elastase release) and alterations in the concentrations of cytosolic Ca2+ using chemiluminescence, spectrophotometric and fluorimetric procedures, respectively. Exposure of neutrophils to dolutegravir alone resulted in the abrupt, dose-related, and significant (p < 0.0039−p < 0.0022) generation of ROS that was attenuated by the inclusion of the Ca2+-chelating agent, EGTA, or inhibitors of NADPH oxidase (diphenyleneiodonium chloride, DPI), phospholipase C (U733122), myeloperoxidase (sodium azide) and phosphoinositol-3-kinase (wortmannin). In addition, exposure to dolutegravir augmented the release of elastase by stimulus-activated neutrophils. These pro-inflammatory effects of dolutegravir on neutrophils were associated with significant, rapid, and sustained increases in the concentrations of cytosolic Ca2+ that appeared to originate from the extracellular compartment, seemingly consistent with an ionophore-like property of dolutegravir. These findings are preliminary and necessitate verification in the clinical setting of HIV infection. Nevertheless, given the complex link between inflammation and obesity, these pro-inflammatory interactions of dolutegravir with neutrophils may contribute to unexplained weight gain, possibly via the development of insulin resistance.
Collapse
Affiliation(s)
- Annette J. Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
- Correspondence: ; Tel.: +27-12-319-2425
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Morris Madzime
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Theresa M. Rossouw
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Helen C. Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Pieter W. A. Meyer
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
- Department of Immunology, Tshwane Academic Division, National Health Laboratory Services, Pretoria 0002, South Africa
| | - Moloko C. Cholo
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Luyanda L. I. Kwofie
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
- Department of Immunology, Tshwane Academic Division, National Health Laboratory Services, Pretoria 0002, South Africa
| | - Charles Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Gregory R. Tintinger
- Department of Internal Medicine, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|