1
|
Zheng X, Yuan J, Wan Y, Tang Y, Cao H, Wang J, Qian K, Zhang Y, Chen S, Xu B, Zhang Y, Liang P, Wu Q. Dual Guardians of Immunity: FoRab10 and FoRab29 in Frankliniella occidentalis Confer Resistance to Tomato Spotted Wilt Orthotospovirus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16661-16673. [PMID: 39021284 DOI: 10.1021/acs.jafc.4c03412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Rab GTPase is critical for autophagy processes and is implicated in insect immunity against viruses. In this study, we aimed to investigate the role of FoRabs in the autophagic regulation of antiviral defense against tomato spotted wilt orthotospovirus (TSWV) in Frankliniella occidentalis. Transcriptome analysis revealed the downregulation of FoRabs in viruliferous nymph and adults of F. occidentalis in response to TSWV infection. Manipulation of autophagy levels with 3-MA and Rapa treatments resulted in a 5- to 15-fold increase and a 38-64% decrease in viral titers, respectively. Additionally, interference with FoRab10 in nymphs and FoRab29 in adults led to a 20-90% downregulation of autophagy-related genes, a decrease in ATG8-II (an autophagy marker protein), and an increase in the TSWV titers by 1.5- to 2.5-fold and 1.3- to 2.0-fold, respectively. In addition, the leaf disk and the living plant methods revealed increased transmission rates of 20.8-41.6 and 68.3-88.3%, respectively. In conclusion, FoRab10 and FoRab29 play a role in the autophagic regulation of the antiviral defense in F. occidentalis nymphs and adults against TSWV, respectively. These findings offer insights into the intricate immune mechanisms functional in F. occidentalis against TSWV, suggesting potential targeted strategies for F. occidentalis and TSWV management.
Collapse
Affiliation(s)
- Xiaobin Zheng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Jiangjiang Yuan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanran Wan
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Yingxi Tang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongyi Cao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kanghua Qian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sirui Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Baoyun Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Lazki-Hagenbach P, Kleeblatt E, Fukuda M, Ali H, Sagi-Eisenberg R. The Underlying Rab Network of MRGPRX2-Stimulated Secretion Unveils the Impact of Receptor Trafficking on Secretory Granule Biogenesis and Secretion. Cells 2024; 13:93. [PMID: 38201297 PMCID: PMC10778293 DOI: 10.3390/cells13010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
MRGPRX2, the human member of the MAS-related G-protein-coupled receptors (GPCRs), mediates the immunoglobulin E (IgE)-independent responses of a subset of mast cells (MCs) that are associated with itch, pain, neurogenic inflammation, and pseudoallergy to drugs. The mechanisms underlying the responses of MRGPRX2 to its multiple and diverse ligands are still not completely understood. Given the close association between GPCR location and function, and the key role played by Rab GTPases in controlling discrete steps along vesicular trafficking, we aimed to reveal the vesicular pathways that directly impact MRGPRX2-mediated exocytosis by identifying the Rabs that influence this process. For this purpose, we screened 43 Rabs for their functional and phenotypic impacts on MC degranulation in response to the synthetic MRGPRX2 ligand compound 48/80 (c48/80), which is often used as the gold standard of MRGPRX2 ligands, or to substance P (SP), an important trigger of neuroinflammatory MC responses. Results of this study highlight the important roles played by macropinocytosis and autophagy in controlling MRGPRX2-mediated exocytosis, demonstrating a close feedback control between the internalization and post-endocytic trafficking of MRGPRX2 and its triggered exocytosis.
Collapse
Affiliation(s)
- Pia Lazki-Hagenbach
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (P.L.-H.); (E.K.)
| | - Elisabeth Kleeblatt
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (P.L.-H.); (E.K.)
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai 980-8578, Miyagi, Japan;
| | - Hydar Ali
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (P.L.-H.); (E.K.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
3
|
Liu N, Huang M, Liang X, Cao M, Lun Z, Zhang Y, Yang J, Bhadauria V, Zhao W, Yan J, Peng YL, Lu X. Magnaporthe oryzae endoplasmic reticulum membrane complex regulates the biogenesis of membrane proteins for pathogenicity. THE NEW PHYTOLOGIST 2023; 238:1163-1181. [PMID: 36772852 DOI: 10.1111/nph.18810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
In eukaryotes, the majority of newly synthesized integral membrane proteins are inserted into the endoplasmic reticulum (ER) membrane before transferred to their functional sites. The conserved ER membrane complex (EMC) takes part in the insertion process for tail-anchored membrane proteins. However, the function of EMC in phytopathogenic fungi has not been characterized. Here, we report the identification and functional characterization of two EMC subunits MoEmc5 and MoEmc2 in Magnaporthe oryzae. The knockout mutants ΔMoemc5 and ΔMoemc2 exhibit substantial defect in autophagy, pathogenicity, cell wall integrity, and magnesium ion sensitivity. We demonstrate that the autophagy process was severely impaired in the ΔMoemc5 and ΔMoemc2 mutants because of the low-protein steady-state level of Atg9, the sole membrane-associated autophagy protein. Furthermore, the protein level of membrane proteins Chs4, Fks1, and MoMnr2 is also significantly reduced in the ΔMoemc5 and ΔMoemc2 strains, leading to their supersensitivity to Calcofluor white, Congo red, and magnesium. In addition, MoEmc5, but not MoEmc2, acts as a magnesium transporter independent of its EMC function. Magnaporthe oryzae EMC regulates the biogenesis of membrane proteins for autophagy and virulence; therefore, EMC subunits could be potential targets for fungicide design in the future.
Collapse
Affiliation(s)
- Ning Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Manna Huang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Xinyuan Liang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Miao Cao
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Zhiqin Lun
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Yan Zhang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Vijai Bhadauria
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Wensheng Zhao
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Jiye Yan
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Xunli Lu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
4
|
Zhang J, Li J, You P, Jiang H, Liu Y, Han D, Liu M, Yu H, Su B. Mice with the Rab10 T73V mutation exhibit anxiety-like behavior and alteration of neuronal functions in the striatum. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166641. [PMID: 36669576 DOI: 10.1016/j.bbadis.2023.166641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Hyperphosphorylated Rab10 has been implicated in the pathogenesis of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. However, the neurophysiological function of the evolutionarily conserved Thr73 phosphorylation of Rab10 remains poorly understood. Here, we generated a novel mouse model expressing the non-phosphorylatable T73V mutation of Rab10 and performed a comprehensive series of neurological analyses, including behavioral tests, synaptic evaluations, neuronal and glial staining, assessments of neurite arborization and spine morphogenesis. The Rab10 T73V mutantmice exhibited a characteristic anxiety-like phenotype with other behavioral modules relatively unaffected. Moreover, Rab10 T73V mutant mice displayed striatum-specific synaptic dysfunction, as indicated by aberrantly increased expression levels of synaptic proteins and impaired frequencies of miniature inhibitory postsynaptic currents. The genetic deletion of Rab10 phosphorylation enhanced neurite arborization and accelerated spine maturation in striatal medium spiny neurons. Our findings emphasize the specific role of intrinsic phospho-Rab10 in the regulation of the striatal circuitry and its related behaviors.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jie Li
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Pan You
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Haitian Jiang
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yanjun Liu
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Daobin Han
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Meiqi Liu
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Hui Yu
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Bo Su
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
5
|
Tang J, Ma YC, Chen YL, Yang RQ, Liu HC, Wang X, Ni B, Zou CG, Zhang KQ. Vitellogenin accumulation leads to reproductive senescence by impairing lysosomal function. SCIENCE CHINA. LIFE SCIENCES 2023; 66:439-452. [PMID: 36680676 DOI: 10.1007/s11427-022-2242-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/19/2022] [Indexed: 01/22/2023]
Abstract
The maintenance of proteostasis is essential for cellular and organism healthspan. How proteostasis collapse influences reproductive span remains largely unclear. In Caenorhabditis elegans, excess accumulation of vitellogenins, the major components in yolk proteins, is crucial for the development of the embryo and occurs throughout the whole body during the aging process. Here, we show that vitellogenin accumulation leads to reproduction cessation. Excess vitellogenin is accumulated in the intestine and transported into the germline, impairing lysosomal activity in these tissues. The lysosomal function in the germline is required for reproductive span by maintaining oocyte quality. In contrast, autophagy and sperm depletion are not involved in vitellogenin accumulation-induced reproductive aging. Our findings provide insights into how proteome imbalance has an impact on reproductive aging and imply that improvement of lysosomal function is an effective approach for mid-life intervention for maintaining reproductive health in mammals.
Collapse
Affiliation(s)
- Jie Tang
- Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS & PUMC), Kunming, 650118, China
| | - Yi-Cheng Ma
- Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yuan-Li Chen
- Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
- Faculty of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Rui-Qiu Yang
- Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Heng-Chen Liu
- Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Xin Wang
- Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Baosen Ni
- Institute of Biology and Environmental Engineering, School of Chemistry, Biology & Environment, Yuxi Normal University, Yuxi, 653100, China
| | - Cheng-Gang Zou
- Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Ke-Qin Zhang
- Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
6
|
Zhang C, Dan Q, Lai S, Zhang Y, Gao E, Luo H, Yang L, Gao X, Lu C. Rab10 protects against DOX-induced cardiotoxicity by alleviating the oxidative stress and apoptosis of cardiomyocytes. Toxicol Lett 2023; 373:84-93. [PMID: 36309171 DOI: 10.1016/j.toxlet.2022.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Doxorubicin (DOX) is a widely used anticancer drug, but its clinical application is limited by cardiotoxicity. As a member of the Rab family, Rab10 has multiple subcellular localizations and carries out a wide variety of functions. Here, we explored the role of Rab10 on DOX-induced cardiotoxicity. Cardiac-specific Rab10 transgenic mice were constructed and treated with DOX or saline. We found that cardiac-specific overexpression of Rab10 alleviated cardiac dysfunction and attenuated cytoplasmic vacuolization and mitochondrial damage in DOX-treated mouse heart tissues. Immunofluorescence staining and Western blot analysis showed that Rab10 alleviated DOX-induced apoptosis and oxidative stress in cardiomyocytes in mouse heart tissues. We demonstrated that DOX mediated apoptosis, oxidative stress and depolarization of the mitochondrial membrane potential in H9c2 cells, while overexpression and knockdown of Rab10 attenuated and aggravated these effects, respectively. Furthermore, we found that Mst1, a serine-threonine kinase, was cleaved and translocated into the nucleus in H9c2 cells after DOX treatment, and knockdown of Mst1 alleviated DOX-induced cardiomyocyte apoptosis. Overexpression of Rab10 inhibited the cleavage of Mst1 mediated by DOX treatment in vivo and in vitro. Together, our findings demonstrated that cardiac-specific overexpression of Rab10 alleviated DOX-induced cardiac dysfunction and injury via inhibiting oxidative stress and apoptosis of cardiomyocytes, which may be partially ascribed to the inhibition of Mst1 activity.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Qinghua Dan
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Song Lai
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yutong Zhang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Erer Gao
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Haiyan Luo
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Liping Yang
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, China
| | - Xiaobo Gao
- Department of Genetics, National Research Institute for Family Planning, Beijing, China.
| | - Cailing Lu
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
Mahmutefendić Lučin H, Blagojević Zagorac G, Marcelić M, Lučin P. Host Cell Signatures of the Envelopment Site within Beta-Herpes Virions. Int J Mol Sci 2022; 23:9994. [PMID: 36077391 PMCID: PMC9456339 DOI: 10.3390/ijms23179994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
Beta-herpesvirus infection completely reorganizes the membrane system of the cell. This system is maintained by the spatiotemporal arrangement of more than 3000 cellular proteins that continuously adapt the configuration of membrane organelles according to cellular needs. Beta-herpesvirus infection establishes a new configuration known as the assembly compartment (AC). The AC membranes are loaded with virus-encoded proteins during the long replication cycle and used for the final envelopment of the newly formed capsids to form infectious virions. The identity of the envelopment membranes is still largely unknown. Electron microscopy and immunofluorescence studies suggest that the envelopment occurs as a membrane wrapping around the capsids, similar to the growth of phagophores, in the area of the AC with the membrane identities of early/recycling endosomes and the trans-Golgi network. During wrapping, host cell proteins that define the identity and shape of these membranes are captured along with the capsids and incorporated into the virions as host cell signatures. In this report, we reviewed the existing information on host cell signatures in human cytomegalovirus (HCMV) virions. We analyzed the published proteomes of the HCMV virion preparations that identified a large number of host cell proteins. Virion purification methods are not yet advanced enough to separate all of the components of the rich extracellular material, including the large amounts of non-vesicular extracellular particles (NVEPs). Therefore, we used the proteomic data from large and small extracellular vesicles (lEVs and sEVs) and NVEPs to filter out the host cell proteins identified in the viral proteomes. Using these filters, we were able to narrow down the analysis of the host cell signatures within the virions and determine that envelopment likely occurs at the membranes derived from the tubular recycling endosomes. Many of these signatures were also found at the autophagosomes, suggesting that the CMV-infected cell forms membrane organelles with phagophore growth properties using early endosomal host cell machinery that coordinates endosomal recycling.
Collapse
Affiliation(s)
| | | | | | - Pero Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
8
|
Lin H, Gao Y, Zhang C, Ma B, Wu M, Cui X, Wang H. Autophagy Regulation Influences β-Amyloid Toxicity in Transgenic Caenorhabditis elegans. Front Aging Neurosci 2022; 14:885145. [PMID: 35645788 PMCID: PMC9133694 DOI: 10.3389/fnagi.2022.885145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive, neurodegenerative disease characterized by the accumulation of amyloid-beta (Aβ) proteins in the form of plaques that cause a proteostasis imbalance in the brain. Several studies have identified autophagy deficits in both AD patients and AD animal models. Here, we used transgenic Caenorhabditis elegans to study the relationship between autophagy flux and Aβ. We labeled autophagosomes with an advanced fluorescence reporter system, and used this to observe that human Aβ expression caused autophagosome accumulation in C. elegans muscle. The autophagy-related drugs chloroquine and 3-MA were employed to investigate the relationship between changes in autophagic flux and the toxicity of Aβ expression. We found that reducing autophagosome accumulation delayed Aβ-induced paralysis in the CL4176 strain of C. elegans, and alleviated Aβ-induced toxicity, thus having a neuroprotective effect. Finally, we used RNA-sequencing and proteomics to identify genes whose expression was affected by Aβ aggregation in C. elegans. We identified a series of enriched autophagy-related signal pathways, suggesting that autophagosome accumulation impairs Aβ protein homeostasis in nematodes. Thus, maintaining normal autophagy levels appears to be important in repairing the protein homeostasis imbalance caused by Aβ expression.
Collapse
|
9
|
Limanaqi F, Busceti CL, Celli R, Biagioni F, Fornai F. Autophagy as a gateway for the effects of methamphetamine: From neurotransmitter release and synaptic plasticity to psychiatric and neurodegenerative disorders. Prog Neurobiol 2021; 204:102112. [PMID: 34171442 DOI: 10.1016/j.pneurobio.2021.102112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/27/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
As a major eukaryotic cell clearing machinery, autophagy grants cell proteostasis, which is key for neurotransmitter release, synaptic plasticity, and neuronal survival. In line with this, besides neuropathological events, autophagy dysfunctions are bound to synaptic alterations that occur in mental disorders, and early on, in neurodegenerative diseases. This is also the case of methamphetamine (METH) abuse, which leads to psychiatric disturbances and neurotoxicity. While consistently altering the autophagy machinery, METH produces behavioral and neurotoxic effects through molecular and biochemical events that can be recapitulated by autophagy blockade. These consist of altered physiological dopamine (DA) release, abnormal stimulation of DA and glutamate receptors, as well as oxidative, excitotoxic, and neuroinflammatory events. Recent molecular insights suggest that METH early impairs the autophagy machinery, though its functional significance remains to be investigated. Here we discuss evidence suggesting that alterations of DA transmission and autophagy are intermingled within a chain of events underlying behavioral alterations and neurodegenerative phenomena produced by METH. Understanding how METH alters the autophagy machinery is expected to provide novel insights into the neurobiology of METH addiction sharing some features with psychiatric disorders and parkinsonism.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56126, Pisa, PI, Italy
| | | | - Roberta Celli
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56126, Pisa, PI, Italy; IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy.
| |
Collapse
|
10
|
Molecular Basis of Neuronal Autophagy in Ageing: Insights from Caenorhabditis elegans. Cells 2021; 10:cells10030694. [PMID: 33800981 PMCID: PMC8004021 DOI: 10.3390/cells10030694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/19/2023] Open
Abstract
Autophagy is an evolutionarily conserved degradation process maintaining cell homeostasis. Induction of autophagy is triggered as a response to a broad range of cellular stress conditions, such as nutrient deprivation, protein aggregation, organelle damage and pathogen invasion. Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane organelle referred to as the autophagosome with subsequent degradation of its contents upon delivery to lysosomes. Autophagy plays critical roles in development, maintenance and survival of distinct cell populations including neurons. Consequently, age-dependent decline in autophagy predisposes animals for age-related diseases including neurodegeneration and compromises healthspan and longevity. In this review, we summarize recent advances in our understanding of the role of neuronal autophagy in ageing, focusing on studies in the nematode Caenorhabditis elegans.
Collapse
|
11
|
He Y, Kan W, Li Y, Hao Y, Huang A, Gu H, Wang M, Wang Q, Chen J, Sun Z, Liu M, Chen Y, Yi Z. A potent and selective small molecule inhibitor of myoferlin attenuates colorectal cancer progression. Clin Transl Med 2021; 11:e289. [PMID: 33634965 PMCID: PMC7868085 DOI: 10.1002/ctm2.289] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/30/2022] Open
Abstract
As a pivotal vesicular trafficking protein, Myoferlin (MYOF) has become an attractive target for cancer therapy. However, the roles of MYOF in colorectal cancer invasion remain enigmatic, and MYOF-targeted therapy in this malignancy has not been explored. In the present study, we provided the first functional evidence that MYOF promoted the cell invasion of colorectal cancer. Furthermore, we identified a novel small molecule inhibitor of MYOF (named YQ456) that showed high binding affinity to MYOF (KD = 37 nM) and excellent anti-invasion capability (IC50 = 110 nM). YQ456 was reported for the first time to interfere with the interactions between MYOF and Ras-associated binding (Rab) proteins at low nanomolar levels. This interference disrupted several vesicle trafficking processes, including lysosomal degradation, exosome secretion, and mitochondrial dynamics. Further, YQ456 exhibited excellent inhibitory effects on the growth and invasiveness of colorectal cancer. As the first attempt, the anticancer efficacy of YQ456 in the patient-derived xenograft (PDX) mouse model indicated that targeting MYOF may serve as a novel and practical therapeutic approach for colorectal cancer.
Collapse
Affiliation(s)
- Yuan He
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
- Joint Center for Translational MedicineSouthern Medical University Affiliated Fengxian HospitalShanghai201499P.R. China
| | - Weiqiong Kan
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
| | - Yunqi Li
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
| | - Yun Hao
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
| | - Anling Huang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
| | - Haijun Gu
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
| | - Minna Wang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
| | - Qingqing Wang
- Joint Center for Translational MedicineSouthern Medical University Affiliated Fengxian HospitalShanghai201499P.R. China
| | - Jinlian Chen
- Joint Center for Translational MedicineSouthern Medical University Affiliated Fengxian HospitalShanghai201499P.R. China
| | - Zhenliang Sun
- Joint Center for Translational MedicineSouthern Medical University Affiliated Fengxian HospitalShanghai201499P.R. China
| | - Mingyao Liu
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
| | - Yihua Chen
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
| | - Zhengfang Yi
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
- Joint Center for Translational MedicineSouthern Medical University Affiliated Fengxian HospitalShanghai201499P.R. China
| |
Collapse
|
12
|
Autophagy status as a gateway for stress-induced catecholamine interplay in neurodegeneration. Neurosci Biobehav Rev 2021; 123:238-256. [PMID: 33497785 DOI: 10.1016/j.neubiorev.2021.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
The catecholamine-containing brainstem nuclei locus coeruleus (LC) and ventral tegmental area (VTA) are critically involved in stress responses. Alterations of catecholamine systems during chronic stress may contribute to neurodegeneration, including cognitive decline. Stress-related catecholamine alterations, while contributing to anxiety and depression, might accelerate neuronal degeneration by increasing the formation of toxic dopamine and norepinephrine by-products. These, in turn, may impair proteostasis within a variety of cortical and subcortical areas. In particular, the molecular events governing neurotransmission, neuroplasticity, and proteostasis within LC and VTA affect a variety of brain areas. Therefore, we focus on alterations of autophagy machinery in these nuclei as a relevant trigger in this chain of events. In fact, these catecholamine-containing areas are mostly prone to autophagy-dependent neurodegeneration. Thus, we propose a dynamic hypothesis according to which stress-induced autophagy alterations within the LC-VTA network foster a cascade towards early neurodegeneration within these nuclei.
Collapse
|
13
|
Guan L, Zhan Z, Yang Y, Miao Y, Huang X, Ding M. Alleviating chronic ER stress by p38-Ire1-Xbp1 pathway and insulin-associated autophagy in C. elegans neurons. PLoS Genet 2020; 16:e1008704. [PMID: 32986702 PMCID: PMC7544145 DOI: 10.1371/journal.pgen.1008704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/08/2020] [Accepted: 08/11/2020] [Indexed: 01/07/2023] Open
Abstract
ER stress occurs in many physiological and pathological conditions. However, how chronic ER stress is alleviated in specific cells in an intact organism is an outstanding question. Here, overexpressing the gap junction protein UNC-9 (Uncoordinated) in C. elegans neurons triggers the Ire1-Xbp1-mediated stress response in an age-dependent and cell-autonomous manner. The p38 MAPK PMK-3 regulates the chronic stress through IRE-1 phosphorylation. Overexpressing gap junction protein also activates autophagy. The insulin pathway functions through autophagy, but not the transcription of genes encoding ER chaperones, to counteract the p38-Ire1-Xbp1-mediated stress response. Together, these results reveal an intricate cellular regulatory network in response to chronic stress in a subset of cells in multicellular organism. The accumulation of unfolded proteins triggers the ER stress response (UPR), which allows cells to fight against fluctuations in protein expression under both physiological and pathological conditions. Severe acute ER stress responses can be induced by drug treatment. However, such intense ER stress rarely occurs ubiquitously in every cell type in vivo. Here, we designed a genetic system in the nematode C. elegans, which allows us to induce ER stress in specific cells, without drug treatment or any other external stimuli, and then to monitor the stress response. The p38 MAPK directly acts on the phosphorylation of IRE-1 to promote the stress response. Meanwhile, the insulin receptor function through autophagy activation to counteract the p38-IRE-1-XBP-1 pathway. Together, these results reveal an intricate cellular regulatory network in response to chronic stress in multicellular organism.
Collapse
Affiliation(s)
- Liying Guan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (LG); (MD)
| | - Zhigao Zhan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongzhi Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Miao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (LG); (MD)
| |
Collapse
|
14
|
Obergasteiger J, Frapporti G, Lamonaca G, Pizzi S, Picard A, Lavdas AA, Pischedda F, Piccoli G, Hilfiker S, Lobbestael E, Baekelandt V, Hicks AA, Corti C, Pramstaller PP, Volta M. Kinase inhibition of G2019S-LRRK2 enhances autolysosome formation and function to reduce endogenous alpha-synuclein intracellular inclusions. Cell Death Discov 2020; 6:45. [PMID: 32550012 PMCID: PMC7280235 DOI: 10.1038/s41420-020-0279-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/07/2020] [Accepted: 05/16/2020] [Indexed: 12/15/2022] Open
Abstract
The Parkinson's disease (PD)-associated kinase Leucine-Rich Repeat Kinase 2 (LRRK2) is a crucial modulator of the autophagy-lysosome pathway, but unclarity exists on the precise mechanics of its role and the direction of this modulation. In particular, LRRK2 is involved in the degradation of pathological alpha-synuclein, with pathogenic mutations precipitating neuropathology in cellular and animal models of PD, and a significant proportion of LRRK2 patients presenting Lewy neuropathology. Defects in autophagic processing and lysosomal degradation of alpha-synuclein have been postulated to underlie its accumulation and onset of neuropathology. Thus, it is critical to obtain a comprehensive knowledge on LRRK2-associated pathology. Here, we investigated a G2019S-LRRK2 recombinant cell line exhibiting accumulation of endogenous, phosphorylated alpha-synuclein. We found that G2019S-LRRK2 leads to accumulation of LC3 and abnormalities in lysosome morphology and proteolytic activity in a kinase-dependent fashion, but independent from constitutively active Rab10. Notably, LRRK2 inhibition was ineffective upon upstream blockade of autophagosome-lysosome fusion events, highlighting this step as critical for alpha-synuclein clearance.
Collapse
Affiliation(s)
- Julia Obergasteiger
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
| | - Giulia Frapporti
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Via Sommarive 9, 38123 Povo, TN Italy
| | - Giulia Lamonaca
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
| | - Sara Pizzi
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
| | - Anne Picard
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
| | - Alexandros A. Lavdas
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
| | - Francesca Pischedda
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Via Sommarive 9, 38123 Povo, TN Italy
| | - Giovanni Piccoli
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Via Sommarive 9, 38123 Povo, TN Italy
| | - Sabine Hilfiker
- Department of Anesthesiology, Rutgers University - New Jersey Medical School, Medical Science Building, 185 South Orange Avenue, Newark, NJ 07103 USA
| | - Evy Lobbestael
- Department of Neurosciences, KU Leuven, Herestraat 49 bus 1023, 3000 Leuven, Belgium
| | - Veerle Baekelandt
- Department of Neurosciences, KU Leuven, Herestraat 49 bus 1023, 3000 Leuven, Belgium
| | - Andrew A. Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
| | - Corrado Corti
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
| | - Peter P. Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
- Department of Neurology, General Central Hospital, Via Böhler 5, 39100 Bolzano, Italy
- Department of Neurology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Mattia Volta
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
| |
Collapse
|
15
|
Wong SQ, Kumar AV, Mills J, Lapierre LR. C. elegans to model autophagy-related human disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:325-373. [PMID: 32620247 DOI: 10.1016/bs.pmbts.2020.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is a highly conserved degradation process that clears damaged intracellular macromolecules and organelles in order to maintain cellular health. Dysfunctional autophagy is fundamentally linked to the development of various human disorders and pathologies. The use of the nematode Caenorhabditis elegans as a model system to study autophagy has improved our understanding of its regulation and function in organismal physiology. Here, we review the genetic, functional, and regulatory conservation of the autophagy pathway in C. elegans and we describe tools to quantify and study the autophagy process in this incredibly useful model organism. We further discuss how these nematodes have been modified to model autophagy-related human diseases and underscore the important insights obtained from such models. Altogether, we highlight the strengths of C. elegans as an exceptional tool to understand the genetic and molecular foundations underlying autophagy-related human diseases.
Collapse
Affiliation(s)
- Shi Quan Wong
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Anita V Kumar
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Joslyn Mills
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Louis R Lapierre
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
16
|
Bae EJ, Lee SJ. The LRRK2-RAB axis in regulation of vesicle trafficking and α-synuclein propagation. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165632. [PMID: 31812666 DOI: 10.1016/j.bbadis.2019.165632] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/04/2019] [Accepted: 12/03/2019] [Indexed: 12/29/2022]
Abstract
LRRK2 and SNCA, the gene for α-synuclein, are the two of the most important genetic factors of Parkinson's disease (PD). A-synuclein is aggregated and accumulated in neurons and glia in PD and considered the pathogenic culprit of the disease. A-synuclein aggregates spread from a few discrete regions of the brain to larger areas as the disease progresses through cell-to-cell propagation mechanism. LRRK2 is involved in the regulation of vesicle trafficking, in particular in the endolysosomal and autophagic pathways. Studies also suggest that LRRK2 might regulate the pathogenic actions of α-synuclein. However, the relationship between these two proteins in the pathogenesis of PD remains elusive. Here, we review the current literature on the pathophysiological function of LRRK2 with an emphasis on its role in the endolysosomal and autophagic pathways. We also propose a potential mechanism by which LRRK2 is involved in the regulation of aggregation and the propagation of α-synuclein.
Collapse
Affiliation(s)
- Eun-Jin Bae
- Departments of Biomedical Sciences and Medicine and Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seung-Jae Lee
- Departments of Biomedical Sciences and Medicine and Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| |
Collapse
|
17
|
Palmisano NJ, Meléndez A. Autophagy in C. elegans development. Dev Biol 2019; 447:103-125. [PMID: 29709599 PMCID: PMC6204124 DOI: 10.1016/j.ydbio.2018.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/19/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
Abstract
Autophagy involves the sequestration of cytoplasmic contents in a double-membrane structure referred to as the autophagosome and the degradation of its contents upon delivery to lysosomes. Autophagy activity has a role in multiple biological processes during the development of the nematode Caenorhabditis elegans. Basal levels of autophagy are required to remove aggregate prone proteins, paternal mitochondria, and spermatid-specific membranous organelles. During larval development, autophagy is required for the remodeling that occurs during dauer development, and autophagy can selectively degrade components of the miRNA-induced silencing complex, and modulate miRNA-mediated silencing. Basal levels of autophagy are important in synapse formation and in the germ line, to promote the proliferation of proliferating stem cells. Autophagy activity is also required for the efficient removal of apoptotic cell corpses by promoting phagosome maturation. Finally, autophagy is also involved in lipid homeostasis and in the aging process. In this review, we first describe the molecular complexes involved in the process of autophagy, its regulation, and mechanisms for cargo recognition. In the second section, we discuss the developmental contexts where autophagy has been shown to be important. Studies in C. elegans provide valuable insights into the physiological relevance of this process during metazoan development.
Collapse
Affiliation(s)
- Nicholas J Palmisano
- Biology Department, Queens College, CUNY, Flushing, NY, USA; Biology Ph.D. Program, The Graduate Center of the City University of New York, NK, USA
| | - Alicia Meléndez
- Biology Department, Queens College, CUNY, Flushing, NY, USA; Biology Ph.D. Program, The Graduate Center of the City University of New York, NK, USA; Biochemistry Ph.D. Program, The Graduate Center of the City University of New York, NY, USA.
| |
Collapse
|
18
|
Henis-Korenblit S, Meléndez A. Methods to Determine the Role of Autophagy Proteins in C. elegans Aging. Methods Mol Biol 2019; 1880:561-586. [PMID: 30610723 DOI: 10.1007/978-1-4939-8873-0_37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
This chapter describes methods for the analysis of autophagy proteins in C. elegans aging. We discuss the strains to be considered, the methods for the delivery of double-stranded RNA, and the methods to measure autophagy levels, autophagic flux, and degradation by autophagy.
Collapse
Affiliation(s)
- Sivan Henis-Korenblit
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| | - Alicia Meléndez
- Department of Biology, Queens College, The City University of New York, Flushing, NY, USA.
- Biology and Biochemistry PhD Programs, The Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
19
|
Wei F, Duan Y. Crosstalk between Autophagy and Nanomaterials: Internalization, Activation, Termination. ACTA ACUST UNITED AC 2018; 3:e1800259. [PMID: 32627344 DOI: 10.1002/adbi.201800259] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/02/2018] [Indexed: 12/12/2022]
Abstract
Nanomaterials (NMs) are comprehensively applied in biomedicine due to their unique physical and chemical properties. Autophagy, as an evolutionarily conserved cellular quality control process, is closely associated with the effect of NMs on cells. In this review, the recent advances in NM-induced/inhibited autophagy (NM-phagy) are summarized, with an aim to present a comprehensive description of the mechanisms of NM-phagy from the perspective of internalization, activation, and termination, thereby bridging autophagy and nanomaterials. Several possible mechanisms are extensively reviewed including the endocytosis pathway of NMs and the related cross components (clathrin and adaptor protein 2 (AP-2), adenosine diphosphate (ADP)-ribosylation factor 6 (Arf6), Rab, UV radiation resistance associated gene (UVRAG)), three main stress mechanisms (oxidative stress, damaged organelles stress, and toxicity stress), and several signal pathway-related molecules. The mechanistic insight is beneficial to understand the autophagic response to NMs or NMs' regulation of autophagy. The challenges currently encountered and research trend in the field of NM-phagy are also highlighted. It is hoped that the NM-phagy discussion in this review with the focus on the mechanistic aspects may serve as a guideline for future research in this field.
Collapse
Affiliation(s)
- Fujing Wei
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-enviroment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, P. R. China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-enviroment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, P. R. China
| |
Collapse
|
20
|
Limanaqi F, Biagioni F, Gambardella S, Ryskalin L, Fornai F. Interdependency Between Autophagy and Synaptic Vesicle Trafficking: Implications for Dopamine Release. Front Mol Neurosci 2018; 11:299. [PMID: 30186112 PMCID: PMC6110820 DOI: 10.3389/fnmol.2018.00299] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022] Open
Abstract
Autophagy (ATG) and the Ubiquitin Proteasome (UP) are the main clearing systems of eukaryotic cells, in that being ultimately involved in degrading damaged and potentially harmful cytoplasmic substrates. Emerging evidence implicates that, in addition to their classic catalytic function in the cytosol, autophagy and the proteasome act as modulators of neurotransmission, inasmuch as they orchestrate degradation and turnover of synaptic vesicles (SVs) and related proteins. These findings are now defining a novel synaptic scenario, where clearing systems and secretory pathways may be considered as a single system, which senses alterations in quality and distribution (in time, amount and place) of both synaptic proteins and neurotransmitters. In line with this, in the present manuscript we focus on evidence showing that, a dysregulation of secretory and trafficking pathways is quite constant in the presence of an impairment of autophagy-lysosomal machinery, which eventually precipitates synaptic dysfunction. Such a dual effect appears not to be just incidental but it rather represents the natural evolution of archaic cell compartments. While discussing these issues, we pose a special emphasis on the role of autophagy upon dopamine (DA) neurotransmission, which is early affected in several neurological and psychiatric disorders. In detail, we discuss how autophagy is engaged not only in removing potentially dangerous proteins, which can interfere with the mechanisms of DA release, but also the fate of synaptic DA vesicles thus surveilling DA neurotransmission. These concepts contribute to shed light on early mechanisms underlying intersection of autophagy with DA-related synaptic disorders.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | - Larisa Ryskalin
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|